Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

基于技术类别的不同,将现在的AI产品进行分类

Answer

目前,AI 产品基于技术类别可以进行如下分类:

  1. 从生成方式分类:
    • 文生视频、图生视频:如 Runway、Pika labs、SD+Deforum、SD+Infinite zoom、SD+AnimateDiff、Warpfusion、Stability Animation 等。
    • 视频生视频:
      • 逐帧生成:如 SD+Mov2Mov。
      • 关键帧+补帧:如 SD+Ebsynth、Rerender A Video。
      • 动态捕捉:如 Deep motion、Move AI、Wonder Dynamics。
      • 视频修复:如 Topaz Video AI。
    • AI Avatar+语音生成:如 Synthesia、HeyGen AI、D-ID。
    • 长视频生短视频:如 Opus Clip。
    • 脚本生成+视频匹配:如 Invideo AI。
    • 剧情生成:如 Showrunner AI。
  2. 从产品阶段和可用维度分类:
    • 以 AI 为底层设计逻辑的 AI 原生类产品。
    • 在原有互联网产品上深度嵌入 AI 功能的 AI+X 产品,目前整体数据表现显著优于 AI 原生类产品,在办公软件和内容平台重点布局。办公软件方面,如百度文库和 WPS AI 等在续写、改写、命题写作等不同程度的 AI 写作功能,以及针对论文、小说等不同题材的 AI 总结功能上表现突出。内容平台方面,AIGC 大多从基于平台内容的 AI 搜索、用于带动 UGC 的 AI 生成功能及模板、降低门槛的内容创作工具三个方向发力。
    • 基于外接 API 微创新的套壳类产品。
    • 将多个产品/模型 API 集中拼凑的集合站类产品。

此外,从 AI 产品经理的角度,个人划分仅供娱乐和参考:

  1. 入门级:能通过 WaytoAGI 等开源网站或一些课程了解 AI 概念,使用 AI 产品并尝试动手实践应用搭建。
  2. 研究级:有技术研究和商业化研究两个路径,能根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。
  3. 落地应用级:有成功落地应用的案例,产生商业化价值。对应传统互联网 PM 也有三个层级:
    • 负责功能模块与执行细节。
    • 负责整体系统与产品架构。
    • 熟悉行业竞争格局与商业运营策略。
Content generated by AI large model, please carefully verify (powered by aily)

References

AI视频生成(下) | 20个产品推荐及实践教学

本文作者Bay,写于23.09月底,关注公众号“Bay的设计奥德赛”接受及时推送本篇通过产品介绍和丰富的案例实践,带你了解AI视频有哪些产品,效果如何实现。若从生成方式分类,AI视频生成包含:1.文生视频、图生视频(Runway、Pika labs、SD+Deforum、SD+Infinite zoom、SD+AnimateDiff、Warpfusion、Stability Animation)2.视频生视频:又分逐帧生成(SD+Mov2Mov)、关键帧+补帧(SD+Ebsynth、Rerender A Video)、动态捕捉(Deep motion、Move AI、Wonder Dynamics)、视频修复(Topaz Video AI)3.AI Avatar+语音生成:Synthesia、HeyGen AI、D-ID4.长视频生短视频:Opus Clip5.脚本生成+视频匹配:Invideo AI6.剧情生成:Showrunner AI若从产品阶段和可用维度分类:下面将按照上图维度进行产品介绍。

《2024年度AI十大趋势报告》发布:技术创新、产品洗牌、行业动态一文看尽

