Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

利用 AI 生成测试用例,提示词如何编写

Answer

以下是关于利用 AI 生成测试用例时编写提示词的一些方法和要点:

  1. 明确任务:清晰地定义生成测试用例的任务,例如明确测试的对象、范围和目标。
  2. 提供上下文:若任务需要特定知识背景,在提示词中提供充足信息。
  3. 语言清晰:使用简单、明确的语言,避免模糊或有歧义的词汇。
  4. 给出具体要求:如对测试用例的格式、覆盖范围等有特定要求,应在提示词中指明。
  5. 使用示例:提供期望的测试用例示例,帮助 AI 理解需求。
  6. 保持简洁:提示词简洁明了,避免过多复杂信息导致 AI 困惑。
  7. 运用关键词和标签:有助于 AI 更好理解任务主题和类型。
  8. 测试和调整:生成结果后仔细检查,根据情况多次迭代调整提示词,直至满意。

例如,在生成符合要求的单词卡内容并填入 Excel 文件的测试用例时,首先给出基本示例作为核心依托,然后根据不同生成内容限定规则,包括对自然语言描述附加更多限制,以确保按要求输出 Excel 文档。在批量产出时,注意上传压缩文件并完成套版等操作。

另外,在 GPTs 实战中制作迷宫卡片时,也涉及到分步实现需求,如 GPT 生成主题相关绘图提示词、Dalle-3 根据生成图片绘制底图、Python 随机绘制迷宫等步骤,其中都需要精心编写提示词,并根据效果进行调整和优化。

Content generated by AI large model, please carefully verify (powered by aily)

References

AI 应用到工作场景:如何利用 AI 的方式批量制作单词卡片

这段提示词,其实写的挺简单的。简单来说,就是最外围的核心就是我的两个目的。1.生成符合要求的单词卡的内容2.按照对应的位置把内容分别填入Excel文件中在生成过程中,我首先给个一个基本的示例,这是GPT能够完成这段任务最核心的依托。然后根据不同的生成内容限定了一点规则。同样的关于第二部分,我也是给出了一段基础的自然语言描述,然后利用附加规则的方式给出了更多的限制。这样确保能够按照我的要求来输出Excel文档给我。[heading3]二)测试结果[content]我一起输入了五个单词,可以实现同时解析。但是效果有的稍微差一些,可能主要是因为给的方法论不足,但是大体格式是符合我的要求的。关于第二部分,如下图:我们可以看到,其实他有按照我的要求把内容填进对应的空格中,但是改变了最初的一些设定。可能是因为一些兼容性的问题,但是依然不妨碍我们使用,简单的复制粘贴即可。我们把Excel下载下来,复制他填好的表格。粘贴到我们的表格中。(因为要多次使用,记得留好原Excel的备份文件。)注意这里需要上传的是压缩文件,所以我们先压缩一下。(rar格式的文件,我试了下,但是上传的时候看不见,不知道什么问题emmm)[heading3]三)批量产出[content]上传压缩文件上传成功后,如图中1所示,然后我们点击2完成套版。然后,我们就获得了符合我们要求的几张小卡片。

GPTs 实战:利用 AI 的制作迷宫卡片

[heading3]二)Dalle-3:根据生成的图片绘制底图[heading4]1、提示词[heading4]2、效果图[content][heading3]三)Python:根据固定好的代码逻辑,随机绘制迷宫[heading4]1、Python代码生成[heading4]2、逻辑微调[content]我们发现生成的图片是很合理的迷宫,但是即然是迷宫,边应该封好,至少大家不应该从边上出去,所以我们调整下提示词。[heading4]3、效果展示[content]这个复杂度如果觉得不够,也可以提出,然后对其进行调整。[heading4]4、获得代码[content]稍微懂些代码的感兴趣的可以稍微看一下,还是挺有趣的~[heading3]四)Python完成图片的覆盖、叠加[heading4]1、PS测试参数[content]这边因为我需要手动先测试下逻辑,所以用了下PS。[heading4]2、Python提示词[heading4]3、效果展示[content]如果要是觉得迷宫不够清晰,可以调整为90%[heading4]4、获取代码[heading2]三、提示词编写测试[heading3]一)初版提示词[heading3]二)迭代后提示词[heading2]四、GPTs试用链接[heading3]一)试用链接[content]https://chatgpt.com/g/g-EZb4QCO70-mi-gong-qia-pian如果最后没有展示图片,就问下GPT,跟他说:“你没有展示图片给我!”或者“你没有把图片下载链接给我”[heading3]二)效果展示[content]主题:星空主题:太空主题:校园

问:怎么写提示词 prompt?

