Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

生成高清视频

Answer

以下是关于生成高清视频的相关信息:

Meta 发布的 Meta Movie Gen 文生视频模型:

  • 由视频生成和音频生成两个模型组成。
  • Movie Gen Video 是 30B 参数的 Transformer 模型,能从单个文本提示生成 16 秒、16 帧每秒的高清视频,相当于 73K 个视频 tokens,可进行精确视频编辑和个性化视频生成,在保持角色身份一致性和运动自然性方面表现出色,通过预训练-微调范式完成,沿用了 Transformer 特别是 Llama3 的许多设计,预训练阶段在海量视频-文本和图像-文本数据集上联合训练,微调阶段进行有监督微调,还引入流匹配作为训练目标,效果优于扩散模型。
  • Movie Gen Audio 是 13B 参数的 Transformer 模型,能接受视频输入及可选文本提示生成高保真音频。

Sora 相对于其他文本生成视频 AI 的优势:

  • 能够生成高达一分钟的高清视频。
  • 支持生成不同分辨率、纵横比的视频。
  • 能生成显示人物复杂、动态运动的视频,运动自然流畅。
  • 能够捕捉和再现丰富的场景细节。
  • 在生成长视频时能保持场景和角色的一致性。
  • 能够处理多角色交互,角色互动自然有信服力。
  • 采用类似 GPT 的技术,自然语言理解强大。
  • 能模拟动作对环境的影响。
  • 可以模拟视频游戏等数字环境。

一些海外的 AI 视频生成工具:

  • Haiper(有免费额度):https://haiper.ai/ ,能文生视频、图生视频、素描生视频、扩展视频,生成 HD 超高清视频,文生视频支持选择风格、秒数、种子值,图生视频只能写提示词、秒数、种子值,还能进行视频重绘和局部重绘。
  • DynamiCrafter(免费):https://huggingface.co/spaces/Doubiiu/DynamiCrafter ,https://github.com/Doubiiu/DynamiCrafter?tab=readme-ov-file ,能生成 2 秒图生视频,还可以做短视频拼长视频。
  • Morph studio(内测):https://app.morphstudio.com/ ,暂未对外开放,可在官网提交内测申请,discord 上可以免费体验,支持文生视频、图生视频,英文提示词,支持运镜、运动强度、尺寸、秒数设置,默认生成 3 秒视频。
Content generated by AI large model, please carefully verify (powered by aily)

References

新王登基-Meta发布Meta Movie Gen文生视频模型

具体来说Movie Gen由视频生成和音频生成两个模型组成。Movie Gen Video:30B参数Transformer模型,可以从单个文本提示生成16秒、16帧每秒的高清视频,相当于73K个视频tokens。对于精确视频编辑,它可以执行添加、删除或替换元素,或背景替换、样式更改等全局修改。对于个性化视频,它在保持角色身份一致性和运动自然性方面取得SOTA性能。Movie Gen Audio:13B参数Transformer模型,可以接受视频输入以及可选的文本提示,生成与视频同步的高保真音频。Movie Gen Video通过预训练-微调范式完成,在骨干网络架构上,它沿用了Transformer,特别是Llama3的许多设计。预训练阶段在海量的视频-文本和图像-文本数据集上进行联合训练,学习对视觉世界的理解。这个阶段的训练数据规模达到了O(100)M视频和O(1)B图像,用以学习运动、场景、物理、几何、音频等概念。微调阶段研究人员精心挑选了一小部分高质量视频进行有监督微调,以进一步提升生成视频的运动流畅度和美学品质。为了进一步提高效果,模型还引入了流匹配(Flow Matching)作为训练目标,这使得视频生成的效果在精度和细节表现上优于扩散模型。扩散模型通过从数据分布逐渐加入噪声,然后在推理时通过逆过程去除噪声来生成样本,用大量的迭代步数逐步逼近目标分布。流匹配则是通过直接学习样本从噪声向目标数据分布转化的速度,模型只需通过估计如何在每个时间步中演化样本,即可生成高质量的结果。

