Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI 搜索中用户查询理解

Answer

Perplexity AI 是一家专注于开发新一代 AI 搜索引擎的公司,由前 OpenAI 研究科学家 Aravind Srinivas 与前 Meta 研究科学家 Denis Yarats(Perplexity CTO)等合伙人于 2022 年 8 月共同创办。

其优势包括:

  1. 理解能力强,能够深入理解查询的语义,而非仅仅匹配关键词,从而提供更准确和相关的结果。
  2. 生成式回答,可生成通顺的自然语言回答,而非简单返回网页链接和片段,使结果更易于理解和使用。
  3. 个性化和上下文感知,能根据用户的历史查询和偏好个性化结果,提供更贴合需求的答复。

劣势有:

  1. 训练成本高,训练大型 LLM 模型需要大量计算资源和高质量训练数据。
  2. 可解释性差,LLM 的工作原理较为黑箱,难以解释为何给出某个结果,缺乏透明度。
  3. 潜在的偏差和不当内容,由于训练数据的局限性,LLM 可能产生偏见或不当内容。

独特之处在于将 LLM 技术应用于搜索引擎领域,试图颠覆传统基于关键词匹配的搜索范式,为用户提供更自然和智能的搜索体验,还融合了个性化和上下文感知等功能,努力成为新一代的“智能助手”。

总的来说,Perplexity 凭借 LLM 的强大语义理解能力,为搜索引擎带来了新的可能性,但也面临着一些技术和伦理挑战。

在搜索领域,推荐算法存在精确推荐提高用户黏性和平台广告收益的优点,但也有导致信息茧房和信息过载等负面影响。搜索引擎采用以用户查询为导向的“拉取式”信息获取模式,极大改变了人们获取信息的方式,搜索广告因用户搜索往往携带着明确意图,点击转化率通常高于泛泛的推荐广告,在数字广告市场中长期占据重要份额。

AI 智能体中的检索增强生成(RAG)是当今大多数现代人工智能应用程序的标准架构。以 Sana 的企业搜索用例为例,其过程始于应用程序加载和转换无结构文件,将其转换为 LLM 可查询格式,分块成更小的文本块并作为向量嵌入存储在数据库中。当用户提出问题时,系统检索语义上最相关的上下文块,折叠到“元提示”中与检索到的信息一起馈送给 LLM,LLM 合成答复返回给用户。在生产中,AI 应用程序具有更复杂的流程,包含多个检索步骤和提示链,将结果综合生成最终输出。例如 Eve 法律研究的共同驾驭员,会将查询分解为独立提示链,运行每个提示链生成中间输出,并综合编写最终备忘录。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:Perplexity AI 如何?

Perplexity AI是一家专注于开发新一代AI搜索引擎的公司,创立于2022年8月,由前OpenAI研究科学家Aravind Srinivas与前Meta研究科学家Denis Yarats(Perplexity CTO)等合伙人共同创办。它的搜索引擎采用了大型语言模型(LLM)技术,可以更好地理解和回答用户的自然语言查询。优势理解能力强:Perplexity的LLM模型能够深入理解查询的语义,而不仅仅是匹配关键词,从而提供更准确和相关的结果。生成式回答:它可以生成通顺的自然语言回答,而不是简单返回网页链接和片段。这使得结果更易于理解和使用。个性化和上下文感知:Perplexity可以根据用户的历史查询和偏好来个性化结果,提供更加贴合需求的答复。劣势训练成本高:训练大型LLM模型需要大量的计算资源和高质量的训练数据,成本可能较高。可解释性差:LLM的工作原理较为黑箱,很难解释为什么会给出某个结果,缺乏透明度。潜在的偏差和不当内容:由于训练数据的局限性,LLM可能会产生偏见或不当内容。独特之处Perplexity将LLM技术应用于搜索引擎领域,试图颠覆传统的基于关键词匹配的搜索范式,为用户提供更自然和智能的搜索体验。它还融合了个性化和上下文感知等功能,努力成为新一代的"智能助手"。总的来说,Perplexity凭借LLM的强大语义理解能力,为搜索引擎带来了新的可能性,但也面临着一些技术和伦理挑战。原问题:Perplexity AI如何?谁开发的?其优劣势是?有什么独特之处?