当前,AI产品可被划分为以AI为底层设计逻辑的AI原⽣类产品、在原有互联⽹产品上深度嵌⼊AI功能的AI+X产品、基于外接API微创新的套壳类产品和将多个产品/模型API集中拼凑的集合站类产品。从数据来看,由于和业务流程融合得更为紧密、需求识别明确等原因,AI+X类产品⽬前的整体数据表现显著优于AI原生类产品,并以办公软件和内容平台为重点布局领域。对办公软件⽽⾔,续写、改写、命题写作等不同程度的AI写作功能,以及针对论⽂、⼩说等不同题材的AI总结功能基本成为标配。其中,主要业务为提供模板及参考内容的素材库类产品和编辑器形态的办公软件表现更为突出,代表产品为百度⽂库和WPS AI。由于AI⽣成效果会直接影响产品的核⼼使⽤体验,此类产品相对更强调具体功能的精准度。而在内容平台中,AIGC⼤多从三个⽅向共同发⼒:基于平台内容的AI搜索、⽤于带动UGC的AI⽣成功能及模板,还有⻔槛进⼀步降低的内容创作⼯具。基于此,量子位智库对AI原生类产品提出了场景融合、简化用户体验、品牌信任和推广三大建议。

AI 市场与 AI 产品经理分析——2024 是否是 AI 应用创业的好机会

个人做了一下划分,仅供娱乐和参考。1)入门级能通过WaytoAGI等开源网站或一些课程了解AI的概念,使用AI产品并尝试动手实践应用搭建(对应的画像可能是喜欢听小宇宙APP的播客或浏览AI相关的文章哈哈);以前互联网刚兴起的时候,部分用谷歌的人会比用百度的有优越感,现在可能用AI搜索的更有优越感(当然我感觉都没啥好优越的,都是工具,关键还是看能用工具产出什么)。2)研究级我理解这里有两个路径,一个是技术研究路径,一个是商业化研究路径;对应传统互联网偏功能实现的产品经理和偏商业运营的产品经理,当然最好是同一个人,我一直的理念是产品运营不分家(产品即运营)。这个阶段对应的画像可能是对某一领域有认知,可以根据需求场景选择解决方案,或利用Hugging face等工具手搓出一些AI应用来验证想法;3)落地应用这一阶段我理解的画像就是有一些成功落地应用的案例,如产生商业化价值。对应传统互联网PM也有三个层级:1)负责功能模块与执行细节;2)负责整体系统与产品架构;3)熟悉行业竞争格局与商业运营策略;总结来说,对AI产品经理要求懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。AI说白了也是工具和手段,我认为产品经理要关注的还是场景、痛点、价值。举一些我们之前做的落地案例(我个人也是在2017年开始关注机器学习,还报了风变的Python课程,不过当时没有深入研究)。

Others are asking
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
AI大模型的类别
AI 大模型主要包括以下类别: 1. 生成式 AI:能够生成文本、图片、音频、视频等内容形式,生成的内容称为 AIGC。 2. LLM(大语言模型):例如谷歌的 BERT 模型,可用于语义理解,如上下文理解、情感分析、文本分类等,生成只是其处理任务之一。对于生成式 AI,生成图像的扩散模型不属于大语言模型。 相关技术名词及概念关系: 1. AI:即人工智能。 2. 机器学习:电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:一种参照人脑神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,其完全基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络。
2025-02-23
AI应用的类别
以下是一些 AI 应用的类别: 1. AI 摄影参数调整助手:使用图像识别、数据分析技术,在摄影 APP 中实现根据场景自动调整摄影参数,市场规模达数亿美元。 2. AI 音乐情感分析平台:运用机器学习、音频处理技术,通过音乐情感分析软件分析音乐的情感表达,市场规模达数亿美元。 3. AI 家居智能照明系统:借助物联网技术、机器学习,如小米智能照明系统实现家居照明的智能化控制,市场规模达数十亿美元。 4. AI 金融风险预警平台:利用数据分析、机器学习,通过金融风险预警软件提前预警金融风险,市场规模达数十亿美元。 5. AI 旅游路线优化平台:采用数据分析、自然语言处理,如马蜂窝路线优化功能根据用户需求优化旅游路线,市场规模达数亿美元。 6. AI 游戏道具推荐系统:使用数据分析、机器学习,在游戏内商城推荐功能中根据玩家需求推荐游戏道具,市场规模达数亿美元。 7. AI 天气预报分时服务:运用数据分析、机器学习,如彩云天气分时预报提供精准的分时天气预报,市场规模达数亿美元。 8. AI 医疗病历分析平台:借助数据分析、自然语言处理,通过医渡云病历分析系统分析医疗病历,辅助诊断,市场规模达数十亿美元。 