【降低噪声】普通人也能一文读懂Sora系列

清晰度和视频长度:Sora能够生成高达一分钟的高清视频,这在技术上是一个重大突破。相比之下,其他平台可能在视频长度和清晰度上有限制,时长大多为4s。灵活的视频参数:Sora支持生成不同分辨率、纵横比的视频,从竖屏到宽屏都能轻松应对。这种灵活性对于适应不同的展示平台和内容需求至关重要。人物大幅度运动的模拟:Sora能够生成显示人物进行复杂、动态运动的视频,如跑步、跳跃或舞蹈,这些运动看起来自然流畅,不会显得生硬或不自然。场景细节的精细渲染:Sora在生成视频时能够捕捉和再现丰富的场景细节,无论是自然景观的微妙变化,还是城市环境中的复杂结构,都能以高保真度呈现。内容一致性的保持:在生成长视频时,保持场景和角色的一致性是一个挑战。Sora通过高级的算法确保视频内容从开始到结束都保持逻辑上的连贯性和视觉上的一致性。多角色交互的处理:Sora能够生成包含多个角色在内的场景,这些角色之间的互动看起来自然和有信服力。这对于创造复杂的社交场景或动作场面尤为重要。强大的语言理解能力:Sora采用了类似GPT的技术,自然语言理解极为强大。它甚至可以根据简短的提示,通过生成详细的描述来提高视频内容的相关性和准确性。模拟现实世界动作的能力:Sora不仅可以生成静态场景的视频,还能模拟动作对环境的影响,如人物吃东西留下咬痕,这种对细节的捕捉在提高视频真实感方面非常关键。创造数字世界的能力:Sora可以模拟视频游戏等数字环境,控制游戏角色并以高保真度渲染游戏世界,这显示了它在理解和生成复杂数字世界方面的强大能力。

小歪:AI视频工具合集

https://haiper.ai/文生视频、图生视频、素描生视频、扩展视频,能生成HD超高清的视频文生视频支持选择风格、秒数(2s和4s)、种子值文生视频不同风格展示[AI视频提示词库](https://waytoagi.feishu.cn/wiki/FPLTwMwsxiXC0kkfcmncqI2XnDh?table=tblHfIXQT9G4fiNR&view=vewItBc7AK)图生视频只能写提示词、秒数(2s和4s)、种子值视频重绘,轻松修改颜色、纹理和元素以改变原视频的视觉内容。局部重绘是使用点选的方式,选中需要重绘的区域,再输入需要替换的内容提示词,如果是大量背景的重绘,效果一般,视频容易崩。相关界面截图:[heading3]DynamiCrafter(免费)[content]https://huggingface.co/spaces/Doubiiu/DynamiCrafterhttps://github.com/Doubiiu/DynamiCrafter?tab=readme-ov-file2秒图生视频,还可以做短视频拼长视频[heading3]Morph studio(内测)[content]https://app.morphstudio.com/知识库详细教程:[工具教程:morphstudio](https://waytoagi.feishu.cn/wiki/LkN4wiFaJiklVHkDG4Ec5nZpnLb)暂未对外开放,可在官网提交内测申请discord上可以免费体验支持文生视频、图生视频,英文提示词,支持运镜、运动强度、尺寸、秒数设置默认生成3s视频使用参数说明

