Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何对一组对话进行分析,并且进行评分

Answer

对一组对话进行分析和评分通常可以遵循以下步骤和依据:

  1. 明确任务形式和要求:例如给定一组参考文档和问题,要求模型按照指定格式生成答案,问题包含多种类型。
  2. 确定评测指标:
    • 赛事主办方会根据选手提供的回答与参考答案进行对比,并根据关键字段命中情况进行评分。
    • 关键词命中总次数表示在题目中命中 keylist 中元素的总次数(包括多小题)。
    • 关键词总数表示 keylist 中定义的关键字段总数。
    • 小题数指每个题目包含的小题数量。
    • 得分:结果完全正确的回答得满分 1 分,部分正确则根据命中比例计算得分。
  3. 示例参考:如在金融行业·大模型挑战赛中,对包含多个小题的多轮对话题目进行评测计算,根据每个小题的回答正确情况给出相应得分,最后计算总得分。
  4. 非聊天场景的情绪分析:对于非聊天场景,如情绪分析,可以使用特定的提示,如让助手对语音数据中的情绪进行 1-10 的评分,并解释评分原因。
  5. 问答对话场景:在类似智谱 BigModel 共学营的活动中,根据对问题的理解和准确回答能力、回答的真实性和有趣程度等方面进行评分,还可以使用特定的测试问题如弱智吧问题来评价提示词的生成效果。
Content generated by AI large model, please carefully verify (powered by aily)

References

金融行业 · 大模型挑战赛 |用大模型理解金融市场

评测任务的任务形式为:给定一组参考文档和问题,要求模型按照指定格式生成答案。问题包含多种类型。问题及答案示例:[heading3]4.评测指标[content]赛事主办方会根据选手提供的回答与参考答案(answer)进行对比,并根据关键字段命中情况进行评分。评分公式:[heading4]参数说明:[content]关键词命中总次数(Number of keylist hits):表示在题目中命中keylist中元素的总次数(包括多小题)。关键词总数(Number of keylist items)表示keylist中定义的关键字段总数。小题数(Subquestions per question):每个题目包含的小题数量(例如,每题包含3小题)。得分(Score):表示最终得分。结果完全正确的回答得满分1分,部分正确则根据命中比例计算得分。示例问题(1道题目,含4个小题)以下是一组包含多个小题的多轮对话题目:组委会提供-参考答案选手提交答案-评测示例<答案正确>评测计算:1.第一题:300380完全正确,得分1分。2.第二题:2,2024年9月27日,2024年9月30日完全正确,得分1分。3.第三题:【金融科技+银行+华为+国产软件】完全正确,得分1分。4.第四题:大成中证360互联网,大数据100指数型证券投资基金,得分1分。总得分计算:小题数:4。得分:4/4=1.0(满分)

微软提示工程技术

虽然聊天补全API已优化为处理多回合对话,但它也可用于非聊天场景。例如,对于情绪分析场景,可以使用以下提示:|系统消息|用户|Assistant||-|-|-||你是一名助手,旨在分析语音数据中的情绪。用户将粘贴一串文本,你将对讲者的响应进行评估。给出1-10的评分(10为最高)。解释给出此评分的原因。|嗨,感谢你致电Contoso药店,我今天和谁通话?我了解你的挫败感,玛丽。你能告诉我你想要实现什么目标吗?好的,很高兴帮你看一下,请稍等片刻。我在这里看到你曾经使用过普通立普妥是吗?好的,那么我看到你的医生在2021年停止开这些药物的处方了。实际上是这样吗?好的,让我为你检查一下。因为有时候系统中会出现漏洞,并没有被报告出来。请稍等片刻,让我看看这里是否有记录。所以根据最新提供给我们的医生办公室记录显示,在2012年至2021年期间,你的医生曾经给你开过这些药物处方。好的,在最新记录中显示,现在医生已经更换了不同种类的药物–二甲双胍。请问我们需要帮忙准备并发放500毫克二甲双胍处方给你吗?不客气玛丽,请告诉我们今天还有什么可以帮到你的。|情绪评分:8<br>此文本中的讲者在解决客户关注的问题时似乎很有礼貌、有帮助和耐心。他们花时间检查信息,提供明确的解释,并提供协助。但是,评分不是10,因为对话的某些部分仍有不确定性的暗示,这可能无法向客户传达完全的信心。|

