Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

列举出不同的 embedding模型

Answer

以下是不同的 embedding 模型:

  1. 词嵌入:
    • Word2Vec:包括 CBOW(Continuous Bag-of-Words)和 Skip-Gram 模型,由 Google 提出,用于学习单词之间的语义关系。
    • GloVe(Global Vectors for Word Representation):由斯坦福大学开发,旨在结合全局统计信息和局部上下文窗口的优势来生成单词嵌入。
    • FastText:由 Facebook AI 团队推出,不仅考虑单个单词,还考虑内部字符 n-gram,对于罕见词汇有更好的表现。
    • ELMo(Embeddings from Language Models):利用双向 LSTM 对整个句子进行建模,产生上下文敏感的单词嵌入。
  2. 情景化的词嵌入:
    • BERT(Bidirectional Encoder Representations from Transformers):由 Google 推出,利用 Transformer 架构的预训练模型,能够根据上下文提供动态的单词嵌入。
    • GPT(Generative Pre-training Transformer)及其后续版本 GPT-2/3/4:由 OpenAI 开发,也是基于 Transformer 的自回归模型,同样能产出上下文相关的嵌入。
    • XLNet、RoBERTa 等都是 BERT 之后改进或扩展的预训练模型。
  3. 句子和文档嵌入:
    • Doc2Vec:扩展了 Word2Vec,能够为整个文档生成统一的向量表示。
    • Average Word Embeddings:将一段文本中所有单词的嵌入取平均作为整体的文本表示。
    • Transformers Sentence Embeddings:如 BERT 的[CLS]标记对应的向量,或者专门针对句子级别的模型如 Sentence-BERT。
  4. 实体/概念嵌入:
    • Knowledge Graph Embeddings:如 TransE、DistMult、ComplEx 等,用于将知识图谱中的实体和关系嵌入到低维向量空间中。
  5. 其他类型:
    • 图像 Embeddings:使用卷积神经网络(CNN)进行图像特征提取,得到的特征向量即为图像嵌入。
    • 音频 Embeddings:在语音识别和声纹识别中,将声音信号转化为有意义的向量表示。
    • 用户/物品 Embeddings:在推荐系统中,将用户行为或物品属性映射到低维空间以进行协同过滤或基于内容的推荐。
    • 图 Embeddings:是用于学习图结构的表示学习方法,将图中的节点和边映射到低维向量空间中。通过学习图嵌入,可以将复杂的图结构转化为向量表示,以捕捉节点之间的结构和关联关系。这些方法可以通过 DeepWalk、Node2Vec、GraphSAGE 等算法来实现。图嵌入在图分析、社交网络分析、推荐系统等领域中广泛应用,用于发现社区结构、节点相似性、信息传播等图属性。

此外,以 OpenAI 为例,第一代嵌入模型(不推荐)包括:

  • 所有第一代模型(以-001 结尾的模型)都使用 GPT-3 分词器,最大输入为 2046 个分词。
  • 第一代嵌入由五个不同的模型系列生成,这些模型系列针对三个不同的任务进行了调整:文本搜索、文本相似性和代码搜索。
    • 相似性嵌入:text-similarity-babbage-001、text-similarity-curie-001、text-similarity-davinci-001。
    • 文本搜索嵌入:text-search-ada-query-001、text-search-babbage-doc-001、text-search-babbage-query-001、text-search-curie-doc-001、text-search-curie-query-001、text-search-davinci-doc-001、text-search-davinci-query-001。
    • 代码搜索嵌入:code-search-ada-text-001、code-search-babbage-code-001、code-search-babbage-text-001。

对于-001 文本嵌入(不是-002,也不是代码嵌入),建议将输入中的换行符(\n)替换为单个空格,因为当存在换行符时可能会有更糟糕的结果。

Content generated by AI large model, please carefully verify (powered by aily)

References

认识大模型 Embedding 技术加实战

Embeddings有许多种类别和变体,每种类型的Embeddings都有其特定的设计目标和应用场景,共同点在于它们都致力于将复杂而抽象的对象结构化并压缩到便于计算和比较的数值形式,以下是几种常见的Embeddings类型:[heading3]词嵌入[content]Word2Vec:包括CBOW(Continuous Bag-of-Words)和Skip-Gram模型,由Google提出,用于学习单词之间的语义关系。GloVe(Global Vectors for Word Representation):由斯坦福大学开发,旨在结合全局统计信息和局部上下文窗口的优势来生成单词嵌入。FastText:由Facebook AI团队推出,不仅考虑单个单词,还考虑内部字符n-gram,对于罕见词汇有更好的表现。ELMo(Embeddings from Language Models):利用双向LSTM对整个句子进行建模,产生上下文敏感的单词嵌入。[heading3]情景化话的词嵌入[content]BERT(Bidirectional Encoder Representations from Transformers):由Google推出,利用Transformer架构的预训练模型,能够根据上下文提供动态的单词嵌入。GPT(Generative Pre-training Transformer)及其后续版本GPT-2/3/4:由OpenAI开发,也是基于Transformer的自回归模型,同样能产出上下文相关的嵌入。XLNet、RoBERTa等都是BERT之后改进或扩展的预训练模型。