9. AI 会议发言总结工具:利用自然语言处理、机器学习,如讯飞听见会议总结功能自动总结会议发言内容,市场规模达数亿美元。 10. AI 书法作品临摹辅助工具:采用图像识别、数据分析,在书法临摹软件中帮助书法爱好者进行临摹,市场规模达数亿美元。 11. AI 菜谱口味调整工具:运用自然语言处理、数据分析,如下厨房口味调整功能根据用户反馈调整菜谱口味,市场规模达数亿美元。 12. AI 语言学习纠错平台:借助自然语言处理、机器学习,如英语流利说纠错功能帮助语言学习者纠正错误,市场规模达数十亿美元。 13. AI 电影剧情分析系统:利用数据分析、自然语言处理,如豆瓣电影剧情分析工具分析电影剧情,提供深度解读,市场规模达数亿美元。 14. AI 办公文件分类系统:采用数据分析、机器学习,如腾讯文档分类功能自动分类办公文件,方便管理,市场规模达数亿美元。 15. AI 美容护肤方案定制平台:借助图像识别、数据分析,如美丽修行定制方案功能根据用户肤质定制护肤方案,市场规模达数亿美元。
2025-02-05
如何训练一个自己的模型用来识别不同的图片类别
训练自己的模型来识别不同的图片类别可以参考以下方法: 对于扩散模型(如 Midjourney): 强大的扩散模型训练往往消耗大量 GPU 资源,推理成本高。在有限计算资源下,可在强大预训练自动编码器的潜在空间中应用扩散模型,以在复杂度降低和细节保留间达到平衡,提高视觉保真度。引入交叉注意力层可使其成为灵活的生成器,支持多种条件输入。 Midjourney 会定期发布新模型版本以提升效率、连贯性和质量。最新的 V5 模型具有更广泛的风格范围、更高的图像质量、更出色的自然语言提示解读能力等。 用 SD 训练贴纸 LoRA 模型: 对于原始形象,可通过 MJ 关键词生成不同风格的贴图,总结其特征。注意关键词中对颜色的限制,保持正面和负面情绪数据比例平衡。若训练 25626 大小的表情包,初始素材可能够用,若训练更高像素图片,可能需进一步使用 MJ 垫图和高清扩展功能。 进行高清化时,从 256 到 1024 分辨率,输入左图并加入内容和风格描述,挑选合适的图片。 多模态模型(以 StableDiffusion 为例): 多模态模型包括文生图、图生图、图生视频、文生视频等,底层逻辑通常从生图片源头开始。 扩散模型(如 StableDiffusion 中使用的)的训练是对图片加减噪点的过程。先对海量带有标注文字描述的图片逐渐加噪点,模型学习每一步图片向量值和文字向量值的数据分布演变规律,完成训练。输入文字后,模型根据文字向量指导充满噪点的图片减噪点生成最终图片。扩散模型加减噪点方式与大脑构思图片方式类似,且多模态模型会关联文字向量值和图片像素点向量值。
2025-01-31
大模型家族、类别、应用场景
大模型主要分为以下两类: 1. 大型语言模型:专注于处理和生成文本信息,主要应用于自然语言处理任务,如文本翻译、文本生成、情感分析等。 2. 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息,可以应用于更广泛的领域,例如图像识别与描述、视频分析、语音识别与生成等。 大型多模态模型与大型语言模型的不同点包括: 1. 处理的信息类型不同:大型语言模型专注于文本信息,大型多模态模型能处理多种类型信息。 2. 应用场景不同:大型语言模型主要用于自然语言处理任务,大型多模态模型应用领域更广泛。 3. 数据需求不同:大型语言模型主要依赖大量文本数据训练,大型多模态模型需要多种类型数据训练。 对于聊天大模型的深度用户,把同一个问题让不同的大模型解答是高频操作,主要适用于以下场景: 1. 对回答的精准性、全面性要求较高的问题,因为不同大模型在解决不同问题时各有优劣。 2. 需要多方交叉验证,规避模型幻觉的客观事实类问题。 常用的模型网站有: 1. 2. 3. 4. 5. 下载模型后需要将之放置在指定的目录下,不同类型的模型放置目录不同: 1. 大模型(Ckpt):放入 models\\Stablediffusion 2. VAE 模型:一些大模型需要配合 vae 使用,对应的 vae 同样放置在 models\\Stablediffusion 或 models\\VAE 目录,然后在 webui 的设置栏目选择。 3. Lora/LoHA/LoCon 模型:放入 extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在 models/Lora 目录 4. Embedding 模型:放入 embeddings 目录 模型的类型可以通过检测。