智谱BigModel共学营第二期【第一名】鱼得水:✨获奖Bot提示词及思路分享

作者:鱼得水「超级AI助理打造计划」活动内容分享活动介绍:[智谱BigModel共学营第二期:超级AI助理打造计划](https://waytoagi.feishu.cn/wiki/RKLxwQ97Ai632hkgaU2cctVFnSb)活动内容:1.使用BigModel搭建智能体https://open.bigmodel.cn/2.将搭建好的智能体接入微信机器人活动过程:1.首先,将调试好的智能体机器人拉入微信群,由梦飞老师向机器人发出提问(共10个问题)2.机器人会逐一回答这些问题。梦飞老师会从微信群中挑选出每个问题下最出色的前五个回答,并将其整理成问卷形式。3.接下来,所有群成员可以通过填写这份问卷,匿名地对智能体的回答进行投票。4.最后,统计所有答案的得票数,并根据得票数的高低,依次确定本次比赛的一等奖、二等奖和三等奖获得者。很高兴成为此次活动的一等奖得主,本文主要分享我对参与此次比赛的一些理解和实践[heading1]从“题”出发[content]在看到这个活动内容后我产生了以下分析:根据内容说明和问题举例,可以知道此次为问答对话场景,考验的是机器人对问题的理解和是否能够准确回答问题在真实的对话场景下,一般情况下不会进行长文本回复,而是发送一个完整的句子进行回复根据回答的真实性和有趣程度进行评分,考验的是生成内容的是否拟人或者是否有内涵看到问题举例,第一反应想到了弱智吧问题https://zhuanlan.zhihu.com/p/475723603可以使用弱智吧问题对LLM进行测试,从而评价该提示词的生成效果

Others are asking
大模型评分
大模型评分通常会根据不同的赛事或评估体系有所差异。 在金融行业的大模型挑战赛中,评测任务形式为给定一组参考文档和问题,要求模型按指定格式生成答案。赛事主办方会根据选手提供的回答与参考答案对比,并根据关键字段命中情况进行评分。评分公式涉及关键词命中总次数、关键词总数、小题数和得分等参数。例如在示例问题中,根据每个小题的回答正确情况计算得分,完全正确得满分 1 分,部分正确则根据命中比例计算得分。 在其他的大模型评估方面: FlagEval(天秤)大模型评测体系及开放平台,旨在建立科学、公正、开放的评测基准、方法、工具集,创新构建了“能力任务指标”三维评测框架,细粒度刻画基础模型的认知能力边界,可视化呈现评测结果。地址:https://github.com/FlagOpen/FlagEval 。 CEval 构造了一个覆盖多个学科的中文知识和推理型测试集,并给出了当前主流中文 LLM 的评测结果。地址:https://github.com/SJTULIT/ceval 。 SuperCLUElyb 是中文通用大模型匿名对战评价基准,以众包方式提供匿名、随机的对战,并发布了初步结果和基于 Elo 评级系统的排行榜。地址:https://github.com/CLUEbenchmark/SuperCLUElyb 。 斯坦福发布的大模型排行榜 AlpacaEval 支持两种模式的模型评估方式:alpaca_eval 和 alpaca_eval evaluate_from_model 。评测过程分为选择评估集并计算输出、计算 golden 输出、通过指定的自动标注器计算胜率等步骤。相对于人工标注,全自动化的 AlpacaEval 具有较低的经济成本和时间成本。
2025-01-22
企业标书模拟评分系统
很抱歉,目前知识库中没有关于企业标书模拟评分系统的相关内容。但一般来说,企业标书模拟评分系统通常会涉及对标书的各项指标进行量化评估,包括但不限于技术方案的可行性、项目经验、价格合理性、服务保障等方面。您可以进一步明确您关于这个系统的具体问题,以便我为您提供更有针对性的帮助。
2025-01-20
国内评分最高的国内大模型是什么