[趋势研究] Deep Research - 推荐算法落幕? 生成式AI时代的搜索复兴

大量研究关注推荐算法的有效性与影响,一方面,精确的推荐可以极大提高用户黏性和平台广告收益;另一方面,学者们也指出过度的信息茧房和信息过载可能对用户认知和社会舆论产生负面影响[arxiv.org](https://arxiv.org/abs/1403.6838#:~:text=,convention%20or%20a%20product%2C%20is)。Gomez等人的实证研究表明,社交媒体用户面对无尽的信息流时存在明显的信息处理极限,接收信息速度越快的活跃用户往往越容易陷入信息过载,需要重复多次曝光同一信息才能真正产生影响[arxiv.org](https://arxiv.org/abs/1403.6838#:~:text=,We%20show%20how)。这意味着在基于推荐的信息环境中,单条广告或内容对用户的作用可能被海量其他信息所稀释,需要更频繁的触达才能奏效。相比之下,搜索引擎采用的是以用户查询为导向的“拉取式”信息获取模式。经典的网页搜索引擎(如谷歌)通过用户输入的关键词,在庞大的网页索引中筛选匹配结果,并按照相关性排序后呈现给用户[techpolicy.press](https://techpolicy.press/whats-the-difference-between-search-and-recommendation#:~:text=Historically%2C%20there%20was%20perhaps%20more,%E2%80%9Crecommendation%E2%80%9D%20are%20included%20within%20a)。搜索算法的发展历史同样悠久,从早期基于关键词频率的检索,到Google提出的PageRank算法利用链接分析提升结果质量,搜索引擎极大改变了人们获取信息的方式。搜索广告作为商业模式也随之兴起:当用户搜索特定关键词时,展示相关的赞助商链接。由于搜索往往携带着明确的意图(如购买、咨询),搜索广告能够高效触达目标受众,其点击转化率通常高于泛泛的推荐广告。这使得搜索广告在数字广告市场中长期占据重要份额。

AI 智能体:企业自动化的新架构 - Menlo Ventures

设置基线:RAG是当今大多数现代人工智能应用程序的标准架构。让我们以Sana的企业搜索用例为例,了解它在幕后的工作原理。该过程始于应用程序加载和转换无结构文件(如PDF、幻灯片、文本文件)跨越企业数据孤岛,如Google Drive和Notion,转换为LLM可查询格式,通常通过像[Unstructured](https://menlovc.com/portfolio/unstructured/)*这样的数据预处理引擎进行。这些文件现在被"分块"成更小的文本块,以实现更精确的检索,并作为向量嵌入和存储在像[Pinecone](https://menlovc.com/portfolio/pinecone/)*这样的数据库中。当用户向AI应用程序提出问题时(例如,"总结我与公司X会议的所有笔记"),系统会检索语义上最相关的上下文块,并将其折叠到"元提示"中,与检索到的信息一起馈送给LLM。然后,LLM会从检索到的上下文中合成一个整洁的带有项目符号的答复返回给用户。当然,该图仅说明了一个带有一个LLM调用的单一检索步骤。在生产中,AI应用程序具有更复杂的应用程序流程,包含数十甚至数百个检索步骤。这些应用程序通常具有"提示链",其中一个检索步骤的输入馈送到下一步,并且不同类型的任务并行执行多个"提示链"。然后将结果综合在一起,以生成最终输出。[Eve](https://menlovc.com/portfolio/eve/)*法律研究的共同驾驭员,例如,可能会将针对《第七篇》的研究查询分解为专注于预定子主题的独立提示链,如雇主背景、就业历史、《第七篇》、相关案例法和原告案件支持证据。LLMs然后运行每个提示链,为每个生成中间输出,并综合各输出编写最终备忘录。