认识大模型 Embedding 技术加实战

Doc2Vec:扩展了Word2Vec,能够为整个文档生成统一的向量表示。Average Word Embeddings:将一段文本中所有单词的嵌入取平均作为整体的文本表示。Transformers Sentence Embeddings:如BERT的[CLS]标记对应的向量,或者专门针对句子级别的模型如Sentence-BERT。[heading3]实体/概念嵌入[content]Knowledge Graph Embeddings:如TransE、DistMult、ComplEx等,用于将知识图谱中的实体和关系嵌入到低维向量空间中。[heading3]其他类型[content]图像Embeddings:使用卷积神经网络(CNN)进行图像特征提取,得到的特征向量即为图像嵌入。音频Embeddings:在语音识别和声纹识别中,将声音信号转化为有意义的向量表示。用户/物品Embeddings:在推荐系统中,将用户行为或物品属性映射到低维空间以进行协同过滤或基于内容的推荐。还有一种图Embeddings:是用于学习图结构的表示学习方法,将图中的节点和边映射到低维向量空间中。通过学习图嵌入,可以将复杂的图结构转化为向量表示,以捕捉节点之间的结构和关联关系。这些方法可以通过DeepWalk、Node2Vec、GraphSAGE等算法来实现。图嵌入在图分析、社交网络分析、推荐系统等领域中广泛应用,用于发现社区结构、节点相似性、信息传播等图属性。下面以OpenAI为例继续展开介绍

嵌入(Embeddings)

所有第一代模型(以-001结尾的模型)都使用GPT-3分词器,最大输入为2046个分词。第一代嵌入由五个不同的模型系列生成,这些模型系列针对三个不同的任务进行了调整:文本搜索、文本相似性和代码搜索。搜索模型成对出现:一个用于短查询,一个用于长文档。每个系列最多包括四种质量和速度不同的型号:Davinci是最有能力的,但比其他型号更慢且更昂贵。Ada的能力最差,但速度更快,成本更低。相似性嵌入相似性模型最擅长捕捉文本片段之间的语义相似性。text-similarity-babbage-001 text-similarity-curie-001 text-similarity-davinci-001|文本搜索嵌入文本搜索模型有助于衡量哪些长文档与短搜索查询最相关。使用了两种模型:一种用于嵌入搜索查询,一种用于嵌入要排名的文档。最接近查询嵌入的文档嵌入应该是最相关的。text-search-ada-query-001 text-search-babbage-doc-001 text-search-babbage-query-001 text-search-curie-doc-001 text-search-curie-query-001 text-search-davinci-doc-001 text-search-davinci-query-001|代码搜索嵌入与搜索嵌入类似,有两种类型:一种用于嵌入自然语言搜索查询,一种用于嵌入要检索的代码片段。code-search-ada-text-001 code-search-babbage-code-001 code-search-babbage-text-001|对于-001文本嵌入(不是-002,也不是代码嵌入),我们建议将输入中的换行符(\n)替换为单个空格,因为当存在换行符时我们已经看到更糟糕的结果。