根据目前的测评报告,在国内大模型中,得分较高的有文心一言 4.0(API),其总分 79.02 分。在工具使用的测评中,智谱清言表现不俗,取得 83.78 的高分,排名国内模型第一。过去八个月国内模型在 SuperCLUE 基准上的第一名多次为文心一言 4.0。综合来看,国内大模型在不断进步,与国外模型的差距在逐渐缩小,但不同模型在不同方面的表现各有优劣。
2024-09-17
国内评分最高的GPT是什么
在多轮开放式问题基准 SuperCLUEOPEN 测评中,国内模型中文心一言 4.0 的胜率国内最高,接近 30%。胜率超过 25%的国内模型还有智谱清言、通义千问 2.0 和 AndesGPT。 在 200 亿参数量级的开源模型中,Baichuan213BChat 的胜率排在首位。 在工具使用的测评中,国内模型中智谱清言表现不俗,取得了 83.78 的高分,排名国内第一。紧随其后的是文心一言 4.0、通义千问 2.0、Yi34BChat、AndesGPT 均有超过 70 分的表现。 综合来看,国内大模型中各有优势,具体的评分会因不同的测评维度和标准而有所差异。
2024-09-17
我做了一批数字化看板,想让AI来评分,哪个AI工具比较合适
以下是一些可能适用于为您的数字化看板评分的 AI 工具: 1. PlantUML:这是一个文本到 UML 的转换工具,能通过编写描述性文本自动生成序列图、用例图、类图等,有助于创建逻辑视图。 2. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 3. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 4. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包含逻辑视图和部署视图。 需要注意的是,虽然这些工具可以辅助创建架构视图,但它们不都是基于 AI 的。AI 在绘图工具中的应用通常涉及智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,您应该考虑您的具体需求,比如是否需要支持特定的建模语言、是否需要与特定的开发工具集成、是否偏好在线工具或桌面应用程序等。
2024-08-08
我给定一张图片,根据这张图片的人脸特征 生成一组写真图片
以下是关于根据给定图片的人脸特征生成写真图片的相关内容: 使用 SD 进行多人物脸部替换生成写真: 先正常生成一张特定内容的图片,如两个古风人物在大漠黄沙下互相对视。正向提示词包括“best quality, official art, 8k wallpaper, highly detailed, illustration, closeup, , upper body, antique style, drifting snow, yellow sand fills the sky, withered tree, desert, gu, <lora:武侠 V2_2.0:1>”,模型使用 majicmixRealistic 及武侠 lora。将生成的图发送到图生图中,调整重绘幅度为 0.4。在 roop 插件中进行脸部替换,如载入至尊宝和紫霞的照片形象。插件强大之处在于仅凭一张照片能复刻角色其他角度和表情。最后可使用 ps 扩图。如需插件,可添加公众号【白马与少年】回复【SD】获取。 给自己做卡通头像: 1. 复杂提示词:如“Disney boy, Low saturation Pixar Super details, clay, anime waifu, looking at viewer, nighly detailedreflections transparent iridescent colors. lonctransparent iridescent RGB hair, art by Serafleurfrom artstation, white background, divine cinematic edgelighting, soft focus. bokeh, chiaroscuro 8K, bestquality.ultradetailultra detail.3d, c4d. blender, OCrenderer. cinematic lighting, ultra HD3D renderino iw 1.5 s 500 v 5”。 