Others are asking
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
我需要一个直接能查询boss直聘信息的ai搜索工具
Coze 是一个提供丰富插件的平台,其中部分插件可能对您查询 boss 直聘信息有所帮助。Coze 提供的插件涵盖众多领域,包括搜索引擎、文本分析、图像识别等。其国内版本(https://www.coze.cn/store/plugin )中的一些插件具有实用功能,例如猎聘插件,可以帮助用户根据工作经验、教育经历、地理位置、薪水、职位名称、工作性质等条件搜索猎聘上提供的招聘信息。但需要注意的是,Coze 中可能没有直接针对 boss 直聘信息的查询插件。
2025-03-18
我想搭建自己的知识库,然后进行知识提取和查询辅助我进行办公和内容生成,请问有哪些工具好用?
以下是一些可用于搭建知识库并进行知识提取和查询以辅助办公和内容生成的工具: 1. ChatGPT:可以生成文章、故事、诗歌、歌词等内容,作为聊天机器人后端提供自然对话体验,用于问答系统、文本摘要、机器翻译、教育等,还能生成代码片段。相关网址:https://chat.openai.com/ 、https://bard.google.com/extensions 、https://claude.ai/ 。 2. ExoBrain 的集成软件:作为外脑的主要记忆空间,能捕获各种数字内容,挂接和导入外部记忆,快速理解内容,灵活创作笔记,生成创作建议,与外脑知识库对话并自动做外部检索完善答案。相关网址:https://hallid.ai/?ref=indigox.me ,关注获取最新信息。 3. 多维表格:用表格+AI进行信息整理、提效、打标签,满足 80%数据处理需求。相关文章: ,适用人群为 Excel 重度使用者、手动数据处理使用者、文件工作者。 4. Cursor:通过 AI 工具对编程祛魅,降低技术壁垒。相关文章: ,适用人群为 0 编程经验、觉得编程离我们很遥远的小白。 5. Suno:AI 赋能音乐创作,无需乐理知识即可参与音乐制作。相关文章: ,适用人群为 0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白。 6. 其他工具: PPT 生成: 。 音视频提取总结:https://bibigpt.co/r/AJ 。 播客总结:https://podwise.xyz/dashboard/trending 。 生成脑图:https://xmind.ai/editor/ 。 PDF 对话:演示 www.chatpdf.com 。
2025-03-05
从知识库中查询与:[DeepSeek] 相关的热门资讯信息
以下是与 DeepSeek 相关的热门资讯信息: 《DeepSeek 首次考虑外部融资!全文信息量很大》:DeepSeek 在短时间内崛起,其 V3 和 R1 模型有高效训练成本与强大推理能力,但因用户增长面临计算需求激增、芯片短缺和基础设施扩展挑战,首次考虑外部融资,包括阿里巴巴和中国主权财富基金在内的投资者有兴趣,若接受国家资本可能引发监管担忧,公司还在探索通过东南亚数据中心获取更多 Nvidia AI 芯片以绕开出口限制。 微博上热搜,主流媒体全报道了 DeepSeek 深度推理+联网搜索目前断档第一的情况,相关文章包括: 通往 AGI 之路:《关于 DeepSeek 的所有事情【知识库持续更新中】》 数字生命卡兹克:《DeepSeek 的提示词技巧,就是没有技巧。》 宝玉:《教你如何破解 DeepSeek R1 系统提示词》 橘子汽水铺:《中国开源,震撼世界:DeepSeek R1 的变革、启示与展望》《自学成才之路,DeepSeek R1 论文解读》 新智元:《史上首次,DeepSeek 登顶中美 AppStore!NYU 教授:全球「AI 霸权」之争已结束》 一支烟花 AI:《用流程图对比 DeepSeekR1,OpenAI O1,Claude 说明强化学习在 AI 大模型训练、推理的创新和意义》 腾讯科技:《一文读懂|DeepSeek 新模型大揭秘,为何它能震动全球 AI 圈》 张小珺腾讯科技:《一场关于 DeepSeek 的高质量闭门会:比技术更重要的是愿景》
2025-03-02
从知识库中查询与:DeepSeek相关的热门资讯信息
以下是关于 DeepSeek 的热门资讯信息: 媒体报道和网络文章方面: 通往 AGI 之路:关于 DeepSeek 的所有事情【知识库持续更新中】,链接:https://mp.weixin.qq.com/s/n0WrrJL0fVX6zLeTBWpZXA 数字生命卡兹克:DeepSeek 的提示词技巧,就是没有技巧。链接:https://zhuanlan.zhihu.com/p/20544736305 (错误) 宝玉:教你如何破解 DeepSeek R1 系统提示词,类型为提示词破解,链接:https://mp.weixin.qq.com/s/vAp2wI5ozTw7R6jreLMw 橘子汽水铺:中国开源,震撼世界:DeepSeek R1 的变革、启示与展望,类型为基础认知,链接:https://mp.weixin.qq.com/s/yGUgehbxKisVaHlOkxhuaw 橘子汽水铺:自学成才之路,DeepSeek R1 论文解读,类型为基础认知,链接:https://mp.weixin.qq.com/s/gmdHyh6fsUdj1JhM1sV9bg 新智元:史上首次,DeepSeek 登顶中美 AppStore!NYU 教授:全球「AI 