Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如果喂给模型的数据样本量太少怎么办?

Answer

当喂给模型的数据样本量太少时,可以考虑以下方法:

  1. 利用零样本提示:如今经过大量数据训练并调整指令的 LLM 能够执行零样本任务。指令调整已被证明可以改善零样本学习,如 Wei 等人(2022)所指出。此外,RLHF(来自人类反馈的强化学习)已被采用以扩展指令调整,推动了像 ChatGPT 这样的模型。当零样本不起作用时,建议在提示中提供演示或示例,这就引出了少样本提示。
  2. 采用少样本提示:在机器学习和人工智能领域中,少样本提示是指当只有很少数量的标记样本可用于训练模型时,通过巧妙设计任务描述、提供相关背景知识或利用预训练模型等方法,引导模型在有限样本条件下更好地理解和解决任务。少样本提示对格式有很好的限定和约束作用,但推理问题响应稳定性差。
    • 细节的格式限定:
      • 字数限制:限制 ChatGPT 输出的文本长度,以避免输出过长或不合适的回复。可以设置最大字符数或最大字数来控制输出长度。
      • 形式限定:限定输出内容的形式,比如回复领导邮件、工作周报等形式。
      • 细节限制:对文本的格式进行优化,如标题使用斜体、语料使用引用格式、供给读者使用的文字使用代码格式、数据对比使用表格展示、流程化步骤使用流程表格式等。

需要注意的是,这些方法虽然能在一定程度上缓解样本量少的问题,但对于推理、计算等问题,可能需要进一步使用其他方法。

Content generated by AI large model, please carefully verify (powered by aily)

References

零样本提示

如今,经过大量数据训练并调整指令的LLM能够执行零样本任务。我们在前一节中尝试了一些零样本示例。以下是我们使用的一个示例:提示:输出:请注意,在上面的提示中,我们没有向模型提供任何示例——这就是零样本能力的作用。指令调整已被证明可以改善零样本学习[Wei等人(2022)(opens in a new tab)](https://arxiv.org/pdf/2109.01652.pdf)。指令调整本质上是在通过指令描述的数据集上微调模型的概念。此外,[RLHF(opens in a new tab)](https://arxiv.org/abs/1706.03741)(来自人类反馈的强化学习)已被采用以扩展指令调整,其中模型被调整以更好地适应人类偏好。这一最新发展推动了像ChatGPT这样的模型。我们将在接下来的章节中讨论所有这些方法和方法。当零样本不起作用时,建议在提示中提供演示或示例,这就引出了少样本提示。在下一节中,我们将演示少样本提示。

目录:OpenAI 官方指南

提供适用于所有示例的一般性指示通常比通过示例演示任务的所有排列更有效,但在某些情况下,提供示例可能更容易。例如,如果你希望模型复制一种特定的响应用户查询的风格,这种风格难以明确描述。这被称为“少样本”提示。|系统|以一致的风格回答。||-|-||用户|教我关于耐心。||助手|开辟最深山谷的河流从温和的泉水流出;最伟大的交响乐源于一个音符;最复杂的挂毯始于一根单独的线。||用户|教我认识海洋。|[heading3]战术:指定输出的所需长度[content]你可以要求模型产生给定目标长度的输出。目标输出长度可以用词数、句子数、段落数、项目符号点数等来指定。然而请注意,指导模型生成特定数量的单词的效果并不精确。模型能更可靠地生成具有特定数量的段落或项目符号点的输出。|用户|用大约50个单词总结由三重引号分隔的文本。"""在此插入文本"""||-|-||用户|在2个段落中总结由三重引号分隔的文本。"""在此插入文本"""||用户|在3个要点中总结由三重引号分隔的文本。"""在此插入文本"""|

子瞻:Prompt框架

是指在机器学习和人工智能领域中,当我们只有很少数量的标记样本可用于训练模型时,通过巧妙设计任务描述、提供相关背景知识或利用预训练模型等方法,引导模型在有限样本条件下更好地理解和解决任务的技术和策略。虽然不是专门用于固定格式的,但是对格式有很好的限定和约束作用!在[提示工程指南](https://www.promptingguide.ai/zh/techniques/fewshot)中这篇文章中提到:但是也存在一定的缺陷,推理问题响应稳定性差!结论:由此可以看出,少样本提示对于格式限定非常有帮助,能够提高输出格式的稳定性!但是对于推理、计算等问题,需要进一步的使用其他方法。细节的格式限定:字数限制:限制ChatGPT输出的文本长度,以避免输出过长或不合适的回复。可以设置最大字符数或最大字数来控制输出长度。在各种文案、博客、文章等中常用到,比如:输出内容在XX字数内。形式限定:限定输出内容的形式,比如,请给我以回复领导邮件的形式输出,请给我工作周报的形式输出等等,这里一般会和任务的要求有一定的重叠,可以省略,也可以着重强调以增强格式输出的稳定性!细节限制:比如,我希望给出的文章的标题使用斜体;对于我投喂的语料的使用,使用引用格式;对于一些供给读者使用的文字,使用代码格式;对于一些数据对比,使用表格展示;对于一些流程化的步骤,使用流程表的格式(这里可以搭配GPT4的插件)。这样的格式优化可以使文本更加清晰易读,并且在视觉上更具结构性。

