Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI Agent和Agentic Workflow的区别

Answer

AI Agent 和 Agentic Workflow 存在以下区别:

AI Agent

  • 基本框架:由“LLM + 规划 + 记忆 + 工具使用”构成,大模型 LLM 充当“大脑”。
  • 规划方面:包括子目标分解、反思与改进,将大型任务分解为较小可管理的子目标,能对过去行动进行自我批评和反思,从错误中学习并改进未来步骤。
  • 记忆方面:用于存储和调用相关信息。

Agentic Workflow

  • 驱动角色工作流变革:使用多智能体协作的方法,让不同角色的 Agent 按照任务要求自主规划选择工具、流程进行协作完成任务。
  • 涉及人机协同关系:生成式 AI 的人机协同分为嵌入式、副驾驶、智能代理 3 种产品设计模式,在不同模式下,人与 AI 的协作流程有所差异。
  • 重塑获取信息的方式:如搜索引擎和基于大模型的聊天机器人在获取信息上目标一致,ChatGPT 的出现被认为将对传统搜索引擎带来颠覆。
  • 包含多种设计模式:如反思、工具使用、规划、多智能体协同等。反思是让 Agent 审视和修正自己生成的输出;工具使用指 LLM 生成代码、调用 API 等工具进行操作;规划是让 Agent 分解复杂任务并按计划执行;多智能体协同是多个 Agent 扮演不同角色合作完成任务。
Content generated by AI large model, please carefully verify (powered by aily)

References

Inhai: Agentic Workflow:AI 重塑了我的工作流

如果大家使用Kimi Chat来查询某个问题,你会发现它会在互联网上检索相关内容,并基于检索结果进行总结分析,最后给出结论。这其实是大模型利用「网页搜索」工具的一个典型例子,同时你也会看到PPT中介绍了非常多的不同领域类型的工具,它其实是为大模型在获取、处理、呈现信息上做额外的补充。PlanningAgent通过自行规划任务执行的工作流路径,面向于简单的或者一些线性流程的运行。比如下图中:Agent会先识别男孩的姿势,并可能找到一个姿势提取模型来识别姿势,在接下来要找到一个姿势图像模型来合成一个新的女孩图像,然后再使用图像理解文本的模型,并在最后使用语音合成输出,完成这个流程任务。Multiagent Collaboration吴恩达通过开源项目ChatDev进行举例,你可以让一个大语言模型扮演不同的角色,比如让一个Agent扮演公司CEO、产品经理、设计师、代码工程师或测试人员,这些Agent会相互协作,根据需求共同开发一个应用或者复杂程序。AI Agent基本框架OpenAI的研究主管Lilian Weng曾经写过一篇博客叫做《LLM Powered Autonomous Agents》,其中就很好的介绍了Agent的设计框架,她提出了“Agent=LLM+规划+记忆+工具使用”的基础架构,其中大模型LLM扮演了Agent的“大脑”。Planning(规划)主要包括子目标分解、反思与改进。将大型任务分解为较小可管理的子目标处理复杂的任务。而反思和改进指可以对过去的行动进行自我批评和自我反思,从错误中学习并改进未来的步骤,从而提高最终结果的质量。Memory(记忆)

Inhai: Agentic Workflow:AI 重塑了我的工作流

AI与人的协同关系生成式AI的人机协同分为3种产品设计模式:Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理),在这3种模式下,人与AI的协作流程也是有所差异。Embedding模式:人类完成大多数工作。Copilot模式:人类和AI协同工作。Agents模式:AI完成大多数工作。Agentic Workflow驱动角色工作流变革使用Multiagent Collaboration的方法,让不同角色的Agent按照根据任务要求自主规划选择工具、流程进行协作完成一件任务。我作为一个产品经理角色,我的诉求很简单,需要完成某一个产品功能设计,这个时候通过Agents拆解成多个独立的任务,然后遵循不同的工作流,最后给我生成一份在大体上符合我期望的输出结果,我再修修改改就能够达到可用的阶段了。所以,我从原子能力层重新思考,面对这个快速变化的时代,我该如何去重塑我自己的工作流,以不变应万变呢?我抽象化拆解了大模型的一些底层能力,例如:翻译、识别、提取、格式化等等,其实所有的一些都会围绕几个词“输入”、“处理”、“输出”、“反馈”。“输入”、“处理”、“输出”、“反馈”构建了我最底层的信息处理逻辑,我把它比作四个齿轮,齿轮之间通过不同的衔接工具逐步推动运转,从需求作为输入、结果作为输出,围绕着信息加速,不断驱动我向前。重塑获取信息的方式搜索引擎作为互联网基础设施,同时也是互联网的入口,对于用户而言,从解决问题出发,搜索引擎和基于大模型的聊天机器人的目标从根本上是一致的。自2022年底ChatGPT发布,其通过问答形式被认为将对传统搜索引擎带来颠覆。