写prompt(提示)是一个关键的步骤,它决定了AI模型如何理解并生成文本。一个好的prompt能够帮助AI模型更好地理解任务的要求,并生成更符合预期的文本。以下是一些编写prompt的建议:1.明确任务:确保你的prompt清晰地定义了任务。例如,如果你需要写一个故事,你的prompt应该包含故事的背景、角色和主要情节。2.提供上下文:如果任务需要特定的背景知识,确保在prompt中提供足够的上下文。例如,如果你需要写一篇关于某个历史事件的报告,提供一些关于该事件的基本信息。3.使用清晰的语言:尽量使用简单、清晰的语言来描述任务。避免使用模糊或歧义的词汇,以免AI模型产生误解。4.给出具体要求:如果你的任务有特定的格式或风格要求,请在prompt中明确指出。例如,如果你的文章需要遵循特定的格式或引用特定类型的文献,确保在prompt中说明。5.使用示例:如果你有特定的期望结果,可以在prompt中提供示例。这有助于AI模型更好地理解你的需求。6.保持简洁:尽量保持prompt简洁明了。过多的信息可能会使AI模型产生困惑,导致生成不准确的结果。7.使用关键词和标签:在prompt中使用关键词和标签可以帮助AI模型更好地理解任务的主题和类型。8.测试和调整:在生成文本后,仔细检查结果,并根据需要调整prompt。这可能需要多次迭代,直到达到满意的结果。希望这些建议能帮助你更好地编写prompt。内容由AI大模型生成,请仔细甄别。

