Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI与低空经济未来

Answer

以下是关于 AI 与未来经济相关的一些信息:

AGI 实现后,未来 20 年人类社会可能会发生以下变革:

  1. 社会结构变化:劳动力、经济与治理方面,AGI 带来的超高生产率可能挑战现有经济体系基础。传统市场经济建立在稀缺性和劳动力参与之上,而 AGI 可能令充裕成为常态,人工劳动不再是主要创造价值手段,现行的资本主义或社会主义模式都将受到冲击。
  2. 经济体系与分配:可能迈向“后稀缺经济”,在 AGI 和自动化极大降低生产成本后,许多商品和服务近乎免费,人类基本需求容易满足,金钱和竞争在某些领域的重要性下降。例如,未来也许会出现“零工资经济”,人人无需为了生计而工作,AGI 带来的丰富产出能够满足全社会需求。

Sam Altman 对 AI 的相关观点包括:

  1. 人类是工具的创造者,每一代人都在前人的发现基础上创造出更强大的工具,AGI 是人类进步脚手架上的又一个工具,也可能是某种开端。未来面临的经济增长看起来令人惊叹,十年后,也许地球上的每个人都能完成的成就将超过今天最具影响力的个人所能达到的水平。
  2. 关于 AI 经济学的三点观察:
    • AI 模型的智能水平大致等于用于训练和运行它的资源的对数,花费足够多的资金能获得连续且可预测的收益。
    • AI 成本每年下降 10 倍,使用门槛正以前所未有的速度降低。
    • 智能增长带来超指数级经济价值,AI 代理人的出现将颠覆知识型工作,经济体系将随之变革。

同时,Sam Altman 强调 AGI 影响力的扩散将不均衡,科学研究可能成为最先受益的领域,而社会如何适应这种转变将成为未来最大的挑战。

Content generated by AI large model, please carefully verify (powered by aily)

References

[趋势研究]Deep Research - AGI 实现后未来 20 年人类社会的变革

AGI带来的超高生产率可能挑战现有经济体系的基础。传统市场经济建立在稀缺性和劳动力参与之上,而如果AGI令充裕成为常态、人工劳动不再是主要创造价值的手段,那么现行的资本主义或社会主义模式都将受到冲击[forwardfuture.ai](https://www.forwardfuture.ai/p/scale-is-all-you-need-part-4-2-the-post-agi-world#:~:text=The%20complete%20integration%20of%20AGI,in%20history%20as%20a%20historical)。有观点认为,我们可能迈向“后稀缺经济”——在AGI和自动化极大降低生产成本后,许多商品和服务近乎免费,人类基本需求容易满足,金钱和竞争在某些领域的重要性下降[forwardfuture.ai](https://www.forwardfuture.ai/p/scale-is-all-you-need-part-4-2-the-post-agi-world#:~:text=In%20such%20a%20system%2C%20economic,All%20I%27m%20saying%20is)。例如,未来也许会出现**“零工资经济”**,人人无需为了生计而工作,AGI带来的丰富产出能够满足全社会需求[forwardfuture.ai](https://www.forwardfuture.ai/p/scale-is-all-you-need-part-4-2-the-post-agi-world#:~:text=based%20on%20a%20universal%20basic,example%20in%20particular%20illustrates%20the)。

Sam Altman又给AI打了针“强心针”

(*在此处使用AGI一词,目的是为了清晰地沟通。我们在这里使用“AGI”这个词,是为了把意思说清楚,避免断章取义的解读,并不是想借此修改或重新解读我们和微软之间现有合作关系的那些定义和流程。我们完全期望能和微软长期合作下去。)⼈类是⼯具的创造者,拥有与⽣俱来的理解和创造驱动⼒,这推动世界对我们所有⼈都越来越好。每⼀代⼈都在前⼈的发现基础上再接再厉,创造出更强⼤的⼯具⸺电⼒、晶体管、计算机、互联⽹,⽽很快就会是AGI。长期以来,⼈类创新时断时续却总体稳步向前,让⼈们的⽣活在⼏乎各⽅⾯都获得了原本难以想象的繁荣与改善。从某种意义上说,AGI只是⼈类共同搭建的这座不断增⾼的进步脚⼿架上的⼜⼀个⼯具。但从另⼀个⻆度来看,它⼜像某种开端,让⼈忍不住想说“这次不⼀样”;未来⾯临的经济增长看起来令⼈惊叹,我们可以想象⼀个世界⸺在这个世界⾥,我们可以治愈所有疾病,拥有更多的时间陪伴家⼈,并能充分发挥我们的创造潜能。⼗年后,也许地球上的每个⼈都能完成的成就将超过今天最具影响⼒的个⼈所能达到的⽔平。我们持续看到AI的快速发展。以下是关于AI经济学的三点观察:1.AI模型的智能⽔平⼤致等于⽤于训练和运⾏它的资源的对数。这些资源主要是训练计算量、数据和推理计算量。看起来只要花费⾜够多的资⾦,就能获得连续且可预测的收益;预测这⼀点的扩展定律在多个数量级上都相当准确。