霸权」之争已结束,类型为基础认知,链接:https://mp.weixin.qq.com/s/ybvV8RMX0yyS5YfG1qNWgg 一支烟花 AI:用流程图对比 DeepSeekR1,OpenAI O1,Claude 说明强化学习在 AI 大模型训练、推理的创新和意义,类型为基础认知,链接:https://mp.weixin.qq.com/s/mdGtOcg1RuQOEBn31KhxQ 腾讯科技:一文读懂|DeepSeek 新模型大揭秘,为何它能震动全球 AI 圈,类型为基础认知,链接:https://mp.weixin.qq.com/s/cp4rQx09wygE9uHBadI7RA 张小珺腾讯科技:一场关于 DeepSeek 的高质量闭门会:比技术更重要的是愿景,类型为进阶思考,链接:https://mp.weixin.qq.com/s/a7C5NjHbMGh2CLYk1bhfYw 全新 AI 整活计划方面: DeepSeek 模型热度很高,微信指数达 10 亿多次,引发大众关注。 元子使用 Monica 时发现电脑版双击能显示思考过程,且注意不能直接换 agent,否则可能会干掉搜索功能。 财猫曾为相关平台做 AI 顾问,设计整套提示词,写小说等,其公众号因相关内容被封 15 天,19 号恢复。 旧模型有过度道德说教和正面描述趋势,DeepSeek 模型能力强,在文学创作上更出色,能给予更多自由发挥空间。 好的文字能引起生理共鸣和情绪,AI 可写出好文字,大语言模型预训练数据丰富,能引发人类共鸣和情绪。 Deepseek 模型的文风显著,文笔优秀,能触达情感,有哲学思考,在写作方面表现出色,如写小说、写诗、写骈文等。 Deepseek 模型喜欢使用大词,文风欢脱,有独特的语言风格,易于辨别。 Deepseek 模型有极强的发散能力,但较难收敛,有时会出现幻觉,但从创作角度看有利。
2025-02-28
我的工作需要根据元数据表在本地查询大量数据,并把匹配的数据参数复制到元数据表,有没有智能体可以做这个工作
智能体可以帮助您完成根据元数据表在本地查询大量数据,并把匹配的数据参数复制到元数据表的工作。 智能体可以根据其复杂性和功能分为以下几种类型: 1. 简单反应型智能体:根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。例如温控器,它根据温度传感器的输入直接打开或关闭加热器。 2. 基于模型的智能体:维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并根据推理结果采取行动。比如自动驾驶汽车,它不仅感知当前环境,还维护和更新周围环境的模型。 3. 目标导向型智能体:除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。例如机器人导航系统,它有明确的目的地,并计划路线以避免障碍。 4. 效用型智能体:不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。比如金融交易智能体,根据不同市场条件选择最优的交易策略。 5. 学习型智能体:能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体,通过与环境互动不断学习最优策略。 在实际应用中,多智能体 AI 搜索引擎的方案如下: 1. 第一步,快速搜索补充参考信息:根据用户的任务,使用搜索工具补充更多的信息,例如使用工具 API WebSearchPro。 2. 第二步,用模型规划和分解子任务:使用大模型把用户问题拆分成若干子搜索任务,并转换为 JSON 格式。 3. 第三步,用搜索智能体完成子任务:AI 搜索智能体具备联网搜索的能力,还能够自主分析并进行多轮搜索任务。 4. 第四步,总结子任务生成思维导图:智能体能调用各种插件,如思维导图、流程图、PPT 工具等。 此外,生物医药小助手智能体是由 1 个工作流和 6 个数据库实现的。工作流相对简单,而数据库包括公众号文章、执业药师教材、执业医师讲义、药监局新药审评报告、中国医药企业融资动态、药物对外授权动态、全球药物销售额等。在医疗领域,为保证回答的准确性,提示词约定回答只能来自于知识库。其商业化场景包括医药企业研发立项、科研机构临床转化评估、投资机构评估标的公司等。
2025-02-07
AI智能数据库查询助手
以下是关于您提出的“AI 智能数据库查询助手”的相关信息: 能联网检索的 AI: 存在能联网检索的 AI,它们通过连接互联网实时搜索、筛选并整合所需数据,为用户提供更精准和个性化的信息。例如: ChatGPT Plus 用户现在可以开启 web browsing 功能,实现联网功能。 Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型。 Bing Copilot 作为 AI 助手,旨在简化您的在线查询和浏览活动。 还有如 You.com 和 Neeva AI 等搜索引擎,提供基于人工智能的定制搜索体验,并保持用户数据的私密性。 AI 新产品|网站精选推荐: AIHelperBot 自动生成 SQL Queries,支持数据库一键链接或导入。当前收费$5 每月,可免费试用 7 天。链接:https://skybox.blockadelabs.com/ ChartGPT by CadLabs 由 CadLabs 开发工具,基于 GPT3.5,可以根据数据生成图表并回答问题。链接:https://chartgpt.cadlabs.org/ Embedding Store 功能如其名,是一站式 Embedding Marketplace,支持公开、私有及第三方数据,用于发现、评估和访问相关的嵌入(embeddings),产品还未上线。