2025-01-06
大模型家族、类别、应用场景
大模型主要分为以下两类: 1. 大型语言模型:专注于处理和生成文本信息,主要应用于自然语言处理任务,如文本翻译、文本生成、情感分析等。其训练主要依赖大量的文本数据。 2. 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息,可以应用于更广泛的领域,例如图像识别与描述、视频分析、语音识别与生成等。其训练需要多种类型的数据,包括文本、图片、音频等。 此外,还有相对规模较小的模型,这些模型通常是为完成特定任务而设计的。 大模型的应用场景包括: 1. 对于回答的精准性、全面性要求较高的问题,不同的大模型各有优劣,可兼听获取更好的答案。 2. 需要多方交叉验证,规避模型幻觉的客观事实类问题。 常用的模型网站有: 1. 2. 3. 4. 5. 下载模型后,不同类型的模型放置位置不同: 1. 大模型(Ckpt):放入 models\\Stablediffusion 2. VAE 模型:一些大模型需要配合 vae 使用,对应的 vae 同样放置在 models\\Stablediffusion 或 models\\VAE 目录,然后在 webui 的设置栏目选择。 3. Lora/LoHA/LoCon 模型:放入 extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在 models/Lora 目录 4. Embedding 模型:放入 embeddings 目录
2025-01-06
大模型家族、类别、应用场景
大模型主要分为以下两类: 1. 大型语言模型:专注于处理和生成文本信息,主要应用于自然语言处理任务,如文本翻译、文本生成、情感分析等。 2. 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息,可以应用于更广泛的领域,例如图像识别与描述、视频分析、语音识别与生成等。 大型多模态模型与大型语言模型的不同点包括: 1. 处理的信息类型不同:大型语言模型专注于文本,大型多模态模型能处理多种类型信息。 2. 应用场景不同:大型语言模型主要用于自然语言处理任务,大型多模态模型应用领域更广泛。 3. 数据需求不同:大型语言模型主要依赖大量文本数据训练,大型多模态模型需要多种类型数据训练。 对于聊天大模型的深度用户,常见的应用场景有: 1. 对回答的精准性、全面性要求较高的问题,因为不同大模型各有优劣。 2. 需要多方交叉验证,规避模型幻觉的客观事实类问题。 常用的模型网站有: 1. 2. 3. 4. 5. 下载模型后,不同类型的模型放置位置如下: 1. 大模型(Ckpt):放入 models\\Stablediffusion 2. VAE 模型:一些大模型需要配合 vae 使用,对应的 vae 同样放置在 models\\Stablediffusion 或 models\\VAE 目录,然后在 webui 的设置栏目选择。 3. Lora/LoHA/LoCon 模型:放入 extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在 models/Lora 目录 4. Embedding 模型:放入 embeddings 目录
2025-01-06
目前模型之间是如何分类的
目前模型的分类方式多种多样,以下为您介绍几种常见的分类角度: 1. 从来源角度:根据模型的出处,可分为来自行业(如 Google、Meta、OpenAI 等公司)、学术界(如清华大学、麻省理工学院、牛津大学等)、政府(如英国的艾伦·图灵研究所、阿布扎比的技术创新研究所等)以及研究团体(如艾伦研究所、弗劳恩霍夫研究所等非营利性 AI 研究组织)。在 2014 年之前,学术界在发布机器学习模型方面领先,此后行业占据主导。 2. 从整体架构角度: 基础层:为大模型提供硬件支撑和数据支持,例如 A100、数据服务器等。 数据层:包括企业根据自身特性维护的静态知识库和动态的三方数据集,而非用于基层模型训练的数据基集。 模型层:分为 LLm(如 GPT 等大语言模型,一般使用 transformer 算法实现)和多模态模型(如文生图、图生图等模型,训练数据为图文或声音等多模态数据集)。 平台层:如大模型的评测体系或 langchain 平台等,是模型与应用之间的组成部分。 表现层:即应用层,是用户实际看到的部分。 此外,像 OpenAI o3mini 模型,在 OpenAI 的准备框架中被分类为中等风险,并采取了相应的保障和安全缓解措施。