Inhai: Agentic Workflow:AI 重塑了我的工作流

原创:来自inhai银海公众号“抄就完了”,欢迎关注!从“人工工作流”到“Agentic工作流”"Reshape your workflow with AI."在Agentic Workflow的这件事情上,我先完成了自己的工作流重塑。近期在「特工宇宙」分享了一场关于Agentic Workflow主题的内容,现在同步分享给大家一些关于个人在使用AI Agent Workflow上的思考、AI-Native应用「Pailido|AI拍立得」创建的初衷和实现流程,在个人工作流重塑上分享了一些体悟。本次分享大纲整体围绕着AI Agent和Agentic Workflow从“认识、定义、应用、偏见、实践以及延伸”进行展开,正式拉开「仰望星空,脚踏实地」的序幕。在今年的4月初,吴恩达老师在美国红杉做了一场演讲,介绍了4种主要的Agentic Workflow设计模式。Reflection(反思):让Agent审视和修正自己生成的输出。Tool Use(工具):LLM生成代码、调用API等工具进行操作。Planning(规划):让Agent分解复杂任务并按计划执行。Multiagent Collaboration(多智能体协同):多个Agent扮演不同角色合作完成任务。Reflection反思在根本上其实是一个博弈的过程:如果你让大模型写一段代码,它会立刻给你反馈。这时你可以将它输出的代码片段再输入回去,让大模型仔细检查代码的准确性和结构规范性,并给出评论。然后,你可以将这些反馈结果再次输入给大模型,它可能会输出一个比第一版更好的代码,如果有两个Agent:一个负责Coding,另一个负责Code Review,效果会更佳。Tool Use

