Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

好用的大语言模型

Answer

目前好用的大语言模型有以下几种:

  1. OpenAI 的 GPT-4:是最先进和广泛使用的大型语言模型之一,在多种任务上表现卓越,包括文本生成、理解、翻译以及各种专业和创意写作任务。
  2. Anthropic 公司的 Claude 3:在特定领域和任务上表现出色。
  3. 谷歌的 Gemini。
  4. 百度的文心一言。
  5. 阿里巴巴的通义大模型:通义千问 2.0 在代码、上下文对话基础能力上排名国内第一,各项能力较为均衡,位于国内大模型第一梯队。适用于金融、医疗、汽车等垂直专业场景,以及代码生成与纠错、实时搜索信息、通用工具调用、办公等场景。
  6. OPPO 的 AndesGPT:具有对话增强、个性专属和端云协同三大技术特征,已接入 OPPO 智能助理新小布,可用于用机助手、内容创作、超级问答、专属 AI、日程管理等全新能力,聚焦在移动设备端的应用。
  7. 百川智能的 Baichuan2-13B-Chat:在逻辑推理、知识百科、生成与创作、上下文对话等基础能力上排名 200 亿参数量级国内模型第一,可应用场景广泛且可以私有化部署。

如果想了解国内的大模型效果,可以参考第三方基准评测报告:2023 年度中文大模型基准测评报告.pdf 。请注意,以上内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:目前最火最好用的的大语言模型是哪个

[OpenAI](https://openai.com/)的GPT-4是其中一个最先进和广泛使用的大型语言模型。它在多种任务上展示了卓越的性能,包括文本生成、理解、翻译以及各种专业和创意写作任务。GPT-4通过大量数据的学习,能够理解和生成人类语言,展示了在处理复杂问题和理解上下文方面的深度能力。除了OpenAI的GPT系列,还有其他一些重要的大型语言模型,如Anthropic公司[Claude 3](https://www.anthropic.com/news/claude-3-family)、谷歌的Gemini、百度的文心一言、阿里巴巴的通义大模型等,它们在特定领域和任务上也表现出了卓越的能力。如果想了解国内的大模型效果,可以参考第三方基准评测报告:[2023年度中文大模型基准测评报告.pdf](https://waytoagi.feishu.cn/wiki/ANF7wRcJPixR00kWJINcoP1GnGf)内容由AI大模型生成,请仔细甄别。类似问题:最强大语言模型是哪个?

2023年度中文大模型基准测评报告.pdf

通义千问2.0在代码、上下文对话基础能力上排名国内第一,在计算、语言理解与抽取、生成与创作、角色扮演、工具使用的能力上排名国内前三。通义千问2.0各项能力上较为均衡,在知识百科、安全方面还有一定优化空间。综合来看,通义千问2.0位于国内大模型第一梯队。适合应用:通义千问2.0专业维度上的能力较强,可应用于相对专业复杂场景。基于在SuperCLUE测评上的表现,重点推荐应用于金融、医疗、汽车等垂直专业场景。另外,在代码生成与纠错、实时搜索信息、通用工具调用、办公等场景中也会有不错的表现,优秀模型:AndesGPT(OPPO)简介:AndesGPT是OPPO自主训练的大语言模型。于11月16日2023 OPPO开发者大会上正式推出。AndesGPT对话增强、个性专属和端云协同三大技术特征。目前已接入OPPO智能助理新小布,可用于用机助手、内容创作、超级问答、专属AI、日程管理等全新能力,正在公测中。模型特点:AndesGPT在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三。在专业技能和语言任务上均有不俗表现,综合来看,AndesGPT是一个各项能力较为均衡的大模型,在国内大模型厂商中比较有竞争力。适合应用:

2023年度中文大模型基准测评报告.pdf

AndesGPT聚焦在移动设备端的应用。主要涵盖四个方向:知识、记忆、工具、创作。目前AndesGPT已支持使用“系统设置、一方应用、三方服务、代码解释器”等各类工具。并且AndesGPT已全面支持文生文、文生图等场景,可以为用户提供真实有用的技能。优秀模型:Baichuan2-13B-Chat(百川智能)简介:Baichuan2-13B-Chat是百川智能自主训练的开源大语言模型。百川智能于6月15日开源Baichuan1、9月6日开源Baichuan2,10月31日发布Baichuan2192K。是中文开源模型的主导力量。模型特点:Baichuan2-13B-Chat在逻辑推理、知识百科、生成与创作、上下文对话等基础能力上排名200亿参数量级国内模型第一,其中逻辑推理能力超过34B参数量级的大模型,生成与创作能力超过72B参数量级的模型,表现不俗。在计算和代码能力上有一定优化空间。综合来看,Baichuan2-13B-Chat在同等量级开源模型中非常有竞争力。适合应用:Baichuan2-13B-Chat可应用的场景相对广泛且可以私有化部署。重点推荐在小说/广告/公文写作等内容创作场景、智能客服/语音助手以及任务拆解规划等场景。另外,Baichuan2-13B-Chat可以部署在教育、医疗、金融等垂直行业中应用,同时可部署在低算力终端处理基础智能任务。优秀模型:智谱清言(清华&智谱AI)简介:

Others are asking
有哪些好用的法律ai
以下是一些好用的法律 AI 应用场景和示例: 1. 诉讼策略制定: AI 将基于商标法等相关条款和案例法,为商标侵权案件提供诉讼策略,包括对原告商标权利的分析、被告侵权行为的评估、关键证据搜集建议、法律抗辩点及和解或调解策略。 其他例子: 为专利侵权案件制定诉讼策略,分析专利有效性、被告侵权行为及抗辩理由,提出证明侵权和计算损害赔偿的建议。 针对劳动合同纠纷案件,分析员工权益和雇主责任,提出诉讼策略,包括主张权益、证据收集重点及证明雇主违约行为。 在知识产权许可诉讼中,分析许可协议条款和双方权利义务,提出诉讼策略,包括证明许可协议违反、计算损失赔偿及可能的合同解除条件。 模拟法庭,如模拟商业合同违约的法庭审理,分析双方论点、证据和法律依据,预测判决结果,给出优化法庭陈述和证据呈现的建议。 2. 法律意见书撰写: AI 根据案件背景、证据材料和法律法规,自动撰写初步法律意见书,包含案件事实梳理、法律分析和结论。 其他例子: 针对商业秘密泄露案件,分析法律责任和赔偿范围,撰写法律意见书,提供应对策略。 为计划上市的公司提供关于公司治理结构的法律意见书,确保符合相关法规要求。 就消费者权益保护案件提供法律意见,分析商家赔偿责任和消费者维权途径,制定应对措施。 起草股权转让协议,包括转让方和受让方信息、股权转让份额、价格、支付方式和时间表、先决条件、双方权利义务、保密、违约责任和争议解决条款等。 3. 指令风格和技巧: 可指定 AI 模仿某位资深律师的逻辑严谨和言简意赅的风格,使其提供的信息更符合专业律师的沟通和表达习惯。 运用 PEMSSC 方法,如选择个性化的风格、给出参考或逻辑结构、从多个角度思考、进行总结概括、使用分隔符号区分等。 个性化风格:选择幽默且富有洞察力的风格,融入创新视角。 参考和逻辑结构:在提供法律建议时,采用 SWOT 分析法或 4P 原则等逻辑结构。 多角度思考:在分析商事诉讼时,从市场趋势、竞争对手行为、战略规划、财务状况和市场前景等角度思考诉讼策略。
2025-04-18
我想找一个好用的ai绘画,有什么推荐吗
以下是为您推荐的一些好用的 AI 绘画平台: 1. Midjourney:综合体验较好,尤其是其 v6 版本。 2. 可灵 AI:成熟的综合类工具。 3. 即梦 AI:成熟的综合类工具。 4. Krea:集成平台。 5. MewXAI:操作简单,功能丰富,包括 MX 绘画、MX Cute、MJ 绘画、边缘检测、室内设计、姿态检测、AI 艺术二维码、AI 艺术字等。访问地址:https://www.mewxai.cn/
2025-04-15
对于用cursor来开发,有没有好好用prompt来使cursor变得更加好用
以下是关于如何用 prompt 使 Cursor 变得更好用的相关内容: 在 prompt 方面,Devin 有一个特别有帮助的文档(https://docs.devin.ai/learnaboutdevin/prompting),它会教您什么样的 prompt 在与 Devin 沟通时最有效,比如明确定义成功的标准,如跑通某个测试或访问某个链接能对得上等。将同样的原则应用到 Cursor 中,会发现 Cursor 变得聪明很多,能自主验证任务完成情况并进行迭代。 Cursor 在生成单测方面表现出色。相对 GPT 等工具,Cursor 解决了上下文缺失和难以实现增量更新的问题。它可以向量化整个代码仓库,在生成单测代码时能同时提供目标模块及对应的上下游模块代码,生成结果更精确。例如,使用适当的 Prompt 能返回基于 Vitest 的结果,调整成本较小。 Cursor 支持使用.cursorrules 文件设定项目的系统提示词,针对不同语言可设定不同的 Prompt。@AIChain 花生做了一个 Cursor 插件解决提示语管理问题,可选择不同的.cursorrules 文件,还可从 https://cursor.directory/ 和 https://cursorlist.com/ 寻找提示词。此外,还有一个提示语小技巧,给已有的提示语追加上特定规则,可使模型在搜索资源和思考时默认使用英语,回复转换成中文,或更灵活地根据提问语言进行回复。
2025-04-14
介绍下即梦3.0的模型,为什么很多人说它好用
即梦 3.0 模型具有以下显著特点,这也是很多人认为它好用的原因: 1. 超真实: 质感提升:图片不再有磨皮过度的“假脸感”、“油腻感”,皮肤纹理、物品材质更自然。 情绪到位:人物表情不再僵硬或眼神空洞,能表现出更细腻、更有感染力的情绪,如开心、严肃、沮丧落泪等。 2. 超高清:默认能生成 1K 分辨率图片,还支持到 2K,画面更清晰,结构更准确。 3. 超专业: 影像大师:能更精准地理解电影类型(如恐怖片、爱情片、公路片)和镜头语言(如大特写、鱼眼镜头、俯视视角)。 动漫高手:动漫风格更多元(日漫、国漫、皮克斯风等),细节更丰富,色彩更统一,告别“抠图感”。 文字设计:不仅能准确生成大字、小字,还支持超多字体(细体、粗体、可爱体、毛笔字、涂鸦体等),排版更专业、更有设计感。 4. 超智能:能更好地理解自然语言描述,简单的指令也能出好图,支持“一句话 P 图”的自然语言编辑能力。 此外,即梦 3.0 在文字处理方面表现出色,不仅提升了大字的准确性、设计感和丰富度,还大幅解决了小字的稳定性问题。相比之下,在中文场景中,其他模型可能存在一些局限性,如 GPT4o 可能存在不识别某些中文字、难以生成特别设计感的字体等问题。而即梦 3.0 作为中文 AI 绘图模型,在中文的表现性上对国内用户更有用且友好。
2025-04-14
现在比较好用的AI硬件工具推荐一下,比如鼠标,眼镜,耳机啥的
以下是为您推荐的一些 AI 硬件工具: 1. 对于将 Raspberry Pi 连接到其他设备的配件,您可以参考: 防止过热的散热器 MicroUSB 转 USB 适配器,用于 Logitech 键盘的无线传感器 用于显示器的 MiniHDMI 转 HDMI 适配器 键盘和鼠标:推荐 2. 在可穿戴方面,以 GenAI 硬件为例,Meta 雷朋眼镜是具有代表性的产品。您还可以查看 GenAI 硬件榜单获取更多信息,比如: ,该榜单包含多个分类,数据来源包括 google、tiktok、twitter、亚马逊等。