Sam Altman又给AI打了针“强心针”

图源:Getty Images出品丨INDIGO的数字镜像(ID:indigo-dm)出处丨https://blog.samaltman.com/three-observations今天,AI经济学迎来新的里程碑。OpenAI CEO Sam Altman在其博客中发表了重磅文章《Three Observations》,从三个核心视角解析AI的发展趋势,并释放出关于AGI未来的关键信号:1️⃣AI智能水平与计算资源呈对数关系——计算资源越多,AI的智能提升呈现可预测的增长趋势。2️⃣AI成本每年下降10倍——AI的使用门槛正以前所未有的速度降低,这一趋势类似于摩尔定律,但加速更快。3️⃣智能增长带来超指数级经济价值——AI代理人的出现将颠覆知识型工作,经济体系将随之变革。Altman认为,AI代理(AI Agents)将逐步发展成“虚拟同事”,未来可以在短时间内完成顶级软件工程师才能完成的工作。这种变革不仅影响企业运营,还可能改变全球生产力格局。与此同时,他强调,AGI影响力的扩散将不均衡,科学研究可能成为最先受益的领域,而社会如何适应这种转变,将成为未来最大的挑战。AGI真的要来了?社会是否已经做好准备?这场变革值得每一个人思考。以下为《三大观察》全文:我们的使命是确保AGI(通⽤⼈⼯智能)惠及全⼈类。开始指向AGI*的系统正在逐渐显现,因此我们认为理解当下所处的时刻⾮常重要。AGI是⼀个定义不够明确的术语,但通常⽽⾔,我们⽤它来指能够在许多领域以⼈类⽔平应对⽇益复杂问题的系统。