Others are asking
AI Agents(智能体)
AI 智能体(Agents)是人工智能领域中一个重要的概念: 1. 从 AGI 的发展等级来看,智能体不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 2. 作为大模型的主要发展方向之一,智能体中间的“智能体”其实就是大模型(LLM)。通过为 LLM 增加工具、记忆、行动、规划这四个能力来实现。目前行业里主要用到的是 langchain 框架,它把 LLM 与 LLM 之间以及 LLM 与工具之间通过代码或 prompt 的形式进行串接。 3. 从智能体的起源探究来看,心灵社会理论认为智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,每个层次由多个 Agent 负责,每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务。同时存在专家 Agent、管理 Agent、学习 Agent 等不同类型的 Agent 及其相应功能。从达特茅斯会议开始讨论人工智能,到马文·明斯基引入“Agent”概念,“AI”和“Agent”就彻底聚齐,往后被称之为 AI Agent。
2025-04-15
B端AI Agent
以下是关于 B 端 AI Agent 的相关知识: 一、概念定义 1. 智能体(Agent)简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。随着 ChatGPT 与 AI 概念的爆火,出现了很多相关新名词,如 bot 和 GPTs 等。AI 大模型是技术,面向用户提供服务的是产品,因此很多公司关注 AI 应用层的产品机会。 C 端案例:如社交方向,用户注册后先捏一个自己的 Agent,然后让其与他人的 Agent 聊天,两个 Agent 聊到一起后真人再介入;还有借 Onlyfans 入局打造个性化聊天的创业公司。 B 端案例:字节扣子和腾讯元器若为面向普通人的低代码平台,类似 APP 时代的个人开发者,那么帮助 B 端商家搭建 Agent 就类似 APP 时代专业做 APP 的。 2. 智能体开发平台:最早接触到的扣子 Coze 是通过一篇科技报道,如 2 月 1 日,字节正式推出 AI 聊天机器人构建平台 Coze 的国内版“扣子”,主要用于开发下一代 AI 聊天机器人。国内还有很多智能体开发平台,如 Dify.AI,但个人较常用的是扣子,所以常对比字节扣子和腾讯元器。 3. 关注智能体的原因:目前 AI Agent 的概念在市场上未达成共识,存在被滥用现象。AI Agent 指的是一种智能代理系统,接近人类大脑,可形成记忆、达成行动规划、自动交互、主动预测。其应用具有个性化、自主完成任务、多 Agent 协作等特点。目前 AI Agent 应用大多集中在 2B 场景,面向个人消费者的产品少,一方面是高度智能化的 Agent 能力需打磨,概念落地有距离;另一方面是 AI 和娱乐消费诉求结合少,主要带来生产方式和效率变革,个人消费者方向目前只看到“私人助理”场景。
2025-04-15
有关 ai agent 的科普文章
以下是为您提供的关于 AI Agent 的科普内容: AI Agent 是一个融合了多学科精髓的综合实体,包括语言学、心理学、神经学、逻辑学、社会科学和计算机科学等。它不仅有实体形态,还有丰富的概念形态,并具备许多人类特有的属性。 目前,关于 AI Agent 存在一些情况。例如,网络上对其的介绍往往晦涩难懂,让人感觉神秘莫测,其自主性、学习能力、推理能力等核心概念,以及如何规划和执行任务、理解并处理信息等方面,都像是笼罩在一层神秘面纱之下。 另外,以国与国之间的外交为例来解释相关协议。假设每个 AI 智能体(Agent)就是一个小国家,它们各自有自己的语言和规矩。各国大使馆试图互相沟通、做生意、交换情报,但现实中存在诸多问题,如协议各异、要求不同等。 如果您想了解更多关于 AI Agent 的详细内容,可访问: 。
2025-04-15
,AI agent 发展趋势,技术状态,商业模式
以下是关于 AI Agent 的发展趋势、技术状态和商业模式的相关信息: 发展趋势: 2024 年内,办公场景“AI 助手”开始有良好使用体验,实时生成的内容开始在社交媒体内容、广告中出现。 2025 2027 年,接近 AGI 的技术出现,人与 AI 配合的工作方式成为常态,很多日常决策开始由 AI 来执行。 技术状态: 目标实现基于 ReAct、SFT、RAG、强化学习等实现自主规划能力的 AI Agent,构建具备认知、决策智能的 Agent 智能体框架。 专注文本/多模态大模型、AI Agent 技术创新与应用。 商业模式: 依据不同类型销售市场的特点,结合一站式 AI 搭建平台将销售部署的产品化和模版化,让企业更容易落地和应用 AI 能力。 销售智能体 Blurr.AI 占位交易环节,解决 2B 销售获客的痛点,且具有向前后端环节延展的势能。
2025-04-13
AGENT