Others are asking
我想图生图,生成高清矢量图
以下是关于图生图生成高清矢量图的相关内容: ControlNet 参数: 预处理器:canny,模型:control_v11p_sd15_canny 预处理器:lineart_standard,模型:control_v11p_sd15_lineart 放大高清大图: 使用 Multi Diffusion + Tiled VAE + ControlNet Tile 模型 将生成的图片发送到图生图,关键词种子会一并发送过去,重绘幅度建议 0.35,太高图片细节会发生变化 Lora 生图: 点击预览模型中间的生图会自动跳转到相应页面 模型上的数字代表模型强度,可在 0.6 1.0 之间调节,默认为 0.8 可自己添加 lora 文件,输入正向提示词,选择生成图片的尺寸(横板、竖版、正方形) 采样器和调度器新手小白可默认,迭代步数在 20 30 之间调整,CFG 在 3.5 7.5 之间调整,随机种子 1 代表随机生成图 生成的图会显示在右侧,若觉得某次生成结果不错,想要微调或高分辨率修复,可复制随机种子粘贴到相应位置 确认合适的种子和参数想要高清放大,可点开高清修复,选择放大倍数,新手小白可默认算法,迭代步数建议在 20 30 之间,重绘幅度正常在 0.3 0.7 之间调整 高清修复: 文生图高清修复原理是命令 AI 按原来内容重新画一幅,新生成绘图和原绘图细节会不同,降低重绘幅度可更接近原图,如重绘幅度 0.7 时帽子和耳机有变化,0.3 时服饰细节接近但手部可能出现问题,可通过反复抽卡、图生图局部重绘或生成多张图片后 ps 合成等解决 由于高清修复渲染耗时长,建议先低分辨率抽卡刷图,喜欢的图再用随机种子固定进行高清修复 SD 放大: 文生图画好图后发送到图生图,点击脚本选择使用 SD 放大 重绘幅度设置 0.3,放大倍率为 2,图块重叠像素设置为 64,原图尺寸加上重叠像素,如 512x768 变为 576x832,重绘幅度要保持较低数值,否则可能出现新人物
2025-04-14
高清视频修复ai工具
以下为一些高清视频修复的 AI 工具: 1. 星流一站式 AI 设计工具: 高级模式下,基础模型允许使用更多的微调大模型,图片参考允许使用更多的图像控制功能。星流基础大模型下,增加了 tile 分块与 softedge 线稿。 高清分辨率修复:利用算法对初步生成的图像进行简单的图生图高清放大(目前仅支持基础模型 xl 和 1.5 模型)。 放大算法影响图像放大后的图像质量,重绘幅度与初步生成的图像的相似度,其他参数默认即可。 采样器和采样步数会影响出图质量和生成时间,随机种子和 CFG Scale 也有相应作用,脸部/手部修复利用算法对人像的脸部或者手部进行修复。 2. Pika: 发布 Pikaddition 能力,可以将用户图片物体融合到拍摄视频,不会改变原视频且保证新视频创意效果自然。 支持用户自行上传视频(视频时长需 5s 以上),支持物体、人物(卡通、真人)图像,有 15 次免费尝试机会。 使用方法:进入 Pika 官网,页面底部选择 Pikaddition,上传视频、图像,输入文字描述提示词,点击确认即可。 地址:https://pika.art/ 3. Topaz Labs: 推出 Starlight 首个用于视频修复的扩散模型,只需输入素材,AI 可自动降噪、去模糊、放大、抗锯齿,无需手动调整与参数调整,达成专业视频高清修复。 目前正在 Beta 中。 地址:https://www.topazlabs.com/ 4. Tusiart: 具有高清修复功能,在本来设置的图像分辨率基础上,让图像分辨率变得更加精细。 有 ADetailer 面部修复插件。
2025-04-14
老照片变高清
以下是使用 AI 将老照片变高清的步骤: 1. 给老照片上色:为做到颜色与内容统一,可启用 cutoff 插件,按顺序设置好颜色提示词。不了解该插件的可参考文章。 2. 使照片人脸变清晰:将照片放入后期处理,使用 GFPGAN 算法,可参考文章。但此步骤无法使头发、衣服等元素变清晰。 3. 放大照片:将图片发送到图生图中,打开 stableSR 脚本,放大两倍。此放大插件是所有插件中对原图还原最精准、重绘效果最好的,可参考文章。切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可不写以免干扰原图。 4. 显存不够时:启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能帮助放大图片。 5. 处理复杂照片:对于人物多、场景复杂、像素低的照片,可先在 ps 里调整角度和裁切,然后上色。若直接上色效果不佳,可放弃人物服装颜色指定,只给场景方向,让 AI 自行决定。还可加入第二个 controlnet 控制颜色,使用 t2ia_color 模型,给出简单关键词,如“蓝天、绿树、灰石砖”。最后进行脸部修复和放大。