Others are asking
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
根据数智经济、银发经济、低空经济、单身经济其中有什么痛点和创新发展内容
数智经济的痛点可能包括数据安全与隐私保护问题、数字鸿沟导致的发展不平衡、技术更新换代快带来的高投入成本等。创新发展方面,可以加强数据治理和安全防护技术,推动数字技术与传统产业深度融合,拓展数字经济新场景。 银发经济的痛点或许有产品和服务针对性不足、市场标准和规范不完善、养老服务专业人才短缺等。创新发展可着眼于开发个性化的老年产品和服务,建立健全行业标准,加强养老服务人才培养。 低空经济的痛点可能存在政策法规不完善、基础设施建设不足、技术创新能力有待提高等。创新发展可以从完善政策法规、加大基础设施投资、推动技术研发和应用等方面入手。 单身经济的痛点也许是消费市场细分不够精准、社交需求满足不足、部分产品和服务质量参差不齐等。创新发展能够在精准定位消费需求、创新社交模式、提升产品和服务品质上下功夫。
2024-10-29
我想要自学AI相关的知识,但不知道从哪里开始,需要一个行动方案,我未来想做一个ai产品经理
以下是为您提供的自学 AI 知识并成为 AI 产品经理的行动方案: 1. 应用方面: 深入了解 Prompt,选择适合自己的 AI 对话、绘画和语音产品,每天使用并用于解决实际问题或提升效率。 2. 分析方面: 大量阅读各类文章、视频以及行业报告,理解各知识之间的关系。 3. 掌握相关技能: 了解目前 AI 提示词工程师岗位的招聘技能要求,例如: 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 具有一定的编程基础,熟练使用 Python、Git 等工具。 4. 了解产品经理工作: 调研市场、思考需求、转化需求、思考解决方案、设计解决方案、分配任务、进行测试、实现解决方案。 像善用提示词工程的人一样,将需求抽象再具象成产品。 总之,要成为 AI 产品经理,需要不断学习和实践,适应行业的发展和变化。
2025-04-12
MCP是什么?未来的发展趋势如何?
MCP(模型上下文协议)是一种于 2024 年 11 月推出的开放协议,允许系统以跨集成的泛化方式为 AI 模型提供上下文。该协议定义了 AI 模型如何调用外部工具、获取数据和与服务交互。 MCP 已经在重塑 AI 智能体和代理的生态系统。其未来的发展趋势取决于如何应对基础性挑战,如果处理得当,可能成为 AI 与工具交互的默认接口,并开启新一代自主、多模态、深度集成的 AI 体验。如果被广泛采用,它可能代表工具构建、消费和货币化方式的转变。 今年将是关键的一年,可能会面临一些关键问题,比如是否会看到一个统一的 MCP 市场崛起,AI 代理的认证是否会变得无缝,多步执行能否被正式纳入协议等。 MCP 从 LSP(语言服务器协议)中获取灵感,超越 LSP 的地方在于其以智能体为中心的执行模型,LSP 主要是被动响应,而 MCP 专门为支持自主的 AI 工作流而设计,根据上下文,AI 智能体可以决定使用哪些工具、按什么顺序以及如何将它们串在一起来完成任务。MCP 还引入了人工参与的功能,允许人类提供额外的数据并批准执行。
2025-04-10
未来ai发展有什么方向性的可能,尤其对于产品运营的启发
未来 AI 发展具有以下方向性的可能,对产品运营有如下启发: 1. 从通用能力到专业化细分: 早期通用型 AI 产品如 ChatGPT 吸引大量用户,但难以满足多样化需求。 如今越来越多 AI 产品专注特定领域或功能,如图像生成(Midjourney、Stable Diffusion 等)、视频制作(Pika、Runway 等)、音频处理(各种 AI 配音、音乐生成工具),每个细分领域的产品不断提升核心能力,为用户提供更精准和高质量服务。 2. 商业模式的探索与创新: ToB 市场深耕,如针对内容创作者的 ReadPo,为专业用户提供高效工具。 新型广告模式,如天宫搜索的“宝典彩页”,允许用户认领主题词实现变现。 AI 产品从技术展示向解决用户痛点和创造商业价值转变。 3. 公司未来的样貌: AI 是生产力革命,将通过 AI 网络协同工作,推动对新型基础设施的需求。 未来公司建设可能成为 AI Agent 的工作,公司可能像神经网络一样工作。 下一代公司规模可能更小,但数量会增加,具有新的组建方式、所有权和管理结构。 未来公司将需要解决知识管理、内容生成、信任、安全和身份验证等难题的企业产品,软件数量将不断扩张和变化,代码生成和软件代理业务将更定制化和快速迭代。 4. 具体应用场景: 企业应用:提示词工程重要性凸显,带来超级个性化服务、预测性决策能力、自动创新设计能力、自动识别和优化内部流程。 交通领域:自动驾驶汽车提高安全性和效率,优化信号灯和流量。 物流配送:优化路线和计划,降低成本,包括无人机送货。 教育:提供个性化学习体验。 农业:分析农田数据提高产量和质量。 人工智能时代下最重要的三个基石是数据、算法和算力,相关资源如: 算力: 数据:
2025-04-10
未来ai发展尤其对于腾讯的发展有什么方向性的可能