链接:https://www.embedding.store/ AI 在医疗药品零售领域的应用: AI 在医疗药品零售领域有着多方面的应用前景: 药品推荐系统:利用机器学习算法分析用户购买记录、症状描述等数据,为用户推荐合适的非处方药品和保健品,提升销售转化率。 药品库存管理:通过分析历史销售数据、天气、疫情等因素,AI 系统可以预测未来某段时间内的药品需求量,优化药店的库存管理策略,降低成本。 药品识别与查询:借助计算机视觉技术,用户可以用手机拍摄药品图像,AI 系统自动识别药名并提供说明、用法、禁忌等信息查询服务。 客户服务智能助手:基于自然语言处理技术,AI 虚拟助手可以回答顾客关于购药、用药、保健等常见问题,减轻人工客服的工作压力。 药店运营分析:AI 可以分析药店的销售、顾客流量、库存等大数据,发现潜在的运营问题和优化空间,为决策提供参考。 药品质量监控:通过机器视觉、图像识别等技术,AI 能够自动检测药品的包装、标签、颜色等是否合格,及时发现问题。 药品防伪追溯:利用区块链等技术,AI 可以实现全流程的药品溯源,确保药品供应链的安全性和真实可信度。 总之,AI 技术在药品零售领域可以提升购药体验、优化库存管理、降低运营成本、保障药品质量安全,是一个值得重视的发展方向。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-07
我想做一个,基于我个人知识库的chatbot,以供我随时搜索和提问,且优先搜索知识库内的内容而非联网搜索,你有什么建议吗?
以下是为您提供的关于创建基于个人知识库的 chatbot 的建议: 1. 选择合适的平台和工具:例如可以考虑使用飞书智能伙伴创建平台(Aily)或扣子(https://www.coze.cn/home)等。 2. 数据分段储存:由于大模型的上下文长度有限制,需要将上传的资料根据特定符号或字符长度进行分段,如将 8000 字文档按每 800 字分成一个片段储存。 3. 增强检索:当用户输入问题,大模型会根据相似度检索出若干最相关的数据片段,再据此生成答案,这一技术称为 RAG(检索增强生成)。 4. 配置知识库: 在 Bot 内使用知识库: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,如最大召回数量、最小匹配度、调用方式等。 在工作流内使用 Knowledge 节点: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。 5. 注意使用限制:单用户最多创建 1000 个知识库,文本类型知识库下最多支持添加 100 个文档,单用户每月最多新增 2GB 数据,累计上限是 10GB。 此外,知识库可以解决大模型幻觉、专业领域知识不足的问题,提升大模型回复的准确率。您可以将知识库直接与 Bot 进行关联用于响应用户回复,也可以在工作流中添加知识库节点,成为工作流中的一环。
2025-04-14
DeepSeek,里面搜索怎么能出来图片?
要在 DeepSeek 中搜索出图片,您可以参考以下信息: 在即梦 AI 平台上找到 DeepSeek 入口,简单描述您想要的画面,DeepSeek 会生成详细的提示词,将提示词复制到生图功能的输入框,选择 3.0 模型,点击生成。 DeepSeek 使用平台包括 DeepSeek 官网、API(V3 需要为 0324 更新的版本,DS 官网及 API 已更新,如调用其它平台 API 需要查看 DS 版本号)。Deepseek 需要复制代码到 html 文件里,然后保存进行查看。 将下载的 html 文件及图片放到同一个文件夹,让 Cursor 进行图片增加即可。 此外,DeepSeek 深夜发布了大一统模型 JanusPro,将图像理解和生成统一在一个模型中。其具有统一 Transformer 架构,提供 1B 和 7B 两种规模,全面开源,支持商用,MIT 协议,部署使用便捷,Benchmark 表现优异等特点。模型地址: 模型(7B):https://huggingface.co/deepseekai/JanusPro7B 模型(1B):https://huggingface.co/deepseekai/JanusPro1B 下载地址:https://github.com/deepseekai/Janus
2025-04-09
ai搜索引擎哪个好
以下是一些推荐的 AI 搜索引擎: 1. 秘塔 AI 搜索:由秘塔科技开发,具有多模式搜索、无广告干扰、结构化展示和信息聚合等功能,能提升用户搜索效率和体验。 2. Perplexity:聊天机器人式搜索引擎,允许用自然语言提问,通过生成式 AI 技术从各种来源收集信息并给出答案。 3. 360AI 搜索:360 公司推出,通过 AI 分析问题,生成清晰有理的答案,支持增强模式和智能排序。 4. 天工 AI 搜索:昆仑万维推出,采用生成式搜索技术,支持自然语言交互和深度追问,未来将支持图像、语音等多模态搜索。 5. Flowith:创新的 AI 交互式搜索和对话工具,基于节点式交互方式,支持多种 AI 模型和图像生成技术,有插件系统和社区功能。 6. Devv:面向程序员的 AI 搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。 7. Phind:专为开发者设计,利用大型语言模型提供相关搜索结果和动态答案,擅长处理编程和技术问题。 做好 AI 搜索引擎的关键在于: 1. 准确度:取决于问答底座模型的智能程度和挂载上下文的信息密度。要选用智能的问答底座模型,并对 RAG 的检索结果进行排序去重以保证信息密度。 2. 差异化创新:错位竞争,如对问答结果以 outline/timeline 等形式输出,支持多模态搜索问答,允许挂载自定义信息源等策略。 3. 具备“准/快/稳”的特点:回复结果要准,响应速度要快,服务稳定性要高。 在使用 AI 搜索引擎时需注意: 1. 幻觉风险较高,大多数 AI 搜索引擎未连接到互联网。 2. 必应通常是较好的选择,特别是在某些特定场景下,如技术支持、决定吃饭地点或获取建议等,必应可能比谷歌更好。但这是一个迅速发展的领域,使用时应小心。对于儿童,可汗学院的 Khanmigo 提供由 GPT4 驱动的良好的人工智能驱动辅导。