2025-04-13
国内好用的文档排版AI工具
以下是国内一些好用的文档排版 AI 工具: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档整体风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,保持原意。 3. Latex:虽不是纯粹的 AI 工具,但在学术论文排版方面广泛使用,有许多 AI 辅助的编辑器和插件简化排版过程。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业,保持原始意图。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 受欢迎;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。 此外,还有一些与文档相关的 AI 工具,如文章润色工具: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,可用于多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,帮助用户在写作前进行头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,优化文章语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,可根据输入生成符合要求的学术论文。 制作 PPT 的 AI 工具: 1. Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。 2. 美图 AI PPT:由美图秀秀开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素。 3. Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能。 4. 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-13
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
用what,why,how,will,next,作为五个力量,用熵增熵减作为二进制,组成的底层语言用其中的next作为自主学习探索动力的自进化AI,潜力怎么样?
用 what、why、how、will、next 作为五个力量,以熵增熵减作为二进制,组成底层语言,并以其中的 next 作为自主学习探索动力的自进化 AI 具有一定的潜力,但也面临一些挑战。 从潜力方面来看,这种设计可能有助于 AI 系统更有针对性地进行自主学习和探索。例如,what 可以帮助明确要学习和理解的对象或概念;why 有助于挖掘背后的原因和逻辑,促进更深入的理解;how 能够指导实现目标的方法和步骤;will 可以对未来的发展进行预测和规划。而将 next 作为自主学习探索的动力,有可能推动 AI 不断开拓新的知识领域。 然而,也存在一些挑战。首先,熵增熵减作为二进制的基础,其在实际应用中的有效性和稳定性需要进一步验证和优化。其次,如何准确地定义和运用这五个力量,以及它们之间的协同关系,需要精细的设计和调试。再者,将这种复杂的底层语言转化为实际的算法和模型实现,具有较高的技术难度。 总之,这种自进化 AI 的概念具有创新性和潜力,但需要在理论和实践上进行深入的研究和探索,以充分发挥其优势并克服可能的问题。
2025-04-12
扣子如何改变回复的语言风格
要改变回复的语言风格,可以参考以下方法: 1. 对于风格类的 Bot,提示词中的 Fewshot 对输出风格影响较大,可先找预期相关人的风格示例并修改。 2. 在 Examples 里使用特定开头的词,如“Fword”,开头字符会显著影响输出内容。 3. 加星号的部分代表加粗,根据自注意力机制可提升提示词中的关键词效果。 4. 能力方面可使用自带的 Bing 搜索和图片识别,根据需求选择,如避免 Webpilot 以免语气变温和。 5. 可根据需求决定是否加入绘画功能。 6. 防护词可参考,但没有完美的防御提示词。 7. 回复风格可来自自己的群聊机器人的风格嫁接。 8. 最后加入一些小 Tips 进一步提升个性化效果。 在场景方面,可以问 Bot 对内容的看法,或让其帮忙分析事情以获得更接地气的表述。 另外,编写提示时: 简单任务场景: 设定人物,描述 Bot 所扮演的角色或职责、回复风格。 描述功能和工作流程,约定 Bot 在不同场景下的回答方式,强调调用工具以保证回复准确性,也可为 Bot 提供回复格式示例。 指示 Bot 在指定范围内回答。 复杂任务场景:推荐使用结构化格式编写提示,扣子支持将 Bot 的提示自动优化成结构化内容,可直接使用或修改。
2025-04-09
你都融合了哪些大语言模型?