Others are asking
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。这个应该怎样使用呢
很抱歉,目前没有关于 Randoop 工具使用方法的相关内容。您可以通过以下途径获取更详细的信息: 1. 官方文档:访问 Randoop 的官方网站,查找其提供的详细使用说明和教程。 2. 技术论坛:在相关的技术论坛上搜索关于 Randoop 使用的讨论和经验分享。 3. 开源社区:参与开源社区中关于 Randoop 的交流,向其他开发者请教。
2025-04-08
如何自动编写测试用例
AI 自动编写测试用例可以通过以下几种方式实现: 1. 基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别: Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: 深度学习模型: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习: RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成: Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成: 状态模型: GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟: Modelbased Testing :基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 实践中的应用示例: 1. Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 2. 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 3. 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 总结:AI 在生成测试用例方面具有显著的优势,可以自动化和智能化生成高覆盖率的测试用例,减少人工编写测试用例的时间和成本。通过合理应用 AI 工具,前端开发工程师可以提高测试效率、增强测试覆盖率和发现潜在问题,从而提升软件质量和用户体验。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-01
如何使用AI创建测试用例
AI 生成测试用例可以通过以下多种方法实现: 1. 基于规则的测试生成: 测试用例生成工具:如 Randoop(适用于 Java 应用程序)、Pex(适用于.NET 应用)。 模式识别:如 Clang Static Analyzer 利用静态分析技术识别代码模式和潜在缺陷生成相应测试用例,Infer 自动生成测试用例帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: 深度学习模型:如 DeepTest 生成自动驾驶系统的测试用例,DiffTest 基于对抗生成网络(GAN)生成测试用例。 强化学习:如 RLTest 通过与环境交互学习最优测试策略,A3C 通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成:如 Testim 通过分析文档和用户故事自动生成测试用例,Test.ai 从需求文档中提取测试用例。 自动化测试脚本生成:如 Selenium IDE 结合 NLP 技术扩展从自然语言描述中生成自动化测试脚本,Cucumber 使用 Gherkin 语言编写的行为驱动开发(BDD)框架通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成: 状态模型:如 GraphWalker 基于状态模型生成测试用例,Spec Explorer 微软开发的模型驱动测试工具通过探索状态模型生成测试用例。 场景模拟:如 Modelbased Testing 基于系统模型自动生成测试用例覆盖各种可能的操作场景和状态转换,Tosca Testsuite 基于模型的测试工具自动生成和执行测试用例适用于复杂应用的端到端测试。 5. 实践中的应用示例: Web 应用测试:使用 Testim 分析用户行为和日志数据自动生成高覆盖率的测试用例检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例确保覆盖关键功能和用户路径提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例确保覆盖所有可能的状态和操作场景检测系统的边界情况和异常处理能力。 此外,让 AI 写出您想要的代码,可以通过创建优质的.cursorrules 来实现,具体包括: 1. 先说清楚您是谁,让 AI 按照专家的水准来思考和编码。 2. 告诉 AI 您要干什么,使其围绕目标写代码。 3. 定好项目的“规矩”,强调团队的代码规范。 4. 明确文件放置位置,便于后期查找。 5. 指定使用的“工具”,保证项目的整洁和统一。 6. 告诉 AI 怎么做测试,使其生成的代码考虑可测试性并主动写测试用例。 7. 推荐参考资料,让 AI 基于最佳实践写代码。 8. 若项目涉及页面开发,补充 UI 的要求。
2025-03-22
利用 AI,基于需求文档生成 测试用例