Others are asking
Text Embedding
文本嵌入(Text Embedding)是将文本转换为数值表示的一种方法。 在 OpenAI 中,其文本嵌入用于衡量文本字符串的相关性,常见应用包括搜索(按与查询字符串的相关性排序结果)、聚类(按相似性分组文本字符串)、推荐(推荐具有相关文本字符串的项目)、异常检测(识别相关性很小的异常值)、多样性测量(分析相似性分布)、分类(按最相似的标签分类文本字符串)等。嵌入是浮点数的向量,两个向量之间的距离衡量它们的相关性,小距离表示高相关性,大距离表示低相关性。要获得嵌入,需将文本字符串连同选择的嵌入模型 ID 发送到嵌入 API 端点,响应将包含可提取、保存和使用的嵌入。访问定价页面可了解嵌入定价,请求根据发送输入中的 Token 数量计费。 在 word2vec 领域,词嵌入是将单个单词转换为单词数字表示(即向量化)的技术,当每个单词被映射到一个向量时,这个向量会以类似于神经网络的方式被学习,试图捕捉该单词与整个文本相关的各种特征,包括语义关系、定义、上下文等。但简单的嵌入如 onehot 编码存在多种限制。 在深度学习和自然语言处理(NLP)中,Embedding 是一种特征工程方法,用于将高维度的数据(如单词、短语、句子等)转换为低维度的向量,其主要目的是降低数据的抽象和复杂性,使机器学习模型能更有效地理解和处理数据,帮助模型理解语义关系。例如在电影推荐系统中,可为每个用户和电影创建 Embedding 来预测评分;在文本分类中,如垃圾邮件检测器,可使用词嵌入将单词转换为向量来进行预测。
2025-03-02
Embedding
嵌入(Embeddings)是一种在深度学习和自然语言处理(NLP)中常用的特征工程方法,用于将高维度的数据(如单词、短语、句子等)转换为低维度的向量。 其主要用途包括: 1. 搜索:结果按与查询字符串的相关性排序。 2. 聚类:文本字符串按相似性分组。 3. 推荐:推荐具有相关文本字符串的项目。 4. 异常检测:识别出相关性很小的异常值。 5. 多样性测量:分析相似性分布。 6. 分类:文本字符串按其最相似的标签分类。 嵌入通常是浮点数的向量(列表),两个向量之间的距离衡量它们的相关性,小距离表示高相关性,大距离表示低相关性。 要获得嵌入,可将文本字符串连同选择的嵌入模型 ID(例如,textembeddingada002)一起发送到嵌入 API 端点,响应将包含一个嵌入,可提取、保存和使用。在中可查看更多 Python 代码示例。 词嵌入是一种将单个单词转换为单词数字表示(即向量化)的技术。当每个单词被映射到一个向量时,这个向量会以一种类似于神经网络的方式被学习,试图捕捉该单词与整个文本相关的各种特征,如语义关系、定义、上下文等。这些数字化表示可用于确定单词之间的相似性或不相似性,也是机器学习各个方面不可或缺的输入。但简单的嵌入(如对文本数据进行 onehot 编码)存在多种限制。 以下是两个例子帮助更好地理解 Embedding: 1. 电影推荐系统:每个用户和电影都可被视为独特分类标签,直接处理困难,可使用 Embedding 为用户和电影创建低维度向量,捕捉兴趣和特性,通过比较预测评分。 2. 文本分类:如垃圾邮件检测器,可使用词嵌入将单词转换为向量,相似单词有相似向量,基于向量预测邮件是否为垃圾邮件。
2025-02-24
Embedding 嵌入向量生成模型
Embedding(嵌入)是一个浮点数的向量(列表),两个向量之间的距离度量它们的相关性,小距离表示高相关性,大距离表示低相关性。 Embedding 是一种在机器学习和深度学习中广泛应用的技术,特别是在自然语言处理(NLP)和其他涉及高维离散数据的领域。它指将原本高维且通常离散的输入数据(如单词、短语、用户 ID、商品 ID 等)映射到一个低维连续向量空间中的过程,这些低维向量称为嵌入向量。 例如,“国王”和“王后”在嵌入向量的空间里位置挨得很近,而“苹果”与前两者差别较大,其嵌入向量位置较远。Embedding 不仅限于单词,还可扩展到句子、文档、实体或其他类型的对象。通过训练诸如 Word2Vec、GloVe 或 BERT 等模型,可从大规模文本数据中学习出这样的嵌入向量,这些嵌入向量可看作是输入数据在潜在语义空间中的表示,能改善下游任务(如文本分类、情感分析、问答系统、机器翻译等)的表现。 除文本数据外,嵌入技术还应用于社交网络分析、推荐系统、图像识别(如位置嵌入)、图神经网络(如节点嵌入)等多种场景,实现将复杂对象的有效编码和降维表示。 Embeddings 有多种分类及对应模型: 句子和文档嵌入:Doc2Vec 能为整个文档生成统一的向量表示;Average Word Embeddings 是将一段文本中所有单词的嵌入取平均作为整体的文本表示;Transformers Sentence Embeddings 如 BERT 的标记对应的向量,或者专门针对句子级别的模型如 SentenceBERT。 