Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

c语言指针怎么学

Answer

学习 C 语言指针可以按照以下步骤进行:

  1. 理解指针的概念:指针是一个变量,它存储的是另一个变量的内存地址。
  2. 掌握指针的声明和初始化:例如 int *ptr; 声明一个指向整数的指针,ptr = &var; 进行初始化,其中 &var 是变量 var 的地址。
  3. 了解指针的运算:包括指针的加减运算、比较运算等,但要注意运算的合法性和意义。
  4. 学会通过指针访问和修改值:使用 *ptr 来访问指针所指向的变量的值,并可以通过 *ptr = value; 来修改其值。
  5. 结合数组和指针:理解数组名实际上是一个指针常量,以及如何使用指针遍历数组。
  6. 研究指针与函数的关系:包括指针作为函数参数传递地址,实现函数对外部变量的修改。
  7. 多做练习题和实践项目:通过实际编写代码来加深对指针的理解和运用。

在学习过程中,要多思考、多实践,遇到问题及时查阅相关资料和请教他人。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
用what,why,how,will,next,作为五个力量,用熵增熵减作为二进制,组成的底层语言用其中的next作为自主学习探索动力的自进化AI,潜力怎么样?
用 what、why、how、will、next 作为五个力量,以熵增熵减作为二进制,组成底层语言,并以其中的 next 作为自主学习探索动力的自进化 AI 具有一定的潜力,但也面临一些挑战。 从潜力方面来看,这种设计可能有助于 AI 系统更有针对性地进行自主学习和探索。例如,what 可以帮助明确要学习和理解的对象或概念;why 有助于挖掘背后的原因和逻辑,促进更深入的理解;how 能够指导实现目标的方法和步骤;will 可以对未来的发展进行预测和规划。而将 next 作为自主学习探索的动力,有可能推动 AI 不断开拓新的知识领域。 然而,也存在一些挑战。首先,熵增熵减作为二进制的基础,其在实际应用中的有效性和稳定性需要进一步验证和优化。其次,如何准确地定义和运用这五个力量,以及它们之间的协同关系,需要精细的设计和调试。再者,将这种复杂的底层语言转化为实际的算法和模型实现,具有较高的技术难度。 总之,这种自进化 AI 的概念具有创新性和潜力,但需要在理论和实践上进行深入的研究和探索,以充分发挥其优势并克服可能的问题。
2025-04-12
扣子如何改变回复的语言风格
要改变回复的语言风格,可以参考以下方法: 1. 对于风格类的 Bot,提示词中的 Fewshot 对输出风格影响较大,可先找预期相关人的风格示例并修改。 2. 在 Examples 里使用特定开头的词,如“Fword”,开头字符会显著影响输出内容。 3. 加星号的部分代表加粗,根据自注意力机制可提升提示词中的关键词效果。 4. 能力方面可使用自带的 Bing 搜索和图片识别,根据需求选择,如避免 Webpilot 以免语气变温和。 5. 可根据需求决定是否加入绘画功能。 6. 防护词可参考,但没有完美的防御提示词。 7. 回复风格可来自自己的群聊机器人的风格嫁接。 8. 最后加入一些小 Tips 进一步提升个性化效果。 在场景方面,可以问 Bot 对内容的看法,或让其帮忙分析事情以获得更接地气的表述。 另外,编写提示时: 简单任务场景: 设定人物,描述 Bot 所扮演的角色或职责、回复风格。 描述功能和工作流程,约定 Bot 在不同场景下的回答方式,强调调用工具以保证回复准确性,也可为 Bot 提供回复格式示例。 指示 Bot 在指定范围内回答。 复杂任务场景:推荐使用结构化格式编写提示,扣子支持将 Bot 的提示自动优化成结构化内容,可直接使用或修改。
2025-04-09
你都融合了哪些大语言模型?
以下是一些融合的大语言模型: 1. LuotuoChineseLLM: 地址: 简介:囊括一系列中文大语言模型开源项目,包含基于已有开源模型(ChatGLM、MOSS、LLaMA)进行二次微调的语言模型、指令微调数据集等。 2. Linly: 地址: 简介:提供中文对话模型 LinlyChatFlow、中文基础模型 LinlyChineseLLaMA 及其训练数据。中文基础模型以 LLaMA 为底座,利用中文和中英平行增量预训练。项目汇总了目前公开的多语言指令数据,对中文模型进行了大规模指令跟随训练,实现了 LinlyChatFlow 对话模型。 3. ChatYuan: 地址: 简介:元语智能发布的一系列支持中英双语的功能型对话语言大模型,在微调数据、人类反馈强化学习、思维链等方面进行了优化。 4. ChatRWKV: 地址: 简介:开源了一系列基于 RWKV 架构的 Chat 模型(包括英文和中文),发布了包括 Raven,NovelChnEng,NovelCh 与 NovelChnEngChnPro 等模型,可以直接闲聊及进行诗歌、小说等创作,包括 7B 和 14B 等规模的模型。 此外,还有以下相关信息: 1. 本地部署资讯问答机器人: Ollama 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,可用于不同应用场景。 