Others are asking
我是一个AI Agent初学者,现在我想要捏一款Agent,目的是喂给Agent固定材料之后对其做提问,让Agent学习完我的材料之后,在不联网的情况下对我问出的问题做出贴切材料的回答,现在请你告诉我如何操作
以下是捏制一个满足您需求的 AI Agent 的操作步骤: 1. 规划: 制定任务的关键方法,总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施: 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 AI Agent 相关概念: AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 Router:可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 常见的 AI Agent 类型包括: Responser Agent:主 agent,用于回复用户(伪多模态)。 Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 Background Agent 每隔一段时间运行一次(默认 3 分钟),分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。
2025-03-23
我是一个AI Agent初学者,现在我想要捏一款Agent,目的是喂给Agent固定材料之后对其做提问,让Agent学习完我的材料之后,在不联网的情况下对我问出的问题做出贴切材料的回答
以下是为您提供的关于捏制 AI Agent 的相关知识: 一、手捏 AI Agent 的思路 在 Coze 中创建工作流驱动的 AI Agent,简单情况可分为 3 个步骤: 1. 规划 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 二、AI Agent 的概念 AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括以下几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 同时,需要三个 Agent: Responser Agent:主 agent,用于回复用户(伪多模态)。 Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 三、Agent 的“明斯基时刻” 心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。 其特点包括: 1. 多重层次:心灵社会将智能划分为多个层次,从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。 2. 功能模块:每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务,如视觉处理、语言理解、运动控制等。 3. 分布式智能:智能不是集中在单一的核心处理单元,而是通过多个相互关联的 Agent 共同实现。这种分布式智能能够提高系统的灵活性和鲁棒性,应对复杂和多变的环境。 同时,在《心灵社会》中,明斯基还详细描述了不同类型的 Agent 及其功能: 专家 Agent:拥有特定领域知识和技能的 Agent,负责处理复杂的任务和解决特定问题。 管理 Agent:协调和控制其他 Agent 的活动,确保整体系统协调一致地运行。 学习 Agent:通过经验和交互,不断调整和优化自身行为,提高系统在不断变化环境中的适应能力。
2025-03-23
先喂给一些数据文本,然后进行分析的AI有哪些比较好
以下是一些可以先喂给数据文本然后进行分析的 AI 示例: DeepSeek R1:理论上适合大多数 AI,尤其是有推理模型。您可以找出最喜欢的文章投喂给它,并进行多次询问,如从写作角度、读者角度分析文章,指出文章的缺点和不足以及改善提升的空间,还可以对作者进行侧写,分析其成长背景、个人经历和知识结构对文章的影响。 此外,OpenAI 的 GPT 系列模型也是不错的选择。OpenAI 研究团队收集了海量的文本数据,涵盖各种内容,基于 Transformer 架构进行实验,在自然语言处理领域取得了显著成果。
2025-03-05
我们是做小红书笔记的,目前有没有哪个软件可以把我们上千篇以往人工写的笔记,投喂给它,训练出一个能按照以往风格来写笔记的呢?比如扣子或者钉钉,可以吗
目前市面上常见的软件中,豆包暂时未获取到扣子或钉钉有此功能的相关信息。不过,像一些专门的自然语言处理和机器学习平台,如 OpenAI 的 GPT 系列、百度的文心一言等,在一定的技术支持和合规操作下,有可能实现您的需求。但需要注意的是,将大量以往的笔记用于训练模型可能涉及到数据隐私和版权等问题,需要谨慎处理。
2025-02-07
我们是做小红书笔记的,目前有没有哪个软件可以把我们上千篇以往人工写的笔记,投喂给它,训练出一个能按照以往风格来写笔记的呢
目前市面上还没有专门针对小红书笔记且能完全满足您需求的成熟软件。一般来说,使用现有的自然语言处理模型进行这样的训练存在诸多限制和法律风险。小红书对于内容的原创性和合规性有严格要求,使用以往的笔记进行训练可能违反平台规定。但您可以通过学习和借鉴以往笔记的写作风格、结构和主题,人工创作出新的优质笔记。
2025-02-07
自己讲课的音视频如何投喂给AI
要将自己讲课的音视频投喂给 AI,以下是一些相关步骤和要点: 1. 对于音乐相关的音视频: 把 MIDI 导出到 MP3 虚拟演奏文件,可以直接导总谱,也可以分轨导出(适用于不同乐器组合)。由于制谱软件可能有很重的 MIDI 味,有时需要调整乐器音色。 320kbit 码率是各大音乐平台的门槛,若向 Suno 导出的是 192k 的,后期想输出到 QQ 音乐之类,需要转码(单纯转码对音质无直接提升)。导出后即可喂给 AI。 不是必须修改音色,有很多染色软件可用,比如 Neutron4,可从 Youtube 下载喜欢的乐器音色,用宿主软件打开插件导入音频实现渲染。 比较喜欢丢完整的小节给 AI,这样节奏识别性更好,当然也可在中间掐断,AI 的识别能力不错。 2. 对于 AI 音乐创作与制作: 可以让 AI 生成曲子的基础框架,然后在基础框架上修改完善以提高质量。 对 AI 生成的曲子进行二次处理,包括调整频段、动态等。 创建 AI 生成曲子时要注意风格和语言的选择,以符合需求。 投喂给 AI 的旋律应保持清晰,避免复杂的节奏构架和变化,以提高 AI 的辨识度和创作效果。 下节课将直接教大家制作音乐,包括使用疏漏提供的片段、段落、人声、采样或小旋律等,在编辑软件中进行融合和再次输出,以达到更好听、更完美的效果。 学习需要下载 flow 水果软件,可在淘宝上购买并请人帮忙安装。
2025-02-02
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14