2025-04-13
能将像素低的图片高清化的AI工具
目前有一些可以将像素低的图片高清化的 AI 工具,例如: 1. Topaz Gigapixel AI:能够通过深度学习算法对图片进行放大和增强,提高清晰度和细节。 2. Adobe Photoshop 的增强功能:Photoshop 中的一些智能滤镜和插件也可以在一定程度上改善图片的清晰度。 需要注意的是,不同的工具在处理不同类型的图片时效果可能会有所差异,您可以根据具体需求进行选择和尝试。
2025-03-19
我现在要对一些很糊的图像进行图像修复,就是把图像变高清,有什么工具吗?
以下是一些可用于图像修复变高清的工具和方法: 1. 图像修复放大流程: 输入原始图像:添加 Load Image 节点加载图像,不建议上传大分辨率图片,以免处理时间过长。 图像高清修复:使用 Iceclear/StableSR 模型,并搭配 Stable SR Upscaler 模型,推理图片噪点以还原图像。提示词应包含想要达到的目的内容,如正向:(masterpiece),(best quality),(realistic),(very clear),反向:3d,cartoon,anime,sketches,(worst quality),(low quality)。 图像高清放大:对第一次放大修复后的图像进行二次修复,realisticVision 底膜效果较好。使用提示词反推 node 提取画面提示词,搭配 tile ControlNet 提升细节感,再用合适的高清放大模型进行二次放大。 2. 星流一站式 AI 设计工具: 右侧生成器的高级模式:与入门模式相比增加了基础模型、图片参考等更多功能。基础模型允许使用更多微调大模型和更多图像控制功能,如高清分辨率修复等。同时,还可以调整放大算法、重绘幅度等参数,以及选择不同的采样器。 3. SD 新手入门图文教程: 文生图最简流程中的一些参数: CFG Scale(提示词相关性):控制图像与提示的匹配程度,一般开到 7 11。 生成批次和每批数量:影响生成图像的组数和数量。 尺寸:推荐使用小尺寸分辨率结合高清修复(Hires fix)。 种子:决定模型生成图片的随机性。 高清修复:通过勾选“Highres.fix”启用,先按指定尺寸生成图片,再通过放大算法扩大分辨率以实现高清大图效果。
2025-03-04
老旧照片高清修复
以下是关于老旧照片高清修复的方法: 1. 使用 Stable Diffusion 进行修复: 将照片放入后期处理中,使用 GFPGAN 算法使人脸变清晰。可参考文章。 将图片发送到图生图中,打开 stableSR 脚本,放大两倍。此放大插件是所有插件中对原图还原最精准、重绘效果最好的。可参考文章。 切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可以不写以免对原图产生干扰。 为做到颜色与内容的统一,启用 cutoff 插件来进行控制,依次按顺序设置好颜色提示词。可参考文章。 2. 使用 ComfyUI 进行修复: 结合 Flux Controlnet Upscale 模型,以前的工作流比较复杂,现在只要十几个基础的节点就能实现同样的效果,甚至可能更好。 参数调节:一般先确认放大的倍数,然后根据出来的图片调整 controlNet 的强度。 ControlnetUpscaler 放大模型:Flux.1dev ControlNet 是 Jasper 研究团队为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,通过特定代码加载管道,加载控制图像并进行图像处理。其训练方式采用合成复杂数据退化方案,结合图像噪声、模糊和 JPEG 压缩等多种方式对真实图像进行人工退化。 Flux Ultimator 细节增强:能增加小细节,让图像尽可能逼真,可放大色调的丰富性和深度,在 0.1 的强度设置下也能有显著增强效果,能顺利集成到工作流程中,与其他 LORA 结合使用效果好,结合时需将强度降低小于 0.5。 T5 Clip:如果发现出来的图片质量细节不够,选择 fp16 的版本。 图像的传递:controlNet 这里传递的应该是上传的原始图片,因为这个是 controlNet 而不是潜空间图像。
2025-01-19
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
需要做一个自动化出视频的工作流