2025-04-09
我们是搜索团队的产品经理,团队定位倾向于“对于插件的建设与调用”定位,现在要做AI相关的产品规划,请以通俗易懂的方式对以下问题做出回答 1、请通过流程图的方式,介绍【插件/工具】能力在大模型生态架构中的环节、定位、实现流程是什么 2、调研下对于我们搜索团队而言,插件应该做什么,可以做什么 3、思考对于大模型来说,有哪些(通用或垂类)的模块/功能/插件是无法绕开的,或高频使用的,作为我们团队后续争取的发力点(如搜索推荐对于传统综合搜索结果页)
以下是为您提供的关于 AI 相关产品规划的回答: 一、插件/工具能力在大模型生态架构中的环节、定位、实现流程 从 2023 年 3 月份 OpenAI 宣布插件计划开始,到 5 月份上线,其中包括联网、代码、画图三个插件。其实现流程大致为: 1. 经过对模型的微调,检测何时需要调用函数(取决于用户的输入)。 2. 使用符合函数签名的 JSON 进行响应。 3. 在接口层面声明可调用的工具。 4. 使用函数和用户输入调用模型。 5. 使用模型响应调用 API。 6. 将响应发送回模型进行汇总。 二、对于搜索团队,插件可以做和应该做的事 目前没有直接针对搜索团队插件具体可做和应做事项的明确内容,但可以参考 OpenAI 的插件计划,例如开发与搜索相关的特定功能插件,或者探索如何将现有的搜索推荐功能与大模型更好地结合。 三、对于大模型无法绕开或高频使用的模块/功能/插件 目前没有直接指出对于大模型无法绕开或高频使用的具体模块、功能或插件。但从相关信息中可以推测,例如与数据获取和处理相关的插件(如联网)、与技术开发相关的插件(如代码)以及与内容生成相关的插件(如画图)可能是较为重要和高频使用的。对于搜索团队来说,可以考虑在这些方向上寻找发力点,结合搜索推荐等传统功能,开发出更具竞争力的插件。
2025-04-08
小白不懂MCP,请搜索waytoAGI中与智能体相关的内容(特别是视频形式的)让我来学习
以下是为您整理的关于 MCP 的相关内容: 一、什么是 MCP MCP(Model Context Protocol)是一种通用的方式,向各类大语言模型提供数据源和工具。它是一个开放协议,用于标准化应用程序向大语言模型提供上下文的方式。可以将 MCP 想象成 AI 应用程序的 USBC 接口,为 AI 模型连接不同的数据源和工具提供了标准化方式。 二、相关文章的写作目的和探讨内容 1. 作者因在 WaytoAGI 社区阅读了他人优秀文章,决定逼自己做输出,对自我学习进行总结。 2. 文章从作者自身疑问出发,通过动手实践的方式探索:利用自然语言交互,大模型为什么会调用 MCP 工具;大模型调用 MCP 工具,从客户端到服务端发生了什么;安装了类似 MCP 工具,大模型如何选择用哪一个。 三、MCP 和 AI 工具的未来 自 OpenAI 发布函数调用以来,思考解锁智能体和工具使用生态系统所需条件。MCP 于 2024 年 11 月推出,在开发者和 AI 社区中已获广泛关注,被视为潜在解决方案。探讨了其如何改变 AI 与工具的交互方式、开发人员的使用情况及仍需解决的挑战。 四、MCP 小白图文使用教程 MCP 服务器有三大核心功能: 1. 资源:是服务器提供给 AI 的数据内容,如文件、数据库结构或特定信息,每个资源通过唯一 URI 标识。 2. 工具:允许 AI 模型执行特定操作,如查询数据库、调用 API 或执行计算,每个工具由名称和描述其模式的元数据唯一标识。 3. 提示:提供结构化消息和指令,用于与语言模型交互,客户端可以发现可用提示、检索其内容并提供参数进行自定义。 希望以上内容对您有所帮助。
2025-04-08
如何搜索知识库
以下是关于知识库搜索的相关信息: 知识库搜索网址:https://search.atomecho.cn/ Coze 中工作流配置知识库: 添加知识库:可同时添加多个知识库。 参数设置: 搜索策略:包括语义检索(像人类一样理解词与词、句与句之间的关系,适用于需要理解语义关联度和跨语言查询的场景)、全文检索(基于关键词进行,适用于特定名称、专有名词、术语、缩写词、ID 等场景)、混合检索(结合全文检索和语义检索的优势,并对结果进行综合排序召回相关内容片段)。 最大召回数量:选择从检索结果中返回给大模型使用的内容片段数量,数值越大,返回的越多。 最小匹配度:根据设置的匹配度选取要返回给大模型的内容片段,低于设定匹配度的内容不会被返回。 提示:最大召回数量和最小匹配度直接影响输出效果,需进行协调的多轮测试找出最优值。 认识大模型 Embedding 技术加实战中: Embedding 增强 GPT 的能力的过程包括搜索内部知识库检索相关文本、将检索到的文本内容部分发送给 GPT 大模型并向其提出问题。 具体操作步骤: 准备搜索数据(仅一次):搜集数据、切块、嵌入、存储(对于大型数据集的 Embedding 结果,可使用向量数据库保存)。 搜索(每次查询一次):给定用户问题,从 OpenAI API 生成查询的 embeddings,使用 embeddings 按照与查询相关性对文本部分进行排序,距离函数推荐使用余弦相似性。 提问(每次查询一次):将问题和最相关的部分插入到发送给 GPT 的消息中返回 GPT 的答案。 Embedding 的作用:搜索(结果按与查询字符串的相关性进行排名)、聚类(文本字符串按相似性分组)、建议(建议包含相关文本字符串的项目)、异常检测(识别出相关性很小的离群值)、多样性测量(分析相似性分布)、分类(文本字符串按其最相似的标签分类)。