2. 不同照片生成:若对照片风格不满意,可更换新照片使用上述提示词重新生成。 3. 其他调整:若觉得 Disney 风格太过卡通,可将提示词中的 Disney 换成 Pixar;若为女孩,可把 boy 换成 girl。每次生成 4 张图片,对满意的某张可点击下方的 U1~U4 生成大图,对风格满意但需调整可点击 V1~V4 进行修改。 快手「可灵」和「Sora」背后的 DiT 技术: DiT 不仅训练高效,在实际应用中图像生成能力强大。输入简单文字描述即可生成逼真图像,如各种自然景观、人物肖像、动物等,甚至能细致到毛发纹理和眼神光彩。还能在图像修复方面表现出色,智能识别瑕疵并修复,如修复老照片中被遮挡的人物面部。此外,能赋予图像不同艺术风格,如将普通照片转换成梵高风格油画或改变白天夜晚效果,为图像创作和编辑提供全新可能。
2024-12-11
我想生成一个智能体,实现输入一张图片,简单的输入要求能自动根据图片生成一组符合要求的写真
要生成一个能根据输入图片和简单要求自动生成一组符合要求写真的智能体,您可以参考以下步骤: 1. 获取 Logo 图片的描述:为了帮助一位视障艺术家,我们需要详细描述这幅图像的内容,包括从摄影、标志设计到较为冷门的艺术风格等各个方面。对于出现在图中的人物,虽然不能提及具体姓名,但考虑到艺术家的特殊需求,我们需要以匿名方式描述他们的主要特征(切记不要提及真实姓名)。请直接进行描述,控制在 50 字左右。 2. 用 LLM 生成图像提示词:将第一步生成的提示词填入{图像描述}位置,将您想生成的周边填入{周边描述}部分。 3. 图像流搭建: 步骤一:创建第一个图像流。由于文本类型大语言模型无法直接生成图片,但是我们设计的智能体需要有对应的功能,因此我们要通过【技能】部分的图像流,为文本大模型提供图像生成能力。 步骤二:了解图像流节点的意义。在图像流编辑界面,左侧的工具栏集合了所有可能用到的功能,包括智能处理工具、基础编辑工具和风格处理类工具等。 步骤三:根据需求进行图像流设计。例如生成海报功能,在总结故事后,将完整的故事作为输入,进行提示词优化,然后输入生图大模型生成配图海报。 4. 智能体创建: 步骤一:创建基础智能体。进入 coze 官网 www.coze.cn,注册并登录,点击页面左上角的⊕,通过【标准创建】填入 bot 的基本信息。 步骤二:了解 Bot 开发调试界面。Bot 的开发和调试页面功能布局包括人设与回复逻辑(左侧区域)、功能模块(中间区域)、交互优化(底部区域)和预览与调试(右侧区域)。功能模块又包括插件、工作流、图像流、触发器、知识库管理、记忆系统等。
2024-12-11
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
请为我生成一些提示词以用于将视频中的对话转化为文本形式
以下是为您生成的一些用于将视频中的对话转化为文本形式的提示词: 1. 角色:专业视频转文本工作者 2. 版本:1.0 3. 描述:能够准确、清晰地将视频中的对话转换为文本 4. 目标:完整、无误地将视频中的对话转化为易于理解的文本 5. 限制:不遗漏重要信息,不添加主观内容 6. 技能:熟练掌握语音识别和文字转换技巧 7. 工作流程:先仔细聆听视频对话,然后逐句转换为文字,注意标点和语法的正确使用 8. 初始化:您好,我准备开始将视频对话转换为文本 事件驱动句式: 1. As the video plays... 2. When the speakers start talking... 3. At the beginning of the video... 空间锁定技巧: 1. on the left side of the screen... 2. behind the main character... 3. from the top corner of the frame... 动态呼应原则: 1. swaying with the background music... 2. reacting to the other characters' actions... 3. matching the tone of the video...