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,既可以是软件程序,也可以是硬件设备。 智能体具有以下特点: 1. 自主系统:通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。 2. 关键组成部分: 规划:将大型任务分解为更小、可管理的子目标,有效处理复杂任务。 反思和完善:对过去的行为进行自我批评和反思,从错误中吸取教训,完善未来步骤,提高最终结果质量。 记忆:包括短期记忆,用于所有的上下文学习;长期记忆,通过利用外部向量存储和快速检索实现长时间保留和回忆信息。 工具使用:学习调用外部 API 来获取模型权重中缺失的额外信息。 以下是一些与智能体相关的资源目录: 关于 2025AGENT 智能体全球创作大赛: 1. 报名:通过→首页的“立即参赛”按钮进入报名页面,填写相关信息并提交即可,且参赛完全免费。 2. 提交作品:在本网站直接提交,若采用 flowith 搭建了 Agent 可以在微博、小红书、即刻平台发布,并@Flowith 官方,可获得额外会员奖励。 3. 奖项设置:设有金、银、铜奖和多个单项奖,获奖后将获得组委会颁发的奖金和证书,需保证联系方式准确以便联系。 4. 知识产权归属:参赛作品的知识产权归参赛者所有,但组委会有权在宣传和展示中使用参赛作品。
2025-04-12
AI workflow在企业中是否比Agent应用价值和场景更多
AI workflow 和 Agent 在企业中的应用价值和场景各有特点。 Agentic Workflows 具有以下优势: 1. 灵活性、适应性和可定制性:能够根据任务难度进行调整和演变,通过组合不同模式实现定制,在需求和复杂性增长时进行迭代升级。 2. 在复杂任务上的性能提升:将复杂任务分解为更小、可管理的步骤,显著优于确定性的零样本方法。 3. 自我纠正和持续学习:能够评估自身行为,完善策略,从过去经验中学习,在每次迭代中变得更有效和个性化。 4. 操作效率和可扩展性:可以高精度自动化重复任务,减少人工操作和运营成本,还能轻松扩展。 Agentic Workflow 的应用场景包括原子设计模式的组合、与人类反馈循环集成等。例如,Agentic RAG 在检索增强生成流程中引入了一个或多个 AI Agents,在规划阶段可进行查询分解等操作,还能评估数据和响应的相关性和准确性。 一般来说,Workflow 是一系列旨在完成特定任务或目标的相互连接的步骤。最简单的工作流是确定性的,遵循预定义步骤序列。有些工作流利用大模型或其他 AI 技术,分为 Agentic 和非 Agentic 两类。非 Agentic 工作流中,大模型根据指令生成输出。Agentic Workflow 是由单个或几个 AI Agents 动态执行的一系列连接步骤,被授予权限收集数据、执行任务并做出决策,利用 Agents 的核心组件将传统工作流转变为响应式、自适应和自我进化的过程。 综上所述,不能简单地说 AI workflow 在企业中比 Agent 应用价值和场景更多,这取决于企业的具体需求和任务特点。
2025-04-09
什么是agent?什么是workflow?他们的区别和界限
智能体(Agent)和工作流(Workflow)的定义及区别如下: 智能体(Agent): 可以有多种定义。一些客户将其定义为能够长期独立运行的全自动系统,可使用各种工具完成复杂任务。 在 Anthropic 中,智能体是由 LLM 动态指导自身流程和工具使用的系统,能够自主控制任务完成方式。 工作流(Workflow): 是通过预定义代码路径来编排 LLM 和工具的系统。 每个组块可以看成是一个函数,其中混杂了传统函数、调用第三方服务的函数和基于 LLM 的函数。 总的来说,智能体更强调 LLM 对自身流程和工具使用的动态指导和自主控制,而工作流则更侧重于通过预定义的代码路径来编排 LLM 和工具。
2025-03-21
agent和workflow的区别
智能体(Agent)和工作流(Workflow)的区别主要体现在以下几个方面: 1. 定义和功能: 智能体是由 LLM 动态指导自身流程和工具使用的系统,能够自主控制任务完成方式。 工作流是通过预定义代码路径来编排 LLM 和工具的系统。 2. 运行方式: 智能体可以长期独立运行,是全自动的系统,能使用各种工具完成复杂任务。 工作流中的子任务是人为编排的,属于手动编排。 3. 组成和特点: 工作流中的每个组块可以看成是一个函数,包括传统函数、调用第三方服务的函数和基于 LLM 的函数。由这三类函数组合而成的工作流被称为超函数,它不同于传统函数,形式上是用自然语言编写的程序,功能上可以模拟人的高阶思维。 智能体在架构上与工作流有所区分,其更强调自主性和动态性。 在实际应用中,工作流的灵活性和可控性能够将智能体能力的天花板往上顶一大截,例如可以在流程中加入人类 Knowhow、进行专家测试试跑、引入图的概念灵活组织节点等。评价一个 Agent 平台好不好用,可以从基座模型的 function calling 能力、workflow 的灵活性以及平台创作者的 workflow 编写水平等方面考量。
2025-03-12
comfyui workflow