以下是一些融合的大语言模型: 1. LuotuoChineseLLM: 地址: 简介:囊括一系列中文大语言模型开源项目,包含基于已有开源模型(ChatGLM、MOSS、LLaMA)进行二次微调的语言模型、指令微调数据集等。 2. Linly: 地址: 简介:提供中文对话模型 LinlyChatFlow、中文基础模型 LinlyChineseLLaMA 及其训练数据。中文基础模型以 LLaMA 为底座,利用中文和中英平行增量预训练。项目汇总了目前公开的多语言指令数据,对中文模型进行了大规模指令跟随训练,实现了 LinlyChatFlow 对话模型。 3. ChatYuan: 地址: 简介:元语智能发布的一系列支持中英双语的功能型对话语言大模型,在微调数据、人类反馈强化学习、思维链等方面进行了优化。 4. ChatRWKV: 地址: 简介:开源了一系列基于 RWKV 架构的 Chat 模型(包括英文和中文),发布了包括 Raven,NovelChnEng,NovelCh 与 NovelChnEngChnPro 等模型,可以直接闲聊及进行诗歌、小说等创作,包括 7B 和 14B 等规模的模型。 此外,还有以下相关信息: 1. 本地部署资讯问答机器人: Ollama 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,可用于不同应用场景。 Ollama 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 Ollama 提供模型库,用户可从中下载不同模型,有不同参数和大小以满足需求和硬件条件,可通过 https://ollama.com/library 查找。 用户可通过简单步骤自定义模型,如修改温度参数调整创造性和连贯性,或设置特定系统消息。 Ollama 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 Ollama 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 2. AIGC 落地应用大全中的案例: Poe(强烈推荐): 推荐指数:????? 由 Quora 开发,有 APP 版本,支持跨端使用。 集成了 Chat GPT、GPT4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。 不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。 Dragonfly 擅长给出较短回答,并擅长在输入中给出示例时遵循指示。 Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用 Chat GPT 时的体验(但和 Chat GPT 一样,Claude 也时常会给出一些错误回复,一些问题可在两个模型中都问一遍提升信息准确性)。 此外支持分享用户和模型的对话内容。但 GPT4、Claude+产品需要付费订阅使用。 访问地址: Poe 中的提问引导真的能够启发到用户。 支持 Explore Chatbot,但丰富度不如后续要介绍的 Character。 midjourney prompt 扩写 Chatbot 能力很惊人。
2025-04-08
你好,你是基于哪个大语言模型的人工智能?
我并非基于某个特定的大语言模型。AI 领域中的语言模型众多,例如 GPT3 等。大语言模型通常是使用深度学习和神经网络创建的,基于人类训练数据来理解单词、代码语法等。像生成式 AI 可以生成文本、图片、音频、视频等内容形式,其中包括大语言模型。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络。
2025-04-08
大语言模型能力排行榜
以下是一些大语言模型能力排行榜的相关信息: Open LLM Leaderboard: 地址: 简介:由HuggingFace组织的一个LLM评测榜单,目前已评估了较多主流的开源LLM模型。评估主要包括AI2 Reasoning Challenge、HellaSwag、MMLU、TruthfulQA四个数据集上的表现,主要以英文为主。 chinesellmbenchmark: 地址: 简介:中文大模型能力评测榜单,覆盖百度文心一言、chatgpt、阿里通义千问、讯飞星火、belle/chatglm6b等开源大模型,多维度能力评测。不仅提供能力评分排行榜,也提供所有模型的原始输出结果。 聊天机器人竞技场:由伯克利的一个团队管理,根据ELO评级对不同的语言模型进行排名,计算ELO的方式与国际象棋中的计算方式非常相似。 智源评测:豆包模型在其中表现出色,荣获大语言模型第一,视觉理解第二、文生图第二、文生视频第二,在匿名投票竞技场中排名第二,仅次于OpenAI。 地址:
2025-03-31
自然语言转换为sql
以下是关于自然语言转换为 SQL 的相关信息: DuckDBNSQL7B 模型能够将自然语言转换成 SQL 代码,使非专业用户能轻松与数据库交互,它基于大量真实和合成的 DuckDB SQL 查询训练。相关链接:https://github.com/NumbersStationAI/DuckDBNSQL 、https://x.com/xiaohuggg/status/1751081213459415164?s=20 Claude 官方提示词中有将日常语言变成 SQL 查询语句的相关内容。 以下是一些推荐的 text2sql 相关的 AI 工具及其链接: Text2SQL:将英文转换为 SQL 查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthat ai2sql:高效且无错误的 SQL 构建器。链接:https://www.ai2sql.io/ EverSQL:从 SQL 查询翻译英文文本。链接:https://www.eversql.com/sqltotext/ SupaSQL:从 NLP 生成 SQL 查询。链接:https://supasql.com/ SQLgenius:使用自然语言的 SQL 查询生成器。链接:https://sqlgenius.app/ SQL Chat:与数据库进行自然语言聊天的 SQL 客户端。链接:https://www.sqlchat.ai/ SQL Ease:从自然语言输入生成 SQL 查询。链接:https://sqlease.buildnship.in/ Talktotables:翻译和查询数据库。链接:https://talktotables.com/ 此外,还有几个知名的 text2sql 项目,如 SQLNet(使用深度学习方法解决 text2sql 任务的项目)、Seq2SQL(将自然语言转换为 SQL 查询的序列到序列模型)、Spider(一个大规模的 text2sql 数据集及其相关的挑战)
2025-03-31