以下是关于利用 AI 基于需求文档生成测试用例的相关内容: 基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别: Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 基于机器学习的测试生成: 深度学习模型: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习: RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成: Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 基于模型的测试生成: 状态模型: GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟: Modelbased Testing:基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 实践中的应用示例: Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 相关工具和平台: Testim:AI 驱动的自动化测试平台,生成和管理测试用例。 Test.ai:基于 NLP 技术的测试用例生成工具,适用于移动应用和 Web 应用。 DeepTest:利用深度学习生成自动驾驶系统测试用例。 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试。 此外,在编程中,用户故事也很重要。其目的在于确保开发团队能够理解用户需求,并从用户角度设计和开发功能。常规模板为:“作为。”在卡密系统中,写用户故事有三点作用:让执行者了解想要做什么样的应用,从而更准确地搭建代码框架;中途作为关键的上下文信息,确保方向不偏移;可以让 Cursor 依据用户故事生成对应的测试用例,保持功能的完整和准确。可以在 Cursor 里生成 MVP 的用户故事(用其他 AI 功能生成也可以),如点击 Cursor 后,选择提前创建的一个文件夹,创建需求文档,输入简短的需求描述,让 AI 帮助生成用户故事,然后按照实际情况接受并修改。
2025-03-05
利用 AI 生成 测试用例 的内容
AI 生成测试用例具有诸多优势,以下为您详细介绍: 1. 基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别: Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: 深度学习模型: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习: RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成: Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成: 状态模型: GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟: Modelbased Testing :基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 5. 实践中的应用示例: Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 总结:AI 在生成测试用例方面能够自动化和智能化地生成高覆盖率的测试用例,减少人工编写的时间和成本。合理应用 AI 工具,前端开发工程师可以提高测试效率、增强测试覆盖率和发现潜在问题,从而提升软件质量和用户体验。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-05
测试用例自动化生成
AI 生成测试用例是一项很有价值的功能,能显著提高测试覆盖率、降低人工编写的时间和成本。以下是具体的方法、工具及实践应用示例: 方法: 1. 基于规则的测试生成: 测试用例生成工具:如 Randoop(适用于 Java 应用程序)、Pex(适用于.NET 应用)。 模式识别:如 Clang Static Analyzer、Infer。 2. 基于机器学习的测试生成: 深度学习模型:如 DeepTest(用于自动驾驶系统)、DiffTest。 强化学习:如 RLTest、A3C。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成:如 Testim、Test.ai。 自动化测试脚本生成:如 Selenium IDE + NLP、Cucumber。 4. 基于模型的测试生成: 状态模型:如 GraphWalker、Spec Explorer。 场景模拟:如 Modelbased Testing 、Tosca Testsuite。 工具和平台:Testim、Test.ai、DeepTest、GraphWalker、Pex 等。 实践中的应用示例: 1. Web 应用测试:使用 Testim 分析用户行为和日志数据,生成高覆盖率的测试用例,检测兼容性问题。 2. 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径。 3. 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,检测边界情况和异常处理能力。 总结来说,AI 在生成测试用例方面优势显著,合理应用 AI 工具能让前端开发工程师提高测试效率、增强测试覆盖率、发现潜在问题,提升软件质量和用户体验。但请注意,内容由 AI 大模型生成,请仔细甄别。
2025-03-03
作为一个想要使用AI工具提升工作效率的AI小白,我已经学习了怎么编写prompt,接下来我应该学习什么