2025-04-13
请基于应用场景,对AI模型进行分类
以下是对 AI 模型基于应用场景的分类: 1. 文本生成和内容创作:包括撰写文章、生成新闻报道、创作诗歌和故事等。 2. 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。 3. 编程和代码辅助:如代码自动补全、bug 修复和代码解释。 4. 翻译和跨语言通信:促进不同语言背景的用户之间的沟通和信息共享。 5. 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。 6. 教育和学习辅助:创建个性化的学习材料、自动回答学生问题和提供语言学习支持。 7. 图像和视频生成:如根据文本描述生成相应的图像,甚至未来可能扩展到视频内容的生成。 8. 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。 9. 医疗和健康咨询:理解和回答医疗相关的问题,提供初步的健康建议和医疗信息查询服务。 10. 法律和合规咨询:帮助解读法律文件,提供合规建议。 此外,在开源模型方面,如 Civitai、海艺 AI、liblib 等为主流创作社区,提供了让用户利用 AI 技术进行图像创作和分享的平台。AI 视频方面,其应用场景广泛,涵盖内容创建、社交媒体营销、讲故事与动画制作、个性化内容、视频摘要、电子学习和培训、新闻媒体、电子游戏开发、虚拟助理和聊天机器人、归档与文档保存以及提高内容的可访问性等多个领域。从使用场景来看,分为改善大模型产品的使用体验、助力用户工作流、细分场景独立实用工具、AI 社区、Chatbot 五个方向;从产品形态上来看,分为插件、辅助现有产品能力、深度结合 LLM 能力的独立网站&应用、AI 社区四种。目前产品大多分布在 PC 端。
2025-04-01
基于深度学习的商代食器分类研究 明确详细的研究意义
基于深度学习的商代食器分类研究具有多方面的重要意义。首先,它有助于深入了解商代的饮食文化和社会生活。通过对食器的准确分类,可以揭示当时人们的饮食习惯、烹饪方式以及社交礼仪等方面的信息。 其次,为考古学研究提供新的方法和视角。利用深度学习技术能够更高效、更准确地处理和分析大量的商代食器数据,突破传统研究方法的局限。 再者,有助于文物保护和管理。精确的分类有助于制定更有针对性的保护策略,确保这些珍贵的文化遗产得到妥善保存。 最后,促进跨学科研究的发展。将深度学习与考古学相结合,能够吸引更多不同领域的学者参与,推动相关研究的创新和进步。
2025-03-27
AI分类
AI 主要有以下分类: 1. 生成式 AI: 生产力方面:包括文档、PPT、会议、脑爆、数据处理、搜索、浏览、email、文件等。 社交方面:包括真实和虚拟社交。 教育方面:涵盖早教、语言学习、公司教育、父母教育、学生工具、学校工具等。 创意内容方面:包含视频、音乐、声音、个人图像、图像等。 2. 以生成方式划分: 音视频生成类: 视频生成:当前视频生成可分为文生视频、图生视频与视频生视频。主流生成模型为扩散模型,可用于娱乐、体育分析和自动驾驶等领域,经常与语音生成一起使用。 语音生成:用于文本到语音的转换、虚拟助手和语音克隆等,模型可由 Transformers 提供。 音频生成:用于生成音乐、语音或其他声音,常用技术包括循环神经网络、长短时记忆网络、WaveNet 等。 一些具有代表性的海外项目: Sora(OpenAI):以扩散 Transformer 模型为核心,能生成长达一分钟的高保真视频,支持多种生成方式,在文本理解方面表现出色。 Genie(Google):采用 STtransformer 架构,包括潜在动作模型、视频分词器与动力学模型,拥有 110 亿参数。 WaveNet(DeepMind):一种生成模型,可以生成非常逼真的人类语音。 MuseNet(OpenAI):一种生成音乐的 AI 模型,可以在多种风格和乐器之间进行组合。 Multilingual v2(ElevenLabs):一种语音生成模型,支持 28 种语言的语音合成服务。 3. 在 AI 创客松中,参与同学的分类: 秦超:AI 2C 项目负责人,擅长产品落地服务,具有产品、技术架构和项目管理经验。 kaikai:技术实践者,擅长多 Agent 处理任务流,具备技术实践和团队合作能力。 