实体/概念嵌入:Knowledge Graph Embeddings 如 TransE、DistMult、ComplEx 等,用于将知识图谱中的实体和关系嵌入到低维向量空间中。 其他类型:图像 Embeddings 使用卷积神经网络(CNN)进行图像特征提取,得到的特征向量即为图像嵌入;音频 Embeddings 在语音识别和声纹识别中,将声音信号转化为有意义的向量表示;用户/物品 Embeddings 在推荐系统中,将用户行为或物品属性映射到低维空间以进行协同过滤或基于内容的推荐;还有图 Embeddings 用于学习图结构的表示学习方法,将图中的节点和边映射到低维向量空间中,通过 DeepWalk、Node2Vec、GraphSAGE 等算法来实现,在图分析、社交网络分析、推荐系统等领域广泛应用,用于发现社区结构、节点相似性、信息传播等图属性。 在将大型文档转换为可检索内容的过程中,嵌入向量生成这一步将文本块转换为实值向量并存储在数据库中。但检索 PDF 文档的过程充满挑战,可能出现文本提取不准确和 PDF 文档内表格行列关系混乱等问题。在检索增强生成(RAG)框架中,回答一个问题需要用户提出问询,系统从私有知识库中检索相关内容,将相关内容与用户查询合并为上下文,最后请求大语言模型生成答案,准确检索相关信息对 RAG 模型的效力至关重要。
2024-12-11
embedding是什么
Embedding 是一种在深度学习和自然语言处理(NLP)中常用的特征工程方法,本质上是将高维度的数据(如单词、短语、句子等)转换为低维度的向量。其主要目的是降低数据的抽象性和复杂性,以便机器学习模型更有效地理解和处理数据,同时帮助模型理解语义关系,如单词之间的相似性、句子的情感等。 以下是几个关于 Embedding 的例子: 1. 电影推荐系统:假设存在一个电影推荐系统,用户可给电影打分,目标是预测用户未看过电影的评分。此时,每个用户和电影都可视为独特分类标签,直接处理这些高维度且稀疏的标签较困难。通过为每个用户和电影创建 Embedding(低维度向量),可捕捉用户兴趣和电影特性,进而通过比较 Embedding 来预测评分。 2. 文本分类:在文本分类任务中,Embedding 可将文本转换为适合模型处理的向量形式。 此外,在 Stable Diffusion 中,Embedding 相当于提示词打包的功能,能将大量提示词汇总到一个文件里,调用该文件就相当于输入了很多提示词,尤其在负向提示词中,当文本量很大且固定不变时,使用打包好的负向提示词 Embedding 可达到一词顶一百词的效果。 Embedding 是一个浮点数的向量(列表),两个向量之间的距离可度量它们的相关性,小距离表示高相关性,大距离表示低相关性。Embedding 有词、句子、文档、图像等分类。在大模型中,Embedding 具有重要价值,例如从数据集中获取 Embedding 结果并保存为 csv 文件。进阶到企业级应用开发的大模型技术还会涉及利用开源的 Embedding 模型、向量数据库去做检索增强生成(RAG),以及购买 GPU 服务器去基于开源大模型搭建企业级大模型项目。 参考链接:OpenAI 官网文档 https://platform.openai.com/docs/introduction
2024-08-27
embedding是什么?
Embedding 是一种在深度学习和自然语言处理(NLP)中的特征工程方法,用于将高维度的数据(如单词、短语、句子等)转换为低维度的向量。其本质是通过向量空间映射将文本转换为数值表示,主要目的是降低数据的抽象和复杂性,使机器学习模型能更有效地理解和处理数据,帮助模型理解语义关系,如单词之间的相似性、句子的情感等。 以下是几个关于 Embedding 的例子帮助您更好地理解: 1. 电影推荐系统:假设我们有一个电影推荐系统,用户可以给电影打分,目标是预测用户未看过的电影的评分。每个用户和电影都可视为独特分类标签,直接处理这些高维度和稀疏的标签很困难。此时可使用 Embedding,为每个用户和电影创建低维度向量,捕捉用户兴趣和电影特性,通过比较向量来预测评分。 2. 在 Stable Diffusion 中,Embedding 相当于提示词打包功能,能把很多提示词汇总到一个文件里。调用一个 Embedding 文件就相当于输入很多提示词,对于文本量很大且固定不变的提示词,如常见的负向提示词,使用打包好的负向提示词 Embedding 可达到一词顶一百词的效果。 此外,我们认识到 Embedding 是一个浮点数的向量(列表),两个向量之间的距离度量它们的相关性,小距离表示高相关性,大距离表示低相关性。Embedding 共有词、句子、文档、图像等分类。在大模型中,Embedding 具有重要价值,实战中可从数据集中获取 Embedding 结果,并保存为 csv 文件。进阶到企业级应用开发的大模型技术还会涉及利用开源的 Embedding 模型、向量数据库去做检索增强生成(RAG),以及购买 GPU 服务器去基于开源大模型搭建企业级大模型项目。OpenAI 官网文档链接:https://platform.openai.com/docs/introduction