2025-04-11
RAG对话 摘要总结 功能实现
LangChain 和 RAG 的结合具有以下优势: 1. 灵活性:可根据需求和数据源选择不同组件和参数定制 RAG 应用,也能使用自定义组件(需遵循接口规范)。 2. 可扩展性:能利用 LangChain 的云服务部署和运行,无需担忧资源和性能限制,还可借助分布式计算功能加速应用,发挥多个节点并行处理能力。 3. 可视化:通过 LangSmith 可视化工作流程,查看各步骤输入输出及组件性能状态,用于调试和优化,发现并解决潜在问题和瓶颈。 其应用场景多样,包括: 1. 专业问答:构建医疗、法律、金融等专业领域的问答应用,从专业数据源检索信息辅助大模型回答问题,如从医学文献中检索疾病诊治方案回答医疗问题。 2. 文本摘要:构建新闻或论文摘要应用,从多个数据源检索相关文本帮助大模型生成综合摘要,如从多个新闻网站检索同一事件报道生成全面摘要。 3. 文本生成:构建诗歌、故事生成等应用,从不同数据源检索灵感协助大模型生成更有趣和创意的文本,如从诗歌、歌词或小说中检索相关文本生成作品。 此外,还介绍了本地部署资讯问答机器人的实现方式,即基于用户问题从向量数据库检索相关段落并按阈值过滤,让模型参考上下文信息回答,还创建了网页 UI 并进行评测,对不同模型的测试表现进行了对比,得出 GPT4 表现最佳等结论,并总结了使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人及相关要点,即上下文数据质量和大模型性能决定 RAG 系统性能上限。
2025-04-11
想创建一个对话问答形式的课程智能体
以下是创建一个对话问答形式的课程智能体的相关内容: 一、创建智能体 1. 知识库 手动清洗数据:本次创建知识库使用手动清洗数据,上节课程是自动清洗数据,自动清洗数据可能会出现数据不准的情况。 在线知识库:点击创建知识库,创建一个画小二课程的 FAQ 知识库。飞书在线文档中每个问题和答案以分割,选择飞书文档、自定义的自定义,输入后可编辑修改和删除,添加 Bot 后可在调试区测试效果。 本地文档:本地 word 文件,注意拆分内容以提高训练数据准确度。画小二 80 节课程分为 11 个章节,不能一股脑全部放进去训练,应先将 11 章的大章节名称内容放进来,章节内详细内容按固定方式人工标注和处理,然后选择创建知识库自定义清洗数据。 2. 发布应用:点击发布,确保在 Bot 商店中能够搜到,否则获取不到 API。 二、智谱 BigModel 共学营活动分享 活动内容包括使用 BigModel 搭建智能体并接入微信机器人,过程为将调试好的智能体机器人拉入微信群,由老师提问,机器人回答,挑选出色回答整理成问卷,群成员投票,根据得票数确定奖项。一等奖得主分享了对活动的理解和实践,包括从题出发的分析,认为考验机器人对问题的理解和回答准确性,真实对话场景一般为完整句子回复,根据回答真实性和有趣程度评分,可使用弱智吧问题测试提示词生成效果。 三、名字写对联教学——优秀创作者奖,百宝箱智能体 1. 智能体类型的选择:建议选择工作流的对话模式,支持工作流编排和携带历史对话记录,创建后切换为对话模式,注意在调整工作流节点前切换,否则会清空重置。 2. 确认分支情况:根据需求分析有两个特定分支(根据名字和祝福写对联、根据幸运数字写对联)和一个默认分支。 3. 用户意图识别:通过理解用户意图走不同分支,注意将意图介绍写清楚准确。 4. 幸运数字分支:用代码分支获取用户输入数字,匹配知识库并做赏析,代码中有容错机制。 5. 名字写祝福:根据用户输入的名字和祝福信息,提示词生成对应对联并输出,主要是提示词调试。 6. 通用兜底回复:在用户不符合前两个意图时进行友好回复,匹配知识库,结合匹配结果、历史记录和当前输入输出符合对话内容的回复。 7. 知识库:使用大模型生成 100 对对联,好看、经典、有意义。