Cici?:AI 算法开发,想法是宠物与 AI 结合,具有 AI 产品研发和创业经验。 BIN 陈裕彬:CTO,方向是 AI 绘画精灵、AI 推文小说视频生成器,是爆款 AI 小程序作者。 11 鸭鸭呀:产品经理,专注智能写作产品,擅长 Prompt 撰写和 AI 应用。 zz:AI 产品经理,方向是效率工具和游戏,具有大厂经验。 天天向上:AIGC 爱好者,方向是 AI 配音应用,是配音演员,有 AI 预告片制作经验。 烦烦烦??:产品经理,方向是企业服务 AI 应用,具备 PRD 输出和前端开发能力。 周文斌:产品业务负责人,方向是 AI 创业,具有产品规划和研发经验。 Wilson·W:咨询顾问/服务设计师,方向是 AI 组团协作场景,是 GPT4.0 用户,有咨询行业经验。 王蒙:程序员,从事 AI 相关开发,具有后端开发经验。 Nero:产品体验设计师,方向是 AI 绘画、AI 视频,研究 AIGC 方向。
2025-03-26
我是一个没有技术背景且对AI感兴趣的互联网产品经理,目标是希望理解AI的实现原理并且能够跟开发算法工程师沟通交流,请给我举出AI模型或者机器学习的分类吧。
以下是 AI 模型和机器学习的分类: 1. AI(人工智能):是一个广泛的概念,旨在使计算机系统能够模拟人类智能。 2. 机器学习:是人工智能的一个子领域,让计算机通过数据学习来提高性能。包括以下几种类型: 监督学习:使用有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:是机器学习的一个子领域,模拟人脑创建人工神经网络处理数据,包含多个处理层,在图像识别、语音识别和自然语言处理等任务中表现出色。 4. 大语言模型:是深度学习在自然语言处理领域的应用,目标是理解和生成人类语言,如 ChatGPT、文心一言等。同时具有生成式 AI 的特点,能够生成文本、图像、音频和视频等内容。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。生成式 AI 生成的内容称为 AIGC。
2025-03-26
AI应用分类
AI 的应用场景非常广泛,主要包括以下几类: 1. 医疗保健: 医学影像分析:用于分析医学图像辅助诊断疾病。 药物研发:加速药物研发过程,识别潜在药物候选物和设计新治疗方法。 个性化医疗:分析患者数据提供个性化治疗方案。 机器人辅助手术:控制手术机器人提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低金融机构风险。 信用评估:评估借款人信用风险,帮助做出贷款决策。 投资分析:分析市场数据辅助投资决策。 客户服务:提供 24/7 服务并回答常见问题。 3. 零售和电子商务: 产品推荐:分析客户数据推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业: 预测性维护:预测机器故障避免停机。 质量控制:检测产品缺陷提高质量。 供应链管理:优化供应链提高效率和降低成本。 机器人自动化:控制工业机器人提高生产效率。 5. 交通运输:(未给出具体应用场景) 此外,还有众多具体的 AI 应用产品,例如: 1. 辅助创作与学习:AI 智能写作助手、语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等。 2. 推荐与规划:AI 图像识别商品推荐、美食推荐平台、旅游行程规划器、时尚穿搭建议平台、智能投资顾问等。 3. 监控与预警:AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等。 4. 优化与管理:办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等。 5. 销售与交易:AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等。 具体如: AI 摄影参数调整助手:利用图像识别、数据分析技术,在一些摄影 APP 中根据场景自动调整摄影参数。 AI 音乐情感分析平台:通过机器学习、音频处理技术,有相关音乐情感分析软件可判断音乐的情感倾向。 AI 家居智能照明系统:结合物联网技术、机器学习,像小米智能照明系统可根据用户习惯和环境变化自动调整灯光。 AI 金融风险预警平台:运用数据分析、机器学习,金融风险预警软件能提前预警金融风险。 AI 旅游路线优化平台:借助数据分析、自然语言处理,马蜂窝可根据用户需求优化旅游路线。