如果您已经学习了如何编写 prompt ,接下来可以学习以下内容: 1. 理解 Token 限制:形成“当前消耗了多少 Token”的自然体感,把握有效记忆长度,避免在超过限制时得到失忆的回答。同时,编写 Prompt 时要珍惜 Token ,秉承奥卡姆剃刀原理,精简表达,尤其是在连续多轮对话中。 熟练使用中英文切换,若 Prompt 太长可用英文设定并要求中文输出,节省 Token 用于更多对话。 了解自带方法论的英文短语或句子,如“Chain of thought”。 2. 学习精准控制生成式人工智能:重点学习提示词技术,编写更清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体(AI Agents),将工作单元切割开,赋予其特定角色和任务,协同工作提高效率。 在实际应用中遵循准则,如彻底变“懒人”、能动嘴不动手、能让 AI 做的就不自己动手、构建自己的智能体、根据结果反馈调整智能体、定期审视工作流程看哪些部分可用更多 AI 。 3. 若想进一步提升: 学习搭建专业知识库、构建系统知识体系,用于驱动工作和个人爱好创作。 注重个人能力提升,尤其是学习能力和创造能力。 您还可以结合自身生活或工作场景,想一个能简单自动化的场景,如自动给班级孩子起昵称、排版运营文案、安排减脂餐、列学习计划、设计调研问卷等。选一个好上手的提示词框架开启第一次有效编写,比如从基础的“情境:”开始。
2025-04-15
自动规划的prompt如何设计编写
自动规划的 prompt 设计编写可以参考以下要点: 对于简单任务场景: 设定人物:描述 Bot 所扮演的角色或职责、回复风格。 描述功能和工作流程:明确 Bot 的功能和工作流程,约定在不同场景下的回答方式,可通过自然语言强调调用工具以提升约束力,也可为 Bot 提供回复格式示例。 指示 Bot 在指定范围内回答:明确告知回答与不回答的内容。 对于复杂任务场景:推荐使用结构化格式编写提示,使用 Markdown 语法,增强可读性和对 Bot 的约束力。扣子支持将 Bot 的提示自动优化成结构化内容,您可直接使用或修改。 此外,PromptAgent 是一种将提示词优化视为策略性规划问题的方法,采用基于蒙特卡洛树搜索的规划算法,策略性地导航专家级提示词空间。它通过反思模型错误并生成建设性反馈,诱导出精确的专家级见解和深入指令,能高效制定专家级、详细且富有领域洞察力的提示词。 同时,当您理解 chatGPT 如何理解人类语言和文明后,有助于解决 prompt 编写中遇到的问题。比如,找到真正的需求来开始第一个 prompt 编写,这需要一定的洞察能力,可采用“如果某事重复做了三遍,就要思考如何将它自动化”的方法论。例如,若多次在群里发同样的自我介绍,可编写自动优化排版的 Prompt。
2025-04-08
投标书编写的免费AI工具
以下是一些与投标书编写相关的免费 AI 工具: 1. AutogenAI:伦敦初创公司开发的基于生成型人工智能的工具,可帮助企业撰写更强的提案,提高中标率。自成立不到一年已获 28 个客户,能将撰写强大提案的过程加快 800%,同时降低 10%的采购成本。网址:https://autogenai.com 。 此外,还有一些用于 AIGC 相关检测的网站: 1. :提供免费的 AI 内容检测工具,可识别文本是否由 AI 生成。使用方法为将文本粘贴到在线工具中点击检测按钮获取分析结果。 2. GPTZero:专门用于检测由 GPT3 生成内容的工具,适用于教育和出版行业。使用时上传文档或输入文本,系统会分析并提供报告显示是否由 GPT3 生成。 3. Content at Scale:提供 AI 内容检测功能,帮助识别文本是否由 AI 生成。使用时将文本粘贴到在线检测工具中获取分析结果。
2025-04-08
帮我编写一个suno创作提示词模板
以下是为您编写的 Suno 创作提示词模板的相关内容: 在“离谱村”的案例中,首先收到台词素材和配音,确定“童趣”“欢乐”的风格,将相关描述投喂给 GPT4 生成音乐脚本,再输入给 SunoBeats 生成提示词。但初始提示词过长,后参考论坛网友分享的格式,通过调式变化和情节描述,使用和弦进展推动故事情节发展,这种格式的提示词质量和利用率更好。 在“博物馆文物玩法”的案例中,创作思路是给文物上色,参考攻略玩过变形,利用泼洒颜料玩法为雕像上色并使过程有趣。选择首尾帧模式,尾帧基于文物原图重绘为偏写实形象,通过可灵实现人物漂浮效果。涉及工具包括即梦、可灵、Runway、Suno、剪映,各有其优势。步骤为使用即梦图片生成功能上传图片,选择边缘轮廓或人物姿势,不添加景深,提升精细度并选择竖版切割。使用 GPTs 写 Runway 提示词。 希望以上内容对您有所帮助!
2025-03-27
编写炒股公式最好的AI
目前在编写炒股公式方面,没有特定被认定为“最好”的 AI 。编写炒股公式需要综合考虑多种因素,包括数据准确性、算法有效性、市场动态适应性等。不同的 AI 工具和技术在不同的应用场景中可能会表现出不同的效果。
2025-03-14
生成提示词的提示词
以下是关于生成提示词的相关内容: 生成提示词的思路和方法: 可以根据效果好的图片中的高频提示词去反推效果,结合不同字体效果的描述,打包到一组提示词中。提示词给到 AI 后,AI 会根据给定文字的文义,判断适合的情绪风格,然后给出适合情绪的字体和风格描述、情感氛围等,加上一些质量/品质词,形成输出提示词结构。为了让 AI 更能描述清晰风格,可以先给定多种参照举例。 具体操作步骤: 打开 AI 工具的对话框,将相关提示词完整复制粘贴到对话框。推荐使用 ChatGPT 4o。 当 AI 回复后,发送您想要设计的文字。可以仅发送想要的文字,也可以发送图片(适合有多模态的 AI)让 AI 识别和反推。 将 AI 回复的提示词部分的内容复制到即梦 AI。 对生成提示词的一些观点: 提示词生成提示词并非必要,不一定能生成最好的 Prompt 框架,修改过程可能耗时且不一定能修改好,不如花钱找人写。 一句话生成完整符合需求的 Prompt 非常困难,只能大概给出框架和构思,需要更低成本地调整需求和修改 Prompt。 不同生图工具生成提示词的特点: 即使是简短的描述,生成的提示词也非常细节、专业。 