2024-08-26
帮我列举2025年3月1日以来,国内外、闭源开源模型厂商的更新记录。
以下是 2025 年 3 月 1 日以来,国内外、闭源开源模型厂商的部分更新记录: 2025 年 3 月 20 日,OpenAI 推出了一套全新的音频模型,旨在通过 API 为开发者提供更智能、更可定制的语音代理支持,包括改进的语音转文本和文本转语音功能,为语音交互应用带来显著提升。 李开复公开表示 OpenAI 面临生存危机,商业模式不可持续。他强调中国的 DeepSeek 以极低成本提供接近的性能,开源模式将主导未来 AI 发展。他认为企业级 AI 应用将成为投资重点,资源限制反而促进了创新。李开复大胆预测,中国将出现三大 AI 玩家,竞争愈发激烈。 SuperCLUE 发布《中文大模型基准测评 2025 年 3 月报告》,指出 2022 2025 年经历多阶段发展,国内外模型差距缩小。测评显示 o3mini总分领先,国产模型表现亮眼,如 DeepSeekR1 等在部分能力上与国际领先模型相当,且小参数模型潜力大。性价比上,国产模型优势明显。DeepSeek 系列模型深度分析表明,其 R1 在多方面表现出色,蒸馏模型实用性高,不同第三方平台的联网搜索和稳定性有差异。 以上信息来源包括: 《》 《》 《》
2025-03-26
我想要制作一款小游戏,上架到抖音和微信,请你给我列举出需要用到的ai和软件
以下是制作小游戏并上架到抖音和微信可能需要用到的 AI 和软件: AI 方面:可以利用 AI 描述需求生成游戏代码,例如向云雀 3.5 等模型描述需求来辅助生成代码。还可以让 AI 处理图片、绘制角色形象等。 软件工具: 图像托管网站:用于上传游戏中的图片,选择无需登录、兼容性强的网站。 代码解释网站:有专门解释代码改游戏 bug 的网站,部分有免费额度。 GitHub:用于游戏发布,需要注册账号,设置游戏名,选择公共或锁定,上传文件等。 Zion:支持小程序、Web、AI 行为流全栈搭建,APP 端全栈搭建 2025 上线。 Coze:可作为后端服务。 微信开发者工具:用于微信小程序的开发。
2025-03-10
程序员在使用AI的时候会涉及哪些AI工具,帮我分别具体列举出来
程序员在使用 AI 时,可能会涉及以下一些 AI 工具: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议,帮助提高编写代码的效率。 2. 通义灵码:阿里巴巴团队推出,基于通义大模型,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成等多种能力。 3. CodeWhisperer:亚马逊 AWS 团队推出的由机器学习技术驱动的代码生成器,为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可快速生成代码。 5. Cody:代码搜索平台 Sourcegraph 推出的 AI 代码编写助手,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供的智能研发服务的免费 AI 代码助手,基于蚂蚁集团自研的基础大模型进行微调。 7. Codeium:一个由 AI 驱动的编程助手工具,通过提供代码建议、重构提示和代码解释来帮助软件开发人员提高编程效率和准确性。 此外,还有一些其他相关的 AI 工具,如: 1. ChatAll:可以同时与多个 AI 机器人实时聊天的开源工具,支持多种主流 AI 聊天机器人。 2. AIProductsAllInOne:整理了一些 ChatGPT 以及 AI 相关的生产力工具。 3. Shell GPT:在命令行中集成了 ChatGPT,帮助快速编写 shell 命令、代码片段等。 4. 飞书 GPT:集成了飞书、GPT3.5、Dall·E、Whisper 等 API,支持多种功能。 5. ChatPDF:提取 PDF 文件内容并交给 ChatGPT 分析,实现一对一对话交流。 6. GitHub Copilot X:基于 AI 驱动的跨时代代码编辑器,带来全新编程体验。 在 PPT 制作方面,有以下 AI 工具: 1. MindShow 2. 爱设计 3. 闪击 4. Process ON 5. WPS AI 每个工具都有其特色和适用场景,程序员可以根据自己的需求选择最适合的工具。
2025-03-07
开发角色在使用AI的时候会涉及哪些AI工具,帮我分别具体列举出来