2025-03-17
能画技术路线图的prompt
以下是关于能画技术路线图的 prompt 相关内容: Midjourney Bot 的 Prompt 类型: 基本 Prompts:可以只是一个单词、短语或表情符号。 高级 Prompts:包括一个或多个图片 URL、多个文本短语以及一个或多个参数。其中,图片 URL 始终位于 prompt 的最前面,以影响完成结果的风格和内容。提示文字是对希望生成的图像的文本描述,精心编写的提示有助于生成惊艳的图像。参数可以改变生成图片的方式,需放在提示语的末尾。 ComfyUI Flux 与 runway 制作绘画视频: 生成图片:提示词告诉 flux 生成一张技术草图,如 CAD。 绘制的视频:在 runway 里面,使用提示词从空白页面开始逐行创建,并把生成的图片作为尾帧。 草图上色:使用 flux 的 controlNet,depth 固定,目前 Union 版本不建议权重调太高,结束时间也需注意。 Prompt engineering(提示工程): 开发测试用例:定义任务和成功标准后,创建多样化的测试用例,包括典型示例和边界情况,以确保提示具有鲁棒性。 设计初步提示:制定初步提示,概述任务定义、良好响应的特征及必要上下文,添加规范输入和输出的示例供参考。 根据测试用例测试提示:使用初步提示将测试用例输入,评估模型响应与预期输出和成功标准的一致性,使用一致的评分标准进行系统性的性能评估。
2025-04-19
金融业相关AI应用场景或AI技术介绍
在金融业中,AI 有以下应用场景和技术: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,辅助投资者做出更明智的投资决策。 4. 客户服务:提供 24/7 的客户服务,回答客户常见问题。 例如,Hebbia 获得近 1 亿美元 B 轮融资,其 AI 技术能够一次处理多达数百万份文档,在短时间内浏览数十亿份包括 PDF、PowerPoint、电子表格和转录内容等,并返回具体答案,主要面向金融服务公司,如对冲基金和投资银行,同时也适用于律师事务所等其他专业领域。
2025-04-15
stable diffusion底层技术
Stable Diffusion 的底层技术主要来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach 之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型的文本到图像生成模型,其原理包括以下几个步骤: 1. 使用新颖的文本编码器(OpenCLIP),由 LAION 开发并得到 Stability AI 的支持,将文本输入转换为向量表示,以捕捉文本语义信息并与图像空间对齐。 2. 采用扩散模型,将随机噪声图像逐渐变换为目标图像。扩散模型是一种生成模型,能从训练数据中学习概率分布并采样新数据。 3. 在扩散过程中,利用文本向量和噪声图像作为条件输入,给出每一步变换的概率分布,根据文本指导噪声图像向目标图像收敛,并保持图像的清晰度和连贯性。 4. 使用超分辨率放大器(Upscaler Diffusion Model),将生成的低分辨率图像放大到更高分辨率,从低分辨率图像中恢复细节信息并增强图像质量。 此外,ComfyUI 的底层依赖 Stable Diffusion,去噪过程由 UNet 网络完成。UNet 是一种编码器解码器结构,能处理多尺度特征表示。在 ComfyUI 中,去噪的每个步骤通过模型推理模块实现,调用训练好的 UNet 模型逐步将噪声图像还原成有意义的图像。交叉注意力机制在 Stable Diffusion 中很重要,允许模型在生成过程中融入文本提示、图像、语义信息等条件,在 ComfyUI 中通过“文本提示”和“条件输入”节点实现。跳跃连接是 UNet 的核心部分,能在不同尺度之间共享特征,在 ComfyUI 的节点网络中表现为中间过程数据的流转。切换器代表在去噪过程中的不同阶段对特征流的控制,在 ComfyUI 中可通过修改模型参数节点或自定义网络结构节点对不同阶段的噪声去除策略进行微调。 Stable Diffusion 还具有以下优点: 1. 可以处理任意领域和主题的文本输入,并生成与之相符合的多样化和富有创意的图像。 2. 可以生成高达 2048x2048 或更高分辨率的图像,且保持良好的视觉效果和真实感。 它还可以进行深度引导和结构保留的图像转换和合成,例如根据输入图片推断出深度信息,并利用深度信息和文本条件生成新图片。