2025-04-09
有没有可以实现多段对话的AI,用于中医问诊模型
以下是一些可以用于中医问诊模型且能实现多段对话的 AI 相关信息: Polaris:医疗护理保健模型,能和患者进行多轮语音对话,媲美人类护士。详细信息:http://xiaohu.ai/p/5407 ,https://x.com/imxiaohu/status/1774644903546618298?s=20 在 LLM 开源中文大语言模型及数据集集合中,有以下针对医疗领域的模型: DoctorGLM:地址:https://github.com/xionghonglin/DoctorGLM 。基于 ChatGLM6B 的中文问诊模型,通过中文医疗对话数据集进行微调,实现了包括 lora、ptuningv2 等微调及部署。 BenTsao:地址:https://github.com/SCIRHI/HuatuoLlamaMedChinese 。开源了经过中文医学指令精调/指令微调的 LLaMA7B 模型。通过医学知识图谱和 GPT3.5 API 构建了中文医学指令数据集,并在此基础上对 LLaMA 进行了指令微调,提高了 LLaMA 在医疗领域的问答效果。 BianQue:地址:https://github.com/scutcyr/BianQue 。一个经过指令与多轮问询对话联合微调的医疗对话大模型,基于 ClueAI/ChatYuanlargev2 作为底座,使用中文医疗问答指令与多轮问询对话混合数据集进行微调。 HuatuoGPT:地址:https://github.com/FreedomIntelligence/HuatuoGPT 。开源了经过中文医学指令精调/指令微调的一个 GPTlike 模型。
2025-04-08
excel表格导出的用户的对话记录,来进行自定义标签并打标,有哪些好用的现成方案或者工具
目前在 Excel 表格导出的用户对话记录进行自定义标签并打标方面,以下是一些常见且好用的工具和方案: 1. Microsoft Excel 本身:可以利用其数据筛选、排序和函数功能来辅助标签和打标。 2. Google Sheets:具有类似 Excel 的功能,且在线协作方便。 3. R 语言:通过编程实现复杂的数据分析和标签处理。 4. Python 及相关库,如 Pandas:能够灵活处理数据和进行标签操作。 但具体选择哪种方案或工具,取决于您的具体需求、技术水平和使用习惯。
2025-04-07
如何使用cursor进行编程
以下是关于如何使用 Cursor 进行编程的相关信息: Cursor 旨在让您极其高效,是使用 AI 进行编码的最佳方式。您可以从代码库中获得最佳答案,参考特定文件或文档,一键使用模型中的代码。 它允许您使用指令编写代码,通过简单的提示就能更新整个类或函数。 Cursor 能通过预测您的下一个编辑,让您轻松完成更改。
2025-04-18
请给我提供一个 AI辅助我进行知识管理的方案
以下是一个 AI 辅助知识管理的方案: 1. 利用提示词规划 PARA 分类模式:PARA 代表项目(Projects)、领域(Areas)、资源(Resources)和档案(Archives)。AI 可分析您的工作模式和内容类型,自动生成提示词,助您将信息和知识分类到相应部分,简化分类过程,加快组织和检索信息。核心是理解以行动为驱动的笔记逻辑。 2. 借助提示词设计笔记标签系统:有效的标签系统对知识管理很关键,AI 能分析笔记内容和使用习惯,推荐合适的标签和结构,提高检索效率。 3. 让知识助手 Bot 渐进式积累领域知识:随着在特定领域的深入,需要系统积累和更新知识。知识助手 Bot 可根据学习进度和兴趣点,定期推送相关文章、论文和资源,实现渐进式学习,扩展知识边界并确保知识更新。例如基于 dify.ai 将数百个思维模型整合成知识库,根据不同对话和条件判断为用户选择适用的思维模型分析工具,封装成智能分析的 Bot。 