2025-04-08
目前有哪些AI可以支持对用户上传的视频进行理解分析?
目前以下 AI 可以支持对用户上传的视频进行理解分析: 1. Gemini 2.0 Flash Thinking:是解析视频的不错选择,可在 AIStudio(访问 aistudio.google.com,需海外 IP)上传视频进行解析。 2. MiniMax 视频模型:能准确识别用户上传的图片,生成的视频在形象保持、光影色调、指令响应、表情呈现等方面表现出色,还支持 2000 字提示词以更精准调控。 3. 百炼大模型平台:应用广场里的影视传媒视频理解能力可对视频进行语音转写、视觉语言分析等处理并总结成文,有清晰使用步骤,还能根据偏好调试提示词。
2025-04-09
excel表格导出的用户的对话记录,来进行自定义标签并打标,有哪些好用的现成方案或者工具
目前在 Excel 表格导出的用户对话记录进行自定义标签并打标方面,以下是一些常见且好用的工具和方案: 1. Microsoft Excel 本身:可以利用其数据筛选、排序和函数功能来辅助标签和打标。 2. Google Sheets:具有类似 Excel 的功能,且在线协作方便。 3. R 语言:通过编程实现复杂的数据分析和标签处理。 4. Python 及相关库,如 Pandas:能够灵活处理数据和进行标签操作。 但具体选择哪种方案或工具,取决于您的具体需求、技术水平和使用习惯。
2025-04-07
如果面试AI产品经理岗位,我的简历应该如何介绍对应的AI项目?目前我在做的是一个AI深度解读的功能,用户通过报告页面进行深度解读,进入后触发AI与用户的沟通,根据沟通信息,将用户的一些情况写在病历信息中,最终发给医生
以下是为您提供的一些参考,帮助您在面试 AI 产品经理岗位时介绍对应的 AI 项目: 在您所做的 AI 深度解读功能项目中,可以从以下几个方面进行介绍: 项目背景:阐述开展该项目的原因和目标,例如为了提升医疗服务的效率和准确性,满足用户对深度医疗解读的需求等。 项目职责:详细说明您在项目中的具体职责,如需求分析、产品规划、与开发团队协作、与用户沟通获取反馈等。 技术实现:描述项目中所运用的关键技术,如触发 AI 与用户沟通的机制、如何将用户信息写入病历等。 用户体验优化:提及为提升用户体验所采取的措施,比如优化报告页面的设计、提高 AI 沟通的自然度和准确性等。 成果与效益:展示项目取得的成果,如提高了医生的诊断效率、提升了用户满意度等。 此外,您还可以参考以下其他相关人员的项目经验: 秦超作为 AI 2C 项目负责人,在产品落地服务方面具有丰富的经验,包括产品、技术架构以及项目管理等。 Cici?在 AI 算法开发领域,将宠物与 AI 结合,具备 AI 产品研发和创业经验。 11 鸭鸭呀作为产品经理,在智能写作产品方面有 Prompt 撰写和 AI 应用的经验。 枫 share 作为产品经理,熟悉 ChatGPT,写过 prompt,使用过多种 AI 创作工具,并正在寻找 AI 方向的产品岗位。 行远作为产品经理,熟悉 prompt,部署过多种绘图项目,使用过多款 AI 创作工具,期待学习和实战案例应用。 希望以上内容对您有所帮助,祝您面试成功!
2025-04-01
罗列具体的AI模型产品和具体的AI技术创新点,并总结AI技术的发展趋势,并说明这些发展趋势为用户的交互体验带来了什么样的改变?按照时间线将以上内容梳理出来
以下是按照您的需求梳理的内容: 时间线 早期: 从图灵测试、早期的图灵机器人和 ELISA 开始,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统。 近年来: OpenAI 发布 ChatGPT 模型,引发用户习惯从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 大模型创新方面,架构优化加速涌现,融合迭代成为趋势。Scaling Law 泛化,推理能力成为关键,倒逼计算和数据变革。AGI 探索中,视频生成点燃世界模型,空间智能统一虚拟和现实。 在应用方面,AI 在文科白领的个人助理、呼叫中心、文本处理和教育等领域表现出色,能完成 80%到 90%的工作;对于工科白领,特别是程序员,能简化代码检索和调整;在蓝领领域,自动驾驶取得显著进展。但在复杂任务方面仍有改进空间。 第一轮洗牌结束,聚焦 20 赛道 5 大场景,多领域竞速中运营大于技术,AI 助手成为竞争重点。AI+X 赋能类产品发展迅速,原生 AI 爆款难求。多模态上马,Agent 席卷一切,高度个性化呼之欲出。 人工智能发展经历了萌芽、积累沉淀到如今大模型和多模态模型百花齐放的阶段。大模型由数据、算法、算力构成,算法有技术架构的迭代,如英伟达的显卡辅助模型训练,数据质量对生成理想的大模型至关重要。 未来: 李沐预测技术发展可能催生出革命性的应用形态,但 AI 离真正变革世界还有一段距离。 预计 AI 在蓝领工作的初步应用至少需要 5 年时间。 AI 技术创新点: 大模型创新:架构优化加速涌现,融合迭代大势所趋。 Scaling Law 泛化:推理能力成皇冠明珠,倒逼计算和数据变革。 AGI 探索:视频生成点燃世界模型,空间智能统⼀虚拟和现实。 AI 技术的发展趋势: 模型架构不断优化和融合。 更加注重推理能力的提升。 探索 AGI 领域,实现虚拟和现实的统一。 应用格局不断洗牌,聚焦特定赛道和场景。 多模态和 Agent 技术的广泛应用。 对用户交互体验的改变: 用户习惯从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 AI 应用为用户提供辅助,在多个领域帮助完成任务。