2025-04-15
学习AI怎么在工作中使用,提高工作效率,有必要从技术原理开始学习吗
学习 AI 在工作中使用以提高工作效率,不一定需要从技术原理开始学习。以下是一些相关的案例和建议: 案例一:GPT4VAct 是一个多模态 AI 助手,能够模拟人类通过鼠标和键盘进行网页浏览。其应用场景在于以后互联网项目产品的原型设计自动化生成,能使生成效果更符合用户使用习惯,同时优化广告位的出现位置、时机和频率。它基于 AI 学习模型,通过视觉理解技术识别网页元素,能执行点击和输入字符操作等,但目前存在一些功能尚未支持,如处理视觉信息程度有限、不支持输入特殊键码等。 案例二:对于教师来说,有专门的 AI 减负指南。例如“AI 基础工作坊用 AI 刷新你的工作流”,从理解以 GPT 为代表的 AI 工作原理开始,了解其优势短板,学习写好提示词以获得高质量内容,并基于一线教师工作场景分享优秀提示词与 AI 工具,帮助解决日常工作中的常见问题,提高工作效率。 建议:您可以根据自身工作的具体需求和特点,有针对性地选择学习方向。如果您只是想快速应用 AI 提高工作效率,可以先从了解常见的 AI 工具和应用场景入手,掌握基本的操作和提示词编写技巧。但如果您希望更深入地理解和优化 AI 在工作中的应用,了解技术原理会有一定帮助。
2025-04-15
AI相关的最前沿技术网站
以下是一些 AI 相关的前沿技术网站: 1. OpenAI:提供了诸如 GPT 等先进的语言模型和相关技术。 2. Google AI:涵盖了多种 AI 领域的研究成果和应用。 3. Microsoft Research:在 AI 方面有众多创新研究和技术展示。 此外,WaytoAGI 也是一个致力于人工智能学习的中文知识库和社区平台,汇集了上千个人工智能网站和工具,提供最新的 AI 工具、应用、智能体和行业资讯。在没有任何推广的情况下,WaytoAGI 两年时间已有超过 300 万用户和超千万次的访问量,其目标是让每个人的学习过程少走弯路,让更多的人因 AI 而强大。目前合作过的公司/产品包括阿里云、通义千问、淘宝、智谱、支付宝等。
2025-04-15
,当前AI数字人发展的新态势,以及新技术和成果
当前 AI 数字人的发展呈现出以下新态势,并取得了一系列新技术和成果: 数字人简介: 数字人是运用数字技术创造的,虽现阶段未达科幻作品中的高度智能,但已在生活多场景中出现且应用爆发。业界对其尚无准确定义,一般可按技术栈分为真人驱动和算法驱动两类。真人驱动的数字人重在通过动捕设备或视觉算法还原真人动作表情,主要用于影视和直播带货,其表现质量与建模精细度及动捕设备精密程度相关,不过视觉算法进步使在无昂贵动捕设备时也能通过摄像头捕捉关键点信息实现不错效果。 B 端变现与创业方向: B 端变现细分包括高频率和大规模的内容生产细分,如文字、视频、3D 模型、AI 智能体等,底层是需求和数据收集及训练模型,算力和能源是关键。自媒体创业需具备内容创新和差异化,内容成本低且更新迭代快。游戏创业可做轻量化游戏,结合 AI 技术满足放松和社交需求,专注垂类赛道避免与大厂竞争。影视创业在 25 年将是拐点,更多内容会采用 AI 技术。广告营销创业重点是 AI 虚拟人,数字插画可走治愈类型,要明确平台用户画像和产品定位,做好次留存和引入私域。 AI 虚拟人的发展与创业机遇: AI 虚拟人从早期以首位为核心的宅文化虚拟偶像,发展到以 CG 技术和动捕语音合成技术为核心的角色,再到如今以动捕和人工智能技术为核心的服务型虚拟人。虚拟人产业链包括基础层的硬件和软件研发,平台层如商汤、百度等提供工具和系统,应用层涉及影视、传媒、游戏、金融、文旅等内容变现。未来 3 10 年,AI 虚拟人是 Web 3.0 的风口,提前布局有潜力的赛道可迎接机遇,但创业对创业者综合能力要求极高。 未来展望: 数字人未来有很多应用场景,如家庭中的数字人管家、学校中的数字人老师、商场里的数字人导购等。未来还会有很多技术突破,如将五感数据和躯壳控制参数作为输入,次世代算法可自我迭代升级和自行演化躯壳控制方式。通过 Dify 搭建数字人的开源项目可展现低门槛高度定制数字人的基本思路,数字人的核心在于 Agent 即灵魂,如何在 Dify 上编排专属数字人灵魂值得体验。期望随着数字人的多模态能力接入、智能化水平升级、模型互动控制更精确,AI 既能提供高质量信息,也能关注用户情绪。
2025-04-14