ComfyUI 的工作流主要包括以下内容: 低显存运行工作流:目的是让 FLUX 模型能在较低显存情况下运行。分阶段处理思路为,先在较低分辨率下使用 Flux 模型进行初始生成,然后采用两阶段处理,即先用 Flux 生成,后用 SDXL 放大,有效控制显存使用,最后使用 SD 放大提升图片质量。工作流流程包括初始图像生成(Flux)阶段的 UNETLoader 加载 flux1dev.sft 模型、DualCLIPLoader 加载 t5xxl 和 clip_l 模型、VAELoader 加载 fluxae.sft 等步骤,以及图像放大和细化(SDXL)阶段的 CheckpointLoaderSimple 加载 SDXL 模型、UpscaleModelLoader 加载 RealESRGAN_x4.pth 用于放大等步骤。 工作流相关网站: Openart.ai:流量较高,支持上传、下载、在线生成,免费账户有 50 个积分,加入 Discord 可再加 100 积分,开通最低每月 6 美元套餐后每月有 5000 积分。 ComfyWorkflows 网站:支持在线运行工作流,实际下载量和访问量略少于 openart。 Flowt.ai:https://flowt.ai/community 提示词自动生成 ComfyUI 工作流:英伟达整了个花活,通过画图提示词自动生成匹配的 ComfyUI 工作流,命名为 ComfyGen(comfy 生成器),目前仅支持文生图模型。英伟达称其可以生成高质量的图并泛化到其他领域,做了对比测试,效果基本一致甚至更符合人类对提示词的判断和理解,与 C 站上人类写的提示词对比效果略胜一筹,但项目未开源。
2025-01-09
关于workflow有什么著名的论文
以下是一些关于 workflow 的著名论文或相关内容: 1. 5 月 9 日艾木分享的《Workflow》,其中包含关于 workflow 的理论探讨、对 AGI 的正确理解与思考、如何客观看待大语言模型的基础表现、人工智能在编程领域的应用及挑战、从提示词工程到 flow 工程:AI 在代码生成领域的研究与应用、人工智能在开源项目测试集中的表现与工作流的重要性、关于 workflow 的介绍与案例演示等内容。 2. 艾木的《如何用 Coze 制作一个信息检索 Bot(含 Workflow 的基础用法)》,提到 Coze 的 Workflow 为制作 Agents/Bots 提供很大的灵活性和便捷性,对 Workflow 中的函数进行了分类,并提出了超函数(Hyperfuction)的概念。 3. 2024 年 8 月 20 日的更新中,有《[AI Agent 产品经理血泪史(二)欲知方圆,则必规矩【Workflow 篇】》,聚焦于工作流(Workflow)在 AI 智能体中的重要性,回顾了集成平台的演变,探讨了工作流在自动化和手动编排中的应用以及如何提升灵活性以应对不断变化的需求。 4. 还有《[张梦飞:【全网最细】从 LLM 大语言模型、知识库到微信机器人的全本地部署教程》和《[ComfyUI 工作流:黑猴子悟空换脸报错解决大法》等相关内容。
2024-12-18
workflow使用指南
使用工作流的指南如下: 1. 创建工作流。 2. 配置工作流: 通过拖拽的方式将节点添加到画布内,并按照任务执行顺序连接节点。 工作流提供了基础节点供使用,还可以添加插件节点来执行特定任务。具体操作如下: 在左侧面板中选择要使用的节点。 将节点拖拽到画布中,并与其他节点相连接。 配置节点的输入输出参数。 3. 测试并发布工作流。 4. 在 Bot 内使用工作流: 前往当前团队的 Bots 页面,选择进入指定 Bot。 在 Bots 编排页面的工作流区域,单击右侧的加号图标。 在添加工作流对话框,在“我创建的”页面选择自建的工作流。 在 Bot 的人设与回复逻辑区域,引用工作流的名称来调用工作流。
2024-09-23
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
How Al Agentic workflows could drive more Al progress than even the next generation of foundation models
以下是关于您提出的“ How Al Agentic workflows could drive more Al progress than even the next generation of foundation models ”问题的相关信息: 吴恩达认为人工智能代理工作流程将在今年推动人工智能的巨大进步,甚至可能超过下一代基础模型。构建代理的设计模式框架包括反思、工具使用、规划和多代理协作。反思是指 LLMs 审视自身工作并提出改进方法;工具使用是指赋予 LLMs 如网络搜索、代码执行等工具以帮助其收集信息、采取行动或处理数据;规划是指 LLMs 制定并执行多步骤计划以实现目标;多代理协作则涉及多个 AI 代理共同工作,通过分工、讨论和辩论来提出比单个代理更好的解决方案。这些设计模式为构建高效的 AI 代理提供了指导,并将在下周进一步详细阐述并提供相关阅读建议。 此外,在医疗保健领域,为了产生真正的改变,AI 需要像我们一样学习。必须让这些专家 AI 接触到顶级从业人员的多样化视角,以避免复制危险的偏见。鉴于人工智能依赖的神经网络基础,这些专家 AI 可能通过元学习(或学会学习)比我们预期的更快地获得知识,并带着我们人类一同进步。 在 AI 进化方面,CNN 的结构基于两类细胞的级联模型,主要用于模式识别任务,在计算上比大多数其他架构更有效、更快速,在许多应用中,包括自然语言处理和图像识别,已经被用来击败大多数其他算法。我们每次对大脑的工作机制的认知多一点,神经网络的算法和模型也会前进一步。