2025-03-31
AI技术发展时间线,罗列具体的AI模型产品和具体的AI技术创新点,并总结AI技术的发展趋势,并说明这些发展趋势为用户的交互体验带来了什么样的改变?
以下是关于 AI 技术发展的相关内容: AI 技术发展时间线: 从图灵测试、早期的图灵机器人和 ELISA,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统,再到 OpenAI 发布 ChatGPT 模型,经历了萌芽、积累沉淀到如今大模型和多模态模型百花齐放的阶段。 具体的 AI 模型产品: ChatGPT 改变了用户习惯,从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 具体的 AI 技术创新点: 大模型创新方面,架构优化加速涌现,融合迭代成为趋势。 Scaling Law 泛化,推理能力成为皇冠明珠,倒逼计算和数据变革。 AGI 探索中,视频生成点燃世界模型,空间智能统一虚拟和现实。 AI 技术的发展趋势: 大模型创新:架构优化加速涌现,融合迭代大势所趋。 应用格局:第一轮洗牌结束,聚焦 20 赛道 5 大场景。 应用竞争:多领域竞速运营大于技术,AI 助手兵家必争。 应用增长:AI+X 赋能类产品大干快上,原生 AI 爆款难求。 产品趋势:多模态上马,Agent 席卷一切,高度个性化呼之欲出。 智变千行百业:左手变革生产力,右手重塑行业生态。 行业渗透率:数据基础决定初速度,用户需求成为加速度。 创投:投融资马太效应明显,国家队出手频率提升。 对用户交互体验的改变: ChatGPT 使用户从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 在文科白领方面,AI 能完成 80%到 90%的工作,如个人助理、呼叫中心、文本处理和教育等领域。 对于工科白领,特别是程序员,AI 能简化代码检索和调整。 在蓝领领域,AI 在自动驾驶方面取得显著进展。
2025-03-31
如何生成一个根据用户输入的需求推荐旅游地点的智能体
要生成一个根据用户输入的需求推荐旅游地点的智能体,可以参考以下几种方式: 小众打卡地智能体: 基本信息:名称为“小众打卡地”,链接为 https://tbox.alipay.com/pro/share/202412APCyNn00194489?platform=WebService 。 核心价值:为用户发掘非大众化的特色景点,避开人流;提供个性化的旅行建议,并有目的地的图片参考;帮助用户快速获取高质量的旅行参考信息;提供小红书文案,也适合发小红书。 搭建思路重点:录入小红书的相关文案参考知识库;通过文本模型组成搜索词进行搜索,从搜索到的所有网页链接中,通过代码节点提取相关的 url,滤除需要安全认证的网站,挑选非周边城市攻略推荐,尽量检查“小众”或“冷门”;通过 url 网页正文提取相关的小众地点输出,同时通过代码进行打卡点的字符串输出用于后续节点运用;根据需要搜索的小众旅行地进行图片搜索,随机提取一条图片的 url,过滤部分失效的网站;最后的文案输出适合小红书文案和旅行发布参考。 旅行青蛙智能体: 搭建过程开源: 意图分支 1(随机旅行):根据用户的坐标和触发事件,推荐当季适合的旅行景点。可以用大模型实现这一功能(小白适用),也可以用代码或者知识库的方式进行随机抽取。为了让大模型每次输出的地点尽量不同,可以拉高多样性的值。 大模型节点(旅行日记):设定字数、风格,入参是触发事件和上一个大模型输出节点的结果。 大模型节点(为你写诗):添加输入项。 大模型节点(文生图提示词):这个节点是固定前缀提示词,再根据地点和季节进行其它信息的补充。添加输入项。 城市探险家智能体: 智能体功能实现: 基础功能模块: 城市信息库:包括城市基础信息(地理位置、人口、气候等)、文化特色(历史传统、本地习俗、节日活动)、旅游资源(景点、美食、住宿、交通)、实用信息(最佳旅行季节、注意事项、消费水平)。 积分系统:完成探索后获取探索点数,获取方式包括主要景点探索、美食品鉴、文化体验、历史探索、交通探索、隐藏景点发现。 称号系统:等级划分有旅途新手(0 点)、城市漫游者(20 点)、文化探索者(50 点)、环球冒险家(100 点)、旅行大师(200 点)。 推荐系统:基于用户历史分析用户已探索城市类型;根据当前季节推荐适合城市;根据用户兴趣推荐主题路线;结合用户偏好进行个性化定制推荐。 交互功能实现:对话流程包括用户输入城市名称、智能体分析城市类型、生成个性化城市介绍、计算并更新探索点数、检查称号解锁、推荐相关城市。 完整 prompt:先定义好各子系统的规则;在对话流程中调用子系统;测试 prompt 效果,迭代 prompt;调试到理想的输出效果后,开始固定输出模板(在 prompt 内加入输出模板示例);继续测试,直至稳定。
2025-03-31