开发角色在使用 AI 时可能涉及以下工具: 1. 个性(LLM 的文本):一些开源模型如 Vicuna 和 Pygmalion 经过微调,可在特定个性到无审查的角色扮演等场景中表现出色。 2. 记忆(向量存储):像 Pinecone 这样的向量存储系统,用于存储长期记忆、背景故事等独特信息。 3. 语音(语音合成):ElevenLabs 产品可赋予声音,并控制年龄、性别和口音。 4. 外表(SD 模型作图):LoRAs 可精细控制图像风格、细节和设置。 5. 动画(视频动画):DID 和 HeyGen 等工具能使图像“说话”。 6. 平台:多数开发者在 GCP 和 AWS 上部署运行,Steamship 等解决方案也受关注。 7. UI 层:SillyTavern、Agnaistic 和 KoboldAI 等是受欢迎的前端界面选择。 在游戏开发方面: 1. Unity 提供了新 Copliot 工具,可通过与 Muse Chat 聊天快速启动创建游戏项目,协助编码,创建 3D 材质、动画等内容。 2. Unity Sentis 工具允许在 Unity 运行时为游戏或应用程序嵌入 AI 模型,增强玩法和功能,是跨平台解决方案。
2025-03-07
CRM会涉及哪些AI工具,帮我分类具体列举出来
以下是 CRM 可能涉及的 AI 工具分类列举: 销售相关工具: Salesforce 爱因斯坦:通过分析数据集识别潜在客户,生成潜在客户评分,具有自动化功能。 Clari:从事智能收入运营,能统一数据并创建准确的收入预测。 Hightime:销售团队的 AI 助手,处理重复性任务和耗时研究。 AIGC 在 CRM 中的应用: 个性化营销内容创作:根据客户数据生成个性化营销文案和视觉内容。 客户服务对话系统:开发智能客服系统,通过自然语言交互解答咨询和投诉。 产品推荐引擎:生成产品描述和展示内容,结合推荐算法推荐产品。 CRM 数据分析报告生成:自动生成数据分析报告,包括多种形式。 智能翻译和本地化:提供多语种翻译及本地化服务。 虚拟数字人和营销视频内容生成:快速生成相关形象和视频内容。 客户反馈分析:高效分析客户反馈信息。 产品经理相关 AI 工具: 用户研究、反馈分析:Kraftful(kraftful.com) 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 画原型:Uizard(uizard.io/autodesigner/) 项目管理:Taskade(taskade.com) 写邮件:Hypertype(hypertype.co) 会议信息:AskFred(fireflies.ai/apps) 团队知识库:Sense(senseapp.ai) 需求文档:WriteMyPRD(writemyprd.com) 敏捷开发助理:Standuply(standuply.com) 数据决策:Ellie AI(ellie.ai) 企业自动化:Moveworks(moveworks.com)
2025-03-07
CRM会涉及哪些AI工具,帮我分类具体列举出来
CRM 可能涉及的 AI 工具主要有以下几类: 与销售工作相关的 AI 工具: 1. Salesforce 爱因斯坦:能分析大量数据集识别潜在客户,生成预测性潜在客户评分,还能自动化执行日常或耗时任务。 2. Clari:专门从事智能收入运营,能统一数据并创建准确的收入预测。 3. Hightime:销售团队的 AI 助手,处理重复性任务和耗时研究。 AIGC 在 CRM 中的应用: 1. 个性化营销内容创作:根据客户数据生成个性化且富有创意的营销文案、视觉内容等。 2. 客户服务对话系统:开发智能客服系统,通过自然语言交互解答客户咨询、投诉等。 3. 产品推荐引擎:生成产品描述、视觉展示等内容,结合推荐算法为客户推荐产品。 4. CRM 数据分析报告生成:自动生成数据分析报告,包括文字、图表、视频演示等形式。 5. 智能翻译和本地化:提供高质量多语种翻译及本地化服务。 6. 虚拟数字人和营销视频内容生成:快速生成虚拟数字人形象、场景背景和营销视频内容。 7. 客户反馈分析:高效分析海量客户反馈文本和多媒体信息,挖掘客户需求和潜在痛点。 产品经理的 AI 工具集: 1. 用户研究、反馈分析:Kraftful(kraftful.com) 2. 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 3. 画原型:Uizard(uizard.io/autodesigner/) 4. 项目管理:Taskade(taskade.com) 5. 写邮件:Hypertype(hypertype.co) 6. 会议信息:AskFred(fireflies.ai/apps) 7. 团队知识库:Sense(senseapp.ai) 8. 需求文档:WriteMyPRD(writemyprd.com) 9. 敏捷开发助理:Standuply(standuply.com) 10. 数据决策:Ellie AI(ellie.ai) 11. 企业自动化:Moveworks(moveworks.com)