以下是关于腾讯在未来 AI 发展方向的一些可能: 1. 2024 年数字科技趋势:从连接、交互、计算和智能四个维度,对 100 多项未来技术和重点方向给出趋势性判断。包括星地直连的卫星互联网、垂直起降飞机的未来交通网、能源、信息和交通的多网协同,使未来网络连接的广度和深度都迎来无限可能。报告下载地址:(发布时间:2024/01/23) 2. 金融业大模型应用:强调大模型技术对金融业带来的革命性影响,包括提高效率、降低成本、创新服务和优化风险管理等方面。通过深入分析多个案例,展示大模型在金融服务、风险管理、客户服务和营销策略等领域的应用,同时指出实施大模型技术面临的挑战,如数据隐私、算法偏见和监管合规等。报告下载地址:(发布时间:2023/11/30) 3. 在基础模型和开源生态方面: 合成数据方面:量变不能直接产生质变,质量和结构至关重要;需要从扩充数据转向创造知识,通过系统化方法提升训练数据质量。 游戏开发、影视制作、工业设计、VR 构建等领域:面临数据积累和模型优化以实现产业赋能的挑战,当前瓶颈包括训练数据稀缺和泛化能力有限,未来方向可能是 GANs 数据生成和迁移学习优化。 材质还原方面:基于几何模型的空间结构特征生成真实感材质与纹理映射,纹理生成方法多元化,核心技术不断突破,AI 赋能加速发展,应用场景持续扩展。
2025-04-10
我想在未来从事ai事业,现在该如何学习ai,
如果您想在未来从事 AI 事业,以下是一些学习建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 AI 的技术历史和发展方向,目前最前沿的技术点包括: 1. 偏向技术研究方向: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 2. 偏向应用方向: 编程基础:Python、C++等。 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-03-26
未来AGI新职业有哪些
未来 AGI 可能催生以下新职业: 1. 与 AGI 技术安全和伦理相关的工作,如负责确保 AGI 可控性和与人类价值对齐的专业人员。 2. 参与公共政策制定和全球合作的“政策顾问”和“外交官”,协助制定 AGI 相关的规则和标准。 3. 由于 AGI 对劳动力市场的冲击,可能会出现帮助劳动者快速适应职业转换、学习新技能的职业培训师和指导顾问。 同时,AGI 的广泛应用将对劳动力市场产生巨大冲击,许多传统职业可能被取代,但历史经验表明,每次技术革命虽淘汰旧岗位,但也会创造全新岗位。例如汽车取代马车夫催生了汽车产业的新工作,AGI 时代也有望出现我们今日难以想象的新职业,整体上有望维持就业的动态平衡。不过在调整过渡期,许多劳动者将面临前所未有的职业转换压力,需要快速适应并学习新技能,转向机器不能完全胜任的任务。
2025-03-17
AI对社会经济的影响,AI时代有哪些新的竞争机会
AI 对社会经济的影响主要体现在以下几个方面: 1. 引领新的服务模式:如“智能即服务”,重塑工作和生活,增强能力、实现自动化和改变交互方式。 2. 赋能相关行业:为芯片和云计算行业带来新机遇,推动其发展,GPU 需求预计持续增长。 3. 创造投资机会:企业软件、AI 驱动的金融服务以及 AI 健康技术成为吸引投资的主要领域,机器人行业投资额超过企业软件,有望成为重要爆发点。 4. 影响企业竞争策略:企业竞争策略分化,有的迅速成长为大型模型公司并寻找强大背书,有的保持小规模专注盈利并灵活应对市场变化。 5. 推动科技巨头合作:科技巨头通过资本控制 AI 模型公司,为其提供算力,加速行业发展。 在 AI 时代,新的竞争机会包括: 1. 成为大型模型公司并获得强大背书,以取得竞争优势。 2. 保持小规模,专注盈利和灵活应对市场变化。 3. 在特定领域如企业软件、金融服务、健康技术等,利用 AI 创新获得发展机会。 4. 适应权力格局变更,应对“AI 寡头”或“超级强国”的出现,寻找新的发展空间。 同时,AI 时代还具有以下特点和趋势: 1. 未来变化深远,人们会找到新的做事、服务彼此和竞争的方式。 2. 主动性、意志力和毅力将极其宝贵,韧性和适应能力值得培养。 3. AGI 将成为人类意志最大的杠杆,个人能产生更大影响。 4. AGI 的影响不均衡,科学进步速度可能更快,部分商品价格大幅下降,奢侈品和有限资源价格可能上涨。 5. AI 将渗透到经济和社会各领域,人们期待所有事物具有“智能”特质。 6. 权力金字塔可能重塑,率先开发或控制 AGI 的主体将获得巨大战略优势,可能出现“AI 寡头”或“超级强国”,威胁民主和公平竞争。
2025-04-01
ai如何让普通人个人实现经济独立
在 AI 时代,普通人实现经济独立可以通过以下方式: 1. 达到人机协作的高级形态与独立创新:努力达到与 AI 高度协同又不失主导的状态,利用 AI 组成自己的“AI 团队”,实现原来需要很多人才能完成的目标。例如在产品开发中,一个人借助 AI 可以同时扮演多个角色,高效完成各项工作,实现一人公司或个人创造者经济。但要达到此阶段,需要对 AI 工具掌控纯熟,保持自主性和判断力,将 AI 看作“增强器”而非替代者。 2. 充分运用 AI 进行渐进式培养:从心态、知识、技能、思维、创造力到协作能力,层层推进,不断强化自身的主动性和思考力,成长为适应 AI 时代的超级个体,在知识广度、思考深度、创造力和效率上实现飞跃。 此外,还可以关注以下方面: 1. 了解 AI 多模态大爆发的趋势,认识到“互动”与“内容”可能变得廉价,而“真实”会成为稀缺资源。 2. 关注“AI 原生”的商业模式,基于 AI 的能力再造商业模式,而非套用现有流程。 3. 思考 AGI 可能带来的极端垄断和中心化操控能力,为自己准备 PlanB。 4. 认识到“人的模型”是 AI Agent 的前提,是 AI 与人合作的关键一环。 5. 关注 AGI 会主动投资的技术,如可控核聚变、量子计算、超导、广义机器人等。