2024-09-02
agentic workflow 是什么?
Agentic Workflow 是指通过学会调用外部不同类型的 API 来获取模型中缺少的额外信息、代码执行能力、访问专有信息源等。它将一个复杂的任务分解成较小的步骤,融入更多人类参与到流程中的规划与定义,减少对 Prompt Engineering 和模型推理能力的依赖,提高 LLM 应用面向复杂任务的性能。 生成式 AI 的人机协同分为 Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理)3 种产品设计模式,在不同模式下,人与 AI 的协作流程有所差异。 Agentic Workflow 可以使用 Multiagent Collaboration 的方法,让不同角色的 Agent 按照任务要求自主规划选择工具、流程进行协作完成任务。例如,作为产品经理,可通过 Agents 将任务拆解为多个独立任务,遵循不同工作流生成大体符合期望的输出结果,再进行修改。 吴恩达通过开源项目 ChatDev 举例,可让大语言模型扮演不同角色相互协作开发应用或复杂程序。AI Agent 基本框架包括“Agent = LLM + 规划 + 记忆 + 工具使用”,其中 LLM 扮演“大脑”,规划包括子目标分解、反思与改进,记忆分为短期记忆和长期记忆,工具用于处理各种任务。
2024-08-30
Agentic Workflow是什么意思
Agentic Workflow 指的是一种在生成式 AI 的人机协同中,通过不同模式(如 Embedding、Copilot、Agent)下的角色协作流程来完成任务的方式。 在 Agent 模式中,AI 完成大多数工作。它使用 Multiagent Collaboration 的方法,让不同角色的 Agent 按照任务要求自主规划选择工具、流程进行协作。例如,作为产品经理,可将产品功能设计任务拆解为多个独立任务,遵循不同工作流,生成初步结果后再修改。 Agentic Workflow 还通过学会调用外部不同类型 API 来获取模型缺少的额外信息等。其动作的决策需要根据大模型结合问句、上下文规划、各类工具来确定。 从提升效率、提高质量、节省时间的角度思考,Agentic Workflow 可以将复杂任务分解成较小步骤,融入更多人类参与的规划与定义,减少对 Prompt Engineering 和模型推理能力的依赖,提高 LLM 应用面向复杂任务的性能。 吴恩达通过开源项目 ChatDev 举例,让大语言模型扮演不同角色相互协作开发应用或复杂程序。AI Agent 的基本框架包括“LLM +规划+记忆+工具使用”,其中 LLM 扮演“大脑”,规划包括子目标分解、反思与改进,记忆分为短期和长期,工具用于辅助完成任务。
2024-08-30
Agentic Workflow是什么
Agentic Workflow 是一种基于 AI 的工作流管理方式,它可以帮助人们更高效地完成各种任务。以下是关于 Agentic Workflow 的一些介绍: 1. 专家代理:Agentic Workflow 中的专家代理是指具有特定领域和工具专长的 AI 模型,它们能够以步骤化、理性的方式帮助用户达成目标。 2. 工作流程:Agentic Workflow 的工作流程通常包括收集信息、初始化专家代理、持续支持用户直到目标完成等步骤。 3. Tool Use:Tool Use 是指 Agent 通过自行规划任务执行的工作流路径,面向于简单的或者一些线性流程的运行。 4. Planning:Agent 通过自行规划任务执行的工作流路径,面向于简单的或者一些线性流程的运行。 5. Multiagent Collaboration:通过学会调用外部不同类型 API 来获取模型(通常在预训练后很难修改)中缺少的额外信息,代码执行能力,访问专有信息源等(例如获取此时此刻的天气、联网网搜索等)。 6. Action(动作):根据上述大模型结合问句(Query)、上下文的规划(Context)、各类工具,最终大模型才能决策出最终需要执行的动作是什么。 7. Productivity(效率):Agentic Workflow 通过将一个复杂的任务分解成较小的步骤,在整个过程中中融入了更多人类参与到流程中的规划与定义。它减少了对 Prompt Engineering 和模型推理能力的依赖,提高了 LLM 应用面向复杂任务的性能,更丰富、更精确。 总的来说,Agentic Workflow 是一种将 AI 技术应用于工作流管理的方式,它可以帮助人们更高效地完成各种任务。
2024-05-29