2025-03-07
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
不同能力的AI从业者需要掌握什么AI能力
不同能力的 AI 从业者所需掌握的 AI 能力如下: AI 技术与产品创新者: 具备扎实的技术背景,包括编程、算法工程、AI 应用开发、后端开发等,许多是行业内的技术专家或初学者。 拥有产品开发与管理经验,尤其在互联网和 AI 产品开发方面,具备丰富的项目管理与执行能力。 熟悉多元化的应用场景,包括 AIGC 内容创作、自动驾驶、金融数据分析、教育、医疗健康、影视创作、营销等。 AI 爱好者与学习者: 处于 AI 技术的初学阶段,渴望通过学习提升技能,并将 AI 技术应用到实际工作和生活中。 广泛使用生成式 AI 工具,如 Midjourney、Stable Diffusion(SD)、Coze、GPT 等,展示出对 AI 工具的强烈兴趣。 活跃在各种 AI 学习社群和线上线下的活动中,热衷于共学与交流,进一步提升自己的技能与认知。 AI 内容创作与营销者: 具有内容创作经验,如自媒体运营者、视频博主、内容创作者,具备强大的文案策划、视频剪辑、图文制作等创意能力。 熟练掌握营销策划与品牌运营,能够将 AI 技术与商业化需求结合,提供完整的解决方案。 拥有丰富的活动策划和运营经验,涉及线下工作坊、社群活动、比赛等,展示了较强的资源整合和组织协调能力。 AI PM(产品经理): 理解产品核心技术,了解基本的机器学习算法原理,以便做出更合理的产品决策。 掌握一定的算法知识,与技术团队进行更有效的沟通,减少信息不对称带来的误解。 在产品规划阶段,能够评估某些功能的技术可行性。 把握 AI 技术发展迅速的趋势,更好地把握产品的未来发展方向。 发现产品的独特优势,提出创新的产品特性,提升产品的竞争力。 提升数据分析能力,因为很多 AI 算法都涉及到数据处理和分析。
2025-04-09
对程序员在 AI 能力上不同维度的分析
以下是对程序员在 AI 能力上不同维度的分析: AI 对程序员工作的影响: AI 可代替的部分:代码生成、补全、分析问题和数据提取、辅助架构设计文档等。 AI 无法代替的部分:需求分析、复杂项目拆分、线上问题排查、调试及安全性保障。 企业考察候选人 AI 能力的要点: 基础 AI 应用能力:包括提示词工程,会用合适的方式提问以引导 AI 输出高质量答案;内容评估能力,能够判断 AI 生成的内容是否靠谱并加以优化;熟练使用 AI 工具,能快速上手各类 AI 工具,如 DeepSeek、Cursor、Midjourney 等。 高级 AI 应用能力:任务拆解能力,知道哪些工作适合用 AI,哪些环节需要人工把控;业务场景应用能力,能在实际工作中灵活运用 AI 提高效率。 加分项:快速学习能力,能跟上 AI 技术的快速迭代,主动学习新工具、新方法。 不同领域考察 AI 能力的方式:因领域而异。 程序员与 AI 编程助手: 约 2/3 的 730 名程序员已在使用 AI 编程助手(如 ChatGPT、GitHub Copilot、Cursor 等),原因包括对新技术的敏感性、尝试后获得效率红利、习惯养成。 使用比例远超预期,AI 编程助手迅速渗透开发者日常,好奇心驱动和效率反馈形成正向循环,AI 的使用逐渐成为程序员的“标配能力”。 AI 对编程行业的影响: 不止于“效率提升”,还带来岗位结构、心理预期、安全风险等深层变化。 技能退化与岗位压缩令人焦虑,使用 AI 成为职场新基本素养,心理压力、合规风险需同步应对。 积极影响与未来趋势:人机协作成为主流,AI 释放开发者创造力;门槛降低促使创新频率提升;持续学习与能力更新成为行业新常态。
2025-04-09
分析程序员在AI能力上的不同维度,比如AI框架,AIPrompt等
以下是对程序员在 AI 能力上不同维度的分析,包括 AI 框架和 AI Prompt 等方面: AI 框架: PromptPal:专为 AI 领域中的初创公司和个人开发者设计的提示管理工具,是一个集中化平台,便于在 AI 项目中管理提示,实现协作和工作流程优化。具有本地部署和云原生、简易设置、数据库支持、SDK 支持、提示跟踪与分析、协作工具等特点。开发指向: ChainForge:开源的可视化编程环境,专门用于测试大型语言模型(LLMs)的提示。允许用户进行快速而有效的提示想法测试和变化,具有多模型测试、响应质量比较、评估指标设置、多对话管理等特点。开发指向: AI Prompt: Promptknit:为 AI Prompts 测试提供服务的平台,可能提供工具和资源来帮助用户设计、测试和优化 AI 模型的提示。网站: 对于律师等法律人写好 Prompt 的建议: 明确 Prompt 是给人工智能(AI)系统提供的信息或问题,用来引导其产生特定回答或执行特定任务。 建议框架及格式:CRISPE 包括 Capacity and Role(能力与角色)、Insight(洞察)、Statement(陈述)、Personality(个性)、Experiment(举例)。例如,在处理合同纠纷案件时,为 AI 赋予角色和能力,提供背景信息和上下文,明确期望其完成的任务,设定回答风格等。