2025-03-24
我是经济学研究者,经常写作学术论文,投稿SSCI期刊,大模型幻觉太严重,在辅助文献综述写作方面,基本没有用处。你有好的用于文献综述写作的AI辅助工具吗?
以下是一些可能有助于您在文献综述写作中应对大模型幻觉问题的方法和工具: 1. 对于 ChatGPT ,您可以使用 temporary chat 功能,保证其在没有任何记忆的情况下生成最新鲜的回答。 2. 当发现模型回答不理想时,可以采取以下技巧: 告诉模型忘掉之前的所有内容,重新提问或新建会话窗口。 让模型退一步,重新审视整个结构,从零开始设计。 对于像 Claude 这种会自己猜测的模型,如果不确定,可以给它看日志,让其依据日志判断问题所在。 3. 您可以参考 Hallucination Leaderboard (大语言模型幻觉排行榜),了解不同模型的幻觉情况,该排行榜使用 Vectara 的 Hughes 幻觉评估模型计算各大模型在总结文档时引入幻觉的频率,用于评估 LLM 的事实一致性,并为 RAG 系统提供参考。完整榜单可通过查看。 4. Claude APP 即将添加网页搜索和推理功能,这或许意味着新模型即将发布,预计发布时间在一两周内。
2025-03-06
AI对经济影响研究
AI 对经济的影响主要体现在以下几个方面: 1. AI 模型的智能水平大致等于用于训练和运行它的资源的对数,这些资源主要包括训练计算量、数据和推理计算量。只要投入足够资金,就能获得连续且可预测的收益,这一扩展定律在多个数量级上都相当准确。 2. 使用给定水平的人工智能的成本每 12 个月下降约 10 倍,价格下降导致使用量大幅增加。例如从 2023 年初的 GPT4 到 2024 年中期的 GPT4o,每个令牌的价格在该时间段内下降了约 150 倍。 3. 社会经济上线性提升智力的价值具有超指数性质,因此看不出在不久的将来会停止对 AI 进行指数级投入的理由。 此外,如果上述观察继续成立,对社会的影响将是重大的。现在已经开始推出人工智能代理,它们最终将感觉像虚拟同事。以软件工程师代理为例,它最终能够完成大部分一名顶尖公司、工作几年的软件工程师在两三天内可以做的任务,但需要大量人类的监督和引导,且在某些方面表现出色,某些方面糟糕。想象拥有大量这样的虚拟同事存在于每一个知识工作领域。从某种程度上来说,AI 在经济上可能会像晶体管一样,是一项重大的科学发现,能很好地实现规模效应,并渗透到经济的几乎各个角落。 需要注意的是,世界不会一夜之间改变,短期内生活的大部分会与往常相同,2025 年人们的生活方式与 2024 年不会有太大差别。人们依然会相爱,组建家庭,在网上吵架,去大自然中远足等等。
2025-02-19
推荐科研人专用AI(经济学)
以下是为科研人(经济学)推荐的一些 AI 工具: 1. Scite.ai:这是一个为研究人员、学者和行业专业人员打造的创新平台,旨在增强他们对科学文献的洞察。它提供了一系列工具,如引用声明搜索、自定义仪表板和参考检查,能简化您的学术工作。 2. Scholarcy:这是一款科研神器,主要为做科研、学术、写论文的人准备。它可以从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,精炼地呈现文章的总结信息,分析中包含关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。 3. ChatGPT:这是一个强大的自然语言处理模型,可以提供有关课题的修改意见。您可以向它提供您的文章,并提出您的问题和需求,它将尽力为您提供帮助。 这些工具可以帮助您从不同的角度审视和改进您的课题,提供专业的修改意见和建议。您可以根据自己的具体需求选择合适的工具进行尝试。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-04
我现在需要根据一系列的 yaml 和 markdown 构建一个知识库,并且需要支持 AI 问答,每次 AI 问答的结果都要保存成一个新的内容放到知识库中,请问从经济效益来看,有哪些服务可以使用?
目前从经济效益的角度来看,以下一些服务可能有助于您构建这样的知识库并支持 AI 问答以及结果保存: 1. 云服务提供商,如阿里云、腾讯云、AWS 等,它们提供可扩展的计算和存储资源,您可以根据实际需求灵活配置,避免过度投入硬件成本。 2. 开源的知识管理和问答系统框架,例如使用 Elasticsearch 结合相关插件来实现问答功能,成本相对较低,但可能需要一定的技术投入进行搭建和维护。 3. 一些专门针对知识管理和 AI 应用的 SaaS 服务,它们通常按使用量计费,初期投入较小,适合小规模应用。 需要注意的是,具体选择哪种服务取决于您的业务规模、技术能力、预算以及对性能和功能的要求。
2025-02-01