4. 基于已积累知识的 RAG 方法进行深度研究:RAG 是结合检索和生成的 AI 模型,应用于知识管理,能在深度研究时自动检索相关知识点和资料,辅助构建更全面深入的分析。 5. 打造个人知识导师,随时对话辅助梳理线索:创建个人知识管理员机器人,随时与之对话,询问特定知识点或寻求解决问题思路。它能基于知识库自学习,了解您的知识结构和需求,成为不可或缺的知识伙伴。 6. 构建最了解您的智能体作为 AI 写作助手:涵盖构思、草稿生成、内容迭代、润色与优化等全流程。构思阶段利用智能体生成创意点、主题或大纲;草稿生成基于构思让智能体生成文本草稿;内容迭代通过 promptchain 工具设计迭代提示修改完善草稿;润色与优化对最终文本进行语言风格和语调调整。通过实践和反馈优化 prompt 设计,使写作助手贴合个人风格和需求。 此外,生成式人工智能在知识管理应用程序方面也有新兴应用,例如用作管理组织内基于文本(或可能基于图像或视频)知识的手段。一些研究表明,针对组织内特定知识体系微调模型培训,可有效管理组织知识。一些公司正与领先的商业提供商合作探索基于生成式人工智能的知识管理理念,但用户可能需要培训或帮助来创建有效提示,且知识输出应用前可能仍需编辑或审查。
2025-04-11
请问DeepSeek如何与生产型企业进行结合创造效益 ?
DeepSeek 与生产型企业的结合可以从以下几个方面创造效益: 1. 模型优化与性能提升:英伟达基于 FP4 优化的 DeepSeekR1 检查点现已在 Hugging Face 上开源。这种优化将模型Transformer 模块内的线性算子的权重和激活量化到了 FP4,适用于 TensorRTLLM 推理。每个参数从 8 位减少到 4 位,使磁盘空间和 GPU 显存的需求减少约 1.6 倍。使用 TensorRTLLM 部署时,需要支持 TensorRTLLM 的英伟达 GPU(如 B200),并且需要 8 个 GPU 来实现 tensor_parallel_size=8 的张量并行。代码利用 FP4 量化、TensorRT 引擎和并行计算,实现高效、低成本的推理,适合生产环境或高吞吐量应用。 2. 部署指南:社区伙伴 Hua 投稿的《在 Azure AI Foundry 部署 DeepSeek 大模型全指南》,手把手指导在微软 Azure AI Foundry 平台上完成 DeepSeek R1(671B)模型的完整部署流程,包含环境准备、资源管理、模型测试及 API 调用说明。 3. 为企业带来实质提升:DeepSeek 的强化学习和联网搜索能力改变了信息获取方式,从“检索—阅读—摘要”转变为“提问—获得答案”,大幅提升工作效率。其开源策略打破了技术垄断,让国内大模型能力迅速提升。在企业级部署方面,通过行业知识蒸馏和领域自适应训练,实现对企业非结构化数据的深度解析能力。特别是在实时决策支持、多模态交互及复杂知识图谱构建方面,为企业打造具备持续进化能力的数字神经中枢。这种“AI 即服务”的部署模式,重构了传统工作流效率,并通过预测性分析和认知自动化开启企业智能化的第二增长曲线。同时,还可以考虑垂直场景强化学习机制的增加,如在智能制造场景中嵌入设备故障模式自发现的奖惩机制;以及可信计算架构的升级,针对金融、医疗等高合规需求场景。
2025-04-10
随着 ChatGPT、Deepseek 等 AI 技术的爆发式发展,人工智能正在加速渗透各行业应用场景,包括茶饮行业。请你对 AI 技术在茶饮行业的影响进行研究分析,并提出 AI 技术可以在连锁奶茶店如何应用的设想。