2025-04-09
基于技术类别的不同,将现在的AI产品进行分类
目前,AI 产品基于技术类别可以进行如下分类: 1. 从生成方式分类: 文生视频、图生视频:如 Runway、Pika labs、SD+Deforum、SD+Infinite zoom、SD+AnimateDiff、Warpfusion、Stability Animation 等。 视频生视频: 逐帧生成:如 SD+Mov2Mov。 关键帧+补帧:如 SD+Ebsynth、Rerender A Video。 动态捕捉:如 Deep motion、Move AI、Wonder Dynamics。 视频修复:如 Topaz Video AI。 AI Avatar+语音生成:如 Synthesia、HeyGen AI、DID。 长视频生短视频:如 Opus Clip。 脚本生成+视频匹配:如 Invideo AI。 剧情生成:如 Showrunner AI。 2. 从产品阶段和可用维度分类: 以 AI 为底层设计逻辑的 AI 原生类产品。 在原有互联网产品上深度嵌入 AI 功能的 AI+X 产品,目前整体数据表现显著优于 AI 原生类产品,在办公软件和内容平台重点布局。办公软件方面,如百度文库和 WPS AI 等在续写、改写、命题写作等不同程度的 AI 写作功能,以及针对论文、小说等不同题材的 AI 总结功能上表现突出。内容平台方面,AIGC 大多从基于平台内容的 AI 搜索、用于带动 UGC 的 AI 生成功能及模板、降低门槛的内容创作工具三个方向发力。 基于外接 API 微创新的套壳类产品。 将多个产品/模型 API 集中拼凑的集合站类产品。 此外,从 AI 产品经理的角度,个人划分仅供娱乐和参考: 1. 入门级:能通过 WaytoAGI 等开源网站或一些课程了解 AI 概念,使用 AI 产品并尝试动手实践应用搭建。 2. 研究级:有技术研究和商业化研究两个路径,能根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用级:有成功落地应用的案例,产生商业化价值。对应传统互联网 PM 也有三个层级: 负责功能模块与执行细节。 负责整体系统与产品架构。 熟悉行业竞争格局与商业运营策略。
2025-04-01
我想在飞书里面将一段话批量翻译成不同国家的语言 该 怎么做
目前飞书中可能没有直接将一段话批量翻译成不同国家语言的内置功能。但您可以借助一些第三方的翻译工具或软件来实现,比如谷歌翻译、百度翻译等。您将需要翻译的段落复制到这些工具中,然后选择您想要翻译的目标语言进行批量翻译。
2025-03-19
你好,我想训练一个自己的专属模型,比如说基于网页里面的问卷调查,我有答题的逻辑,网页的问卷调查项目每天都有非常多的不同的地方,但是又有相通的地方,我想让AI在我的逻辑之上能自我迭代自动答题,我该怎么办
如果您想基于网页问卷调查训练一个能在您的逻辑之上自我迭代自动答题的专属模型,有以下两种常见的技术方案: 1. 训练专有大模型: 优点:效果最好。 缺点:成本高,训练和维护需要大量计算资源和专业知识;更新模型知识难度大,需要重新训练或微调,过程复杂耗时。 2. 利用 RAG(检索增强生成)技术: 例如选择 Baichuan27BChat 模型作为底模,配置模型本地路径和提示模板。在 Train 页面里选择 sft 训练方式,加载定义好的数据集,根据数据集大小和收敛情况设置学习率和训练轮次。使用 FlashAttention2 可减少显存需求、加速训练速度;显存小的朋友可减少 batch size 并开启量化训练,内置的 QLora 训练方式好用。但需要用到 xformers 的依赖。根据聊天记录规模大小,训练时间少则几小时,多则几天。 此外,还有学生训练专属植物分类 AI 模型的案例供您参考。在北京市新英才学校的跨学科选修课“生化 E 家”中,老师和学生共同收集校园内不同树叶的照片,在 OpenInnoLab里找到图像分类训练工具,建立植物分类模型,加入大量数据集进行训练,再用图像化编程将其套在程序里,形成简单的识别工具。在这个过程中,老师通过生活体验与学生讨论图像分类原理,学生从体验到实践操作,在不进行大量代码编程的情况下能够训练 AI 模型,并了解模型训练准确度与数据的关系。
2025-03-14