以下是一个关于自动化出视频工作流的详细介绍: 优势: 全自动化处理,解放双手。 40 秒快速出片,效率提升。 成本低廉,每条仅需 0.0x 元。 输出质量稳定专业。 DeepseekR1 保证文案质量。 还能改进,例如可以加入配套 BGM,让视频更有感染力;增加更丰富的画面内容和转场效果;使用免费节点替代付费插件,进一步降低成本;优化模板样式,支持更多展示形式;增加自动化程度,支持批量处理。 工作流程: 1. 可以在扣子商店体验,建议自己搭建。 2. 工作流调试完成后,加入到智能体中,可以选择工作流绑定卡片数据,智能体则通过卡片回复。 3. 选择发布渠道,重点如飞书多维表格,填写上架信息(为了快速审核,选择仅自己可用),确认发布等待审核,审核通过后即可在多维表格中使用。 4. 创建飞书多维表格,添加相关字段,配置选择“自动更新”,输入相关字段后,“文案视频自动化”字段捷径会自动调用工作流,生成视频。 5. 表单分享,实现“填写表单,自动创建文案短视频”的效果。 6. 全自动视频合成使用多视频融合插件,一键导出成品。但需注意节点产生的视频是异步生成,可能无法马上展现,需耐心等待几秒。 如果您还有其他疑问或需要进一步的帮助,请随时联系。
2025-04-14
生成提示词的提示词
以下是关于生成提示词的相关内容: 生成提示词的思路和方法: 可以根据效果好的图片中的高频提示词去反推效果,结合不同字体效果的描述,打包到一组提示词中。提示词给到 AI 后,AI 会根据给定文字的文义,判断适合的情绪风格,然后给出适合情绪的字体和风格描述、情感氛围等,加上一些质量/品质词,形成输出提示词结构。为了让 AI 更能描述清晰风格,可以先给定多种参照举例。 具体操作步骤: 打开 AI 工具的对话框,将相关提示词完整复制粘贴到对话框。推荐使用 ChatGPT 4o。 当 AI 回复后,发送您想要设计的文字。可以仅发送想要的文字,也可以发送图片(适合有多模态的 AI)让 AI 识别和反推。 将 AI 回复的提示词部分的内容复制到即梦 AI。 对生成提示词的一些观点: 提示词生成提示词并非必要,不一定能生成最好的 Prompt 框架,修改过程可能耗时且不一定能修改好,不如花钱找人写。 一句话生成完整符合需求的 Prompt 非常困难,只能大概给出框架和构思,需要更低成本地调整需求和修改 Prompt。 不同生图工具生成提示词的特点: 即使是简短的描述,生成的提示词也非常细节、专业。 会解析需求,找出核心要点和潜在的诠释点,并给出不同的提示词方案。 提示词构建更多在于增强,而不是发散,生成的内容更符合期望。 同时生成中、英双版本,国内外工具通用无压力。 14 款 AI 生图工具实测对比: 本次实测用到的工具包括国内版的即梦 3.0(https://jimeng.jianying.com/aitool/home)、WHEE(https://www.whee.com)、豆包(https://www.doubao.com/chat)、可灵(https://app.klingai.com/cn/texttoimage/new)、通义万相(https://tongyi.aliyun.com/wanxiang/creation)、星流(https://www.xingliu.art)、LibiblibAI(https://www.liblib.art),以及国外版的相关工具。
2025-04-20
有没有能根据描述,生成对应的word模板的ai
目前有一些可以根据描述生成特定内容的 AI 应用和方法。例如: 在法律领域,您可以提供【案情描述】,按照给定的法律意见书模板生成法律意见书。例如针对商业贿赂等刑事案件,模拟不同辩护策略下的量刑结果,对比并推荐最佳辩护策略,或者为商业合同纠纷案件设计诉讼策略等。 在 AI 视频生成方面,有结构化的提示词模板,包括镜头语言(景别、运动、节奏等)、主体强化(动态描述、反常组合等)、细节层次(近景、中景、远景等)、背景氛围(超现实天气、空间异常等),以及增强电影感的技巧(加入时间变化、强调物理规则、设计视觉焦点转移等)。 一泽 Eze 提出的样例驱动的渐进式引导法,可利用 AI 高效设计提示词生成预期内容。先评估样例,与 AI 对话让其理解需求,提炼初始模板,通过多轮反馈直至达到预期,再用例测试看 AI 是否真正理解。 但需要注意的是,不同的场景和需求可能需要对提示词和模板进行针对性的调整和优化,以获得更符合期望的 word 模板。
2025-04-18
如何自动生成文案
以下是几种自动生成文案的方法: 1. 基于其它博主开源的视频生成工作流进行优化: 功能:通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。 涉及工具:Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程)。 大体路径:通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频;发布 coze 智能体到飞书多维表格;在多维表格中使用字段捷径,引用该智能体;在多维表格中创建自动化流程,推送消息给指定飞书用户。 2. 生成有趣的《图文短句》: 实现原理: 先看工作流:包括第一个大模型生成标题、通过“代码节点”从多个标题中获取其中一个(可略过)、通过选出的标题生成简介、通过简介生成和标题生成文案、将文案进行归纳总结、将归纳总结后的文案描述传递给图像流。 再看图像流:包括提示词优化、典型的文生图。 最终的 Bot 制作以及预览和调试。 3. 腾讯运营使用 ChatGPT 生成文案: 步骤:通过 ChatGPT 生成文案,将这些文案复制到支持 AI 文字转视频的工具内,从而实现短视频的自动生成。市面上一些手机剪辑软件也支持文字转视频,系统匹配的素材不符合要求时可以手动替换。例如腾讯智影的数字人播报功能、手机版剪映的图文成片功能。这类 AI 视频制作工具让普罗大众生产视频变得更轻松上手。