会解析需求,找出核心要点和潜在的诠释点,并给出不同的提示词方案。 提示词构建更多在于增强,而不是发散,生成的内容更符合期望。 同时生成中、英双版本,国内外工具通用无压力。 14 款 AI 生图工具实测对比: 本次实测用到的工具包括国内版的即梦 3.0(https://jimeng.jianying.com/aitool/home)、WHEE(https://www.whee.com)、豆包(https://www.doubao.com/chat)、可灵(https://app.klingai.com/cn/texttoimage/new)、通义万相(https://tongyi.aliyun.com/wanxiang/creation)、星流(https://www.xingliu.art)、LibiblibAI(https://www.liblib.art),以及国外版的相关工具。
2025-04-20
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
调教ai的利器,提示词工程
提示词工程是调教 AI 的重要手段,以下是关于提示词工程的相关知识: 作用:避免 AI 掉入“幻觉”陷阱,引导 AI 生成更可靠的内容。 原理:AI 对提示词的理解能力与幻觉的产生密切相关,清晰、具体的提示词能帮助其更好地理解意图,减少错误。 技巧: 明确要求 AI 引用可靠来源,如在询问历史事件时要求引用权威文献,询问科学事实时要求引用科研论文,询问法律条款时要求引用官方文件。 要求 AI 提供详细的推理过程,如询问数学公式时展示推导过程,询问代码功能时逐行解释含义。 明确限制 AI 的生成范围,如询问名人名言时指定名人姓名和相关主题,询问新闻事件时指定时间范围和关键词。 通过这些清晰、具体、有针对性的提示词技巧,可以引导 AI 生成更准确和可靠的内容。但提示词工程只是辅助手段,从根本上解决 AI 幻觉问题还需从数据、模型、训练方法等多方面努力。 提示词工程就像与博学但有点固执的老教授交流,精心设计输入文本能引导 AI 更好地理解需求并给出更准确有用的回答。比如,问“请用简单的语言,为一个 10 岁的小朋友解释什么是人工智能,并举一个生活中的例子”,AI 更可能给出通俗易懂的解释。 在使用 AI 工具的过程中,可能会出现答非所问、回答格式不标准等问题,为让 AI 更好地服务,需要学习提示词工程。当用户的需求接近 AI 真实范围时,可通过写提示词甚至创建 BOT 来优化使用效果。
2025-04-15
提示词
提示词是让 AI 听懂您的需求并生成想要画面的关键。 基础公式(新手必学):景别+运镜+主体+动作+风格。示例:特写镜头|镜头旋转|发光水晶球悬浮|星尘特效|赛博朋克风格。 进阶公式(提升质感):景别+运镜+主体(细节)+动作(速率)+场景(层次)+氛围+光影。示例:全景俯拍|无人机跟拍|雪山湖泊(镜面倒影)|慢动作|冷色调光线|自然纪录片风格。 在星流一站式 AI 设计工具中,prompt 输入框可输入提示词,使用图生图功能辅助创作。 提示词用于描绘您想生成的画面,支持中英文输入。不同模型对输入语言有不同要求,如通用大模型与基础模型 F.1、基础模型 XL 使用自然语言,基础模型 1.5 使用单个词组。 写好提示词要做到: 1. 内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 2. 调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。 3. 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可对已有的提示词权重进行编辑。 4. 借助辅助功能,如翻译功能可一键将提示词翻译成英文,还有删除所有提示词、会员加速等功能。 如果您接触过大量提示工程相关的示例和应用,会注意到提示词由一些要素组成,包括指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息,引导语言模型更好地响应)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。但提示词所需的格式取决于想要语言模型完成的任务类型,并非所有要素都是必须的。
2025-04-15
如何成为提示词工程师
提示词工程师是在与人工智能模型交互时,负责设计和优化提示的专业人员,旨在通过精心构造的提示引导模型产生准确、有用和相关的回答。 其主要职责包括: 1. 设计提示:根据用户需求和模型能力设计有效的提示,考虑提示的长度、结构、措辞和信息量等因素,以清晰传达用户意图并引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式不断优化提示,提高模型性能。 3. 评估提示:使用各种指标如模型的准确率、流畅度和相关性等来评估提示的有效性。 提示词工程师需要具备以下技能和知识: 1. 领域知识:对所工作的领域有深入了解,以便设计出有效的提示。 2. 自然语言处理(NLP):了解 NLP 的基本原理和技术,能够理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 的基本原理和技术,以便理解和使用 AI 模型。 4. 沟通能力:具备良好的沟通能力,与用户、团队成员和其他利益相关者有效沟通。 以下是一些提示词工程师工作的实际案例,比如在市场营销类和商业类中,有自动优化 Prompt 的案例,如 JackeyLiu 熟悉的转化步骤包括: 1. 角色和能力:基于问题思考 chatGPT 最适合扮演的角色,应是该领域最资深的专家,适合解决问题。 2. 上下文说明:思考提出问题的原因、背景和上下文。 3. 任务陈述:基于问题进行陈述。 提示词工程师是一个新兴职业,随着人工智能技术的不断发展,对其需求将会越来越大。
2025-04-15