Ollama 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 Ollama 提供模型库,用户可从中下载不同模型,有不同参数和大小以满足需求和硬件条件,可通过 https://ollama.com/library 查找。 用户可通过简单步骤自定义模型,如修改温度参数调整创造性和连贯性,或设置特定系统消息。 Ollama 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 Ollama 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 2. AIGC 落地应用大全中的案例: Poe(强烈推荐): 推荐指数:????? 由 Quora 开发,有 APP 版本,支持跨端使用。 集成了 Chat GPT、GPT4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。 不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。 Dragonfly 擅长给出较短回答,并擅长在输入中给出示例时遵循指示。 Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用 Chat GPT 时的体验(但和 Chat GPT 一样,Claude 也时常会给出一些错误回复,一些问题可在两个模型中都问一遍提升信息准确性)。 此外支持分享用户和模型的对话内容。但 GPT4、Claude+产品需要付费订阅使用。 访问地址: Poe 中的提问引导真的能够启发到用户。 支持 Explore Chatbot,但丰富度不如后续要介绍的 Character。 midjourney prompt 扩写 Chatbot 能力很惊人。
2025-04-08
你好,你是基于哪个大语言模型的人工智能?
我并非基于某个特定的大语言模型。AI 领域中的语言模型众多,例如 GPT3 等。大语言模型通常是使用深度学习和神经网络创建的,基于人类训练数据来理解单词、代码语法等。像生成式 AI 可以生成文本、图片、音频、视频等内容形式,其中包括大语言模型。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络。
2025-04-08
大语言模型能力排行榜
以下是一些大语言模型能力排行榜的相关信息: Open LLM Leaderboard: 地址: 简介:由HuggingFace组织的一个LLM评测榜单,目前已评估了较多主流的开源LLM模型。评估主要包括AI2 Reasoning Challenge、HellaSwag、MMLU、TruthfulQA四个数据集上的表现,主要以英文为主。 chinesellmbenchmark: 地址: 简介:中文大模型能力评测榜单,覆盖百度文心一言、chatgpt、阿里通义千问、讯飞星火、belle/chatglm6b等开源大模型,多维度能力评测。不仅提供能力评分排行榜,也提供所有模型的原始输出结果。 聊天机器人竞技场:由伯克利的一个团队管理,根据ELO评级对不同的语言模型进行排名,计算ELO的方式与国际象棋中的计算方式非常相似。 智源评测:豆包模型在其中表现出色,荣获大语言模型第一,视觉理解第二、文生图第二、文生视频第二,在匿名投票竞技场中排名第二,仅次于OpenAI。 地址:
2025-03-31
自然语言转换为sql
以下是关于自然语言转换为 SQL 的相关信息: DuckDBNSQL7B 模型能够将自然语言转换成 SQL 代码,使非专业用户能轻松与数据库交互,它基于大量真实和合成的 DuckDB SQL 查询训练。相关链接:https://github.com/NumbersStationAI/DuckDBNSQL 、https://x.com/xiaohuggg/status/1751081213459415164?s=20 Claude 官方提示词中有将日常语言变成 SQL 查询语句的相关内容。 以下是一些推荐的 text2sql 相关的 AI 工具及其链接: Text2SQL:将英文转换为 SQL 查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthat ai2sql:高效且无错误的 SQL 构建器。链接:https://www.ai2sql.io/ EverSQL:从 SQL 查询翻译英文文本。链接:https://www.eversql.com/sqltotext/ SupaSQL:从 NLP 生成 SQL 查询。链接:https://supasql.com/ SQLgenius:使用自然语言的 SQL 查询生成器。链接:https://sqlgenius.app/ SQL Chat:与数据库进行自然语言聊天的 SQL 客户端。链接:https://www.sqlchat.ai/ SQL Ease:从自然语言输入生成 SQL 查询。链接:https://sqlease.buildnship.in/ Talktotables:翻译和查询数据库。链接:https://talktotables.com/ 此外,还有几个知名的 text2sql 项目,如 SQLNet(使用深度学习方法解决 text2sql 任务的项目)、Seq2SQL(将自然语言转换为 SQL 查询的序列到序列模型)、Spider(一个大规模的 text2sql 数据集及其相关的挑战)
2025-03-31