2025-04-15
如何通过输入一些观点,生成精彩的口播文案
以下是通过输入观点生成精彩口播文案的方法: 1. 基于其它博主开源的视频生成工作流进行功能优化,实现视频全自动创建。 效果展示:可查看。 功能:通过表单输入主题观点,提交后自动创建文案短视频,并将创建完成的视频链接推送至飞书消息。 涉及工具:Coze平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程)。 大体路径: 通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频。 发布 coze 智能体到飞书多维表格。 在多维表格中使用字段捷径,引用该智能体。 在多维表格中创建自动化流程,推送消息给指定飞书用户。 2. 智能体发布到飞书多维表格: 工作流调试完成后,加入到智能体中,可以选择工作流绑定卡片数据,智能体则通过卡片回复。 选择发布渠道,重点是飞书多维表格,填写上架信息(为快速审核,选择仅自己可用),等待审核通过后即可在多维表格中使用。 3. 多维表格的字段捷径使用: 创建飞书多维表格,添加相关字段,配置后使用字段捷径功能,使用自己创建的 Coze 智能体。 表单分享,实现填写表单自动创建文案短视频的效果。 4. 自动化推送:点击多维表格右上角的“自动化”,创建所需的自动化流程。 另外,伊登的最新 Deepseek+coze 实现新闻播报自动化工作流如下: 第一步是内容获取,只需输入新闻链接,系统自动提取核心内容。开始节点入参包括新闻链接和视频合成插件 api_key,添加网页图片链接提取插件,获取网页里的图片,以 1ai.net 的资讯为例,添加图片链接提取节点,提取新闻主图,调整图片格式,利用链接读取节点提取文字内容,使用大模型节点重写新闻成为口播稿子,可使用 Deepseek R1 模型生成有吸引力的口播内容,若想加上自己的特征,可在提示词里添加个性化台词。
2025-04-15
小红书图文批量生成
以下是关于小红书图文批量生成的详细内容: 流量密码!小红书万赞英语视频用扣子一键批量生产,这是一个保姆级教程,小白都能看得懂。 原理分析: 决定搞之后,思考生成这种视频的底层逻辑,进行逆推。这种视频由多张带文字图片和音频合成,带文字图片由文字和图片生成,文字和图片都可由 AI 生成,音频由文字生成,文字来源于图片,也就是说,关键是把图片和文字搞出来。 逻辑理清后,先找好看的模版,未找到好看的视频模版,最后看到一个卡片模版,先把图片搞出来,才有资格继续思考如何把图片变成视频,搞不出来的话,大不了不发视频,先发图片,反正图片在小红书也很火。 拆模版: 要抄这种图片,搞过扣子的第一反应可能是用画板节点 1:1 去撸一个,但扣子的画板节点很难用,Pass 掉。用 PS 不行,太死板不灵活,html 网页代码可以,非常灵活。经过 2 个多小时和 AI 的 battle,用 html 代码把图片搞出来了。这里不讲代码怎么写,直接抄就行。要抄,首先要学会拆,不管用什么方式批量生成这样的图片,都必须搞清楚里面有哪些是可以变化的参数,也就是【变量】,如主题、主题英文、阶段、单词数、图片、正文、翻译、普通单词、重点单词等。 想方法: 大概知道批量生成这样的图片需要搞清楚哪些参数,图片用 html 代码搞出来了。但问题是视频怎么搞,这种视频由多张不同的【带文字的图片】生成,比如读到哪句,哪句就高亮起来,图片也可以随着读到的句子变更。最后,视频就是用这样的图片一张张拼起来的。
2025-04-14
ai如何什么生成表格
AI 生成表格通常可以通过以下技术实现: 1. 利用变分自编码器(VAEs)和序列到序列模型(Seq2Seq)等技术生成表格文件、表格公式,并清理、创建、转换和分析表格中的文本数据,例如表格结构设计、数据分析表、表格自动化等。 2. 借助一些办公软件中的 AI 插件,如飞书中的相关插件,先通过 AI 理解图片中的内容并填充到表格列中,然后利用自带插件总结生成相关指令。 此外,在多模态数据生成中,结构化数据生成包括表格生成,多模态合成数据从大类来看有非结构化数据(图片、视频、语音等)和结构化数据(表格等)两大类。非结构化数据生成包括文本生成、图像生成、音频和语音生成、视频生成、3D 生成、合成数据生成等。
2025-04-14