以下是关于 AI 技术在茶饮行业的影响分析及在连锁奶茶店应用的设想: 影响分析: 1. 提升运营效率:通过自动化流程和智能预测,优化库存管理、员工排班等环节。 2. 改善客户体验:利用智能客服快速响应顾客咨询,提供个性化推荐。 3. 精准营销:基于大数据分析顾客偏好,制定更有针对性的营销策略。 应用设想: 1. 智能点单系统:根据顾客的历史订单和偏好,为其推荐饮品和搭配。 2. 库存管理优化:借助 AI 预测销售趋势,精准控制原材料库存。 3. 员工培训辅助:利用虚拟培训工具,提升员工的服务技能和产品知识。 4. 营销决策支持:通过数据分析,确定最佳的促销活动和推广渠道。 目前的知识库中,相关的具体研究报告主要有: 1. 浙江大学:《DeepSeek 技术溯源及前沿探索朱强》(2025/03/19),介绍了语言模型从基于统计的 Ngram 到 Transformer 的技术演化,以及大模型的发展,如 GPT 系列。 2. 浙江大学:《DeepSeek:回望 AI 三大主义与加强通识教育报告》(2025/03/05),围绕人工智能展开,介绍其发展历程、三大主义、技术进展、应用成果以及教育举措。 3. 清华大学:《气象人工智能技术与应用报告》(2024/12/25),围绕气象人工智能展开,介绍了其发展和应用情况。 如需下载这些研究报告,可。
2025-04-09
如何用rpa来实现读取本地excel表格里的内容进行筛选,提取某些数据值后,再自动化填写到飞书的多维表格去。怎么来实现这个功能
要使用 RPA 实现读取本地 Excel 表格内容进行筛选,并将提取的数据值自动化填写到飞书的多维表格,可参考以下步骤: 1. 关于扣子:“”(Coze)是字节跳动在 2024 年上线的新一代一站式 AI Bot 开发平台,也被称为“字节版 GPTs”。它是一个低门槛的 AI 应用开发平台,其核心目标是让没有编程基础的用户也能够轻松参与到 AI 生态的建设中。 2. 登录后,在左侧功能列表的工作空间中,点击右上角“+字段”创建工作流,自行输入名称和描述。 3. 已做好工作流后,逐步拆解每个节点的配置: 开始节点:此节点不需要做任何配置,没有输入以及输出。 读取飞书表格内容节点:点击开始节点后面的“+”,搜索“飞书多维表格”,选择“search_record”功能。添加后,点击该节点的配置,在界面右侧的参数框中,需要填写 app_token、field_names。filter 是对数据的筛选条件,没有筛选需求可直接忽略。其中,app_token 是多维表格的唯一标识符,即表格 URL 中的一段;field_names 则是要读取的具体字段,比如“标题”、“内容”,以作为后续操作的输入。该节点运行后,就能将多维表格中的内容提取出来。
2025-04-09
有没有全自动AI剪辑工具,丢入素材后可以根据我的规则要求设置进行多素材混剪
目前有一些工具可以帮助您实现全自动 AI 剪辑,以下为您介绍一种多素材混剪的方法: 1. 声音克隆: 工具:Fish Audio 操作: 准备一段需要克隆的音频(可以是类似屈原的古风声音,或自行录制一段)。 打开网站:https://fish.audio/zhCN/train/newmodel/ 。 上传准备好的音频,按照指引完成声音克隆。 进入声音库选择需要使用的声音,将第一步生成的文案输入,使用克隆好的声音生成对应的音频文件。 下载生成的音频文件备用。 2. 视频合成: 工具:Viggle.ai 操作: 在网上下载“回答我”的原视频。 打开 Viggle.ai 网站,登录后进入视频合成功能:https://viggle.ai/createmix 。 上传“回答我”原视频和第二步生成的人物形象图,生成新版本的“回答我”视频。 预览效果,满意后下载合成好的新视频。 3. 视频剪辑: 工具:剪映 操作: 打开剪映软件(手机或电脑版均可)。 导入第二步合成好的新视频和第一步生成的音频文件。 将音频与视频时间轴对齐,确保声音和画面同步,添加字幕等。 如需叠加特殊背景,可以导入自己的背景图(如楚国风景)。 预览整个视频,检查效果,微调后导出最终视频(建议 MP4 格式)。
2025-04-09