Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

供应链管理

Answer

在制造业中,AI 在供应链管理方面有以下应用:

  1. 根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。
  2. 模拟不同的市场条件和供应链动态,优化库存管理和物流配送。

在 B 端,供应链管理可能是大模型服务的辐射范围之一,但在面对复杂的巨头/独角兽公司业务时,不太可能仅用 GPT 解决。目前可能还未达到解决相关能力问题的时候,可通过将私有领域知识训练在私有模型或训练小模型、构建请求链等方式来解决。

总的来说,AI 技术正在为供应链管理带来诸多优化和改进。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:有制造业的 AI 应用吗?

在制造业领域也有一些AIGC(AI Generated Content)的应用:1.产品设计和开发:利用AI生成工具如Adobe Firefly、Midjourney等,可以根据文字描述快速生成产品的3D模型、渲染图、插图等设计元素,大幅提高产品设计效率。2.工艺规划和优化:结合大语言模型的自然语言处理能力,可以自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。3.设备维护和故障诊断:利用AI模型分析设备运行数据,可以预测设备故障,并自动生成维修建议,提高设备可靠性。4.供应链管理:AI可以根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。5.客户服务:基于对话模型的AI客服机器人,可以自动生成个性化的客户回复,提升客户体验。总的来说,AIGC技术正在制造业各环节得到广泛应用,从产品设计到生产管理再到客户服务,都能发挥重要作用,提高企业的效率和竞争力。内容由AI大模型生成,请仔细甄别

质朴发言:AI产业背后的亿级美金市场:合成数据|Z研究第 4 期

合成数据的商业价值在于应用、预测和生成a.应用:行业垂类场景优势和价值:体量大、安全性高、可定制、噪音少、成本低、获取难度低、符合规定具体场景:制造业:产品设计:用合成数据模拟测试,减少实物样品的制造次数。供应链管理:模拟不同的市场条件和供应链动态,优化库存管理和物流配送。质量控制:用来训练机器视觉系统,提高产品检验的效率和准确性。医疗业:疾病预测:训练疾病预测模型,辅助医生进行早期诊断。临床试验:模拟临床试验,预测药物效果和副作用。患者隐私保护:进行医疗研究和分析,保护患者隐私。金融业:风险管理:模拟市场变化,评估金融产品的风险。欺诈检测:训练模型,识别潜在的金融欺诈行为。算法交易:开发和测试自动化交易算法。汽车出行:自动驾驶:训练自动驾驶系统,模拟各种道路和交通情况。交通模拟:模拟城市交通流量,优化交通规划和路线设计。安全性分析:进行碰撞测试和安全性分析。文娱传媒:个性化推荐:优化内容推荐算法,提高用户体验。虚拟现实:创造多样化的虚拟环境,用于游戏、影视制作等。内容审核:训练图像和文本审核系统,提高审核效率和准确性。b.预测:未来预测和决策场景优势和价值:干扰和偏见少、可创新、可定制、速度快、灵活性高具体场景:

质朴发言:从 GPTs 聊到 Agent、LLMOps 以及开源的新机会|Z 沙龙第 1 期

B端能落地的业务都是普通人能通过一小段时间和成本以及一些输入就能习得的。对应到企业场景,可能是:财报,供应链管理等。业务对外的信息管理,可能最先作为大模型服务的辐射范围(如产品入库记录,物料管理,合同管理)供应商有限数量时,尚且可以轻松进行流程梳理。但当面临一些供应链复杂的巨头/独角兽公司业务的时候,不太可能用GPT解决。目前可能还没有到解决Autonomy Agent或Multi-Agent能力问题的时候,因为我们Agent实现的单次请求及回复的“原子颗粒”都还没有达到一个很好的状态。把私有领域知识训练在一个私有的模型里面或直接去训练一个小模型解决这个问题(这种解决问题的语料也可能不存在)构建请求链:把问题拆解细分到Agent能解决的问题。Multi-agent的协同前提条件是多样化,如果没有解决这个问题,相当于多个Agent在同自己对话,就会出现价值观与角色趋同问题。Autonomy问题,预训练的通识性模型无法解决,通常要解决这个问题有两种思路:把私有领域知识训练在一个私有的模型里面或直接去训练一个小模型解决这个问题(这种解决问题的语料也可能不存在)构建请求链:把问题拆解细分到Agent能解决的问题。

Others are asking
AI如何应用到供应链中
AI 在供应链中的应用主要包括以下几个方面: 1. 预测性维护:AI 可以用于预测供应链中机器设备的故障,帮助避免停机,保障供应链的稳定运行。 2. 质量控制:通过检测产品缺陷,提高供应链中产品的质量。 3. 优化供应链:利用 AI 分析历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,从而提高供应链的效率和降低成本。 4. 风险管理:诸如保障技术和技术标准等可信 AI 工具能够支持供应链风险管理。这些工具还能通过在这些系统中建立合理的信任,推动 AI 的采用和应用,使用户相信整个供应链中的关键 AI 相关风险已被识别、解决和减轻。例如,通过描述制造商应采取的确保 AI 系统安全的措施,技术标准可以向 AI 系统的购买者和用户提供保证,即已采取了适当的以安全为重点的措施,最终鼓励采用 AI。 5. 责任评估与分配:对 AI 框架的评估将评估法律责任在不同的 AI 应用和系统中是否得到有效和公平的分配。在实施框架时,将持续广泛地收集来自监管机构、行业、学术界和民间社会关于其对 AI 生命周期中不同参与者的影响的证据,以持续监测框架对 AI 供应链中参与者的影响。特别关注基础模型,因为它们可能对生命周期问责制构成潜在挑战,尤其是作为开源模型时。通过集中评估是否有足够的 AI 问责措施,可以评估是否需要对整个经济和 AI 生命周期中的 AI 责任进行进一步干预。
2025-03-08
AI如何应用到供应链
AI 在供应链领域有以下应用: 1. 预测性维护:可预测机器故障,帮助工厂避免停机,保障供应链的稳定运行。 2. 质量控制:检测产品缺陷,提高产品质量,减少因质量问题导致的供应链中断。 3. 优化供应链:通过分析数据来优化供应链流程,提高效率和降低成本。 4. 风险管理:利用工具如保证技术和技术标准来支持供应链风险管理,增强对系统的信任,让用户确信关键的 AI 相关风险已被识别、处理和减轻。 5. 物流和配送:优化物流路线和配送计划,降低运输成本,提高货物送达的及时性和准确性。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-08
供应链预测
在制造业领域,AIGC 技术在供应链管理方面有以下应用: AI 可以根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 在中小企业转型中,关于供应链风险的管理: 首先,使用 AI 工具进行风险评估。利用数据分析软件、预测模型等工具,收集财务报表、市场数据、供应链信息等相关数据进行分析,预测潜在的风险,如财务风险、供应链风险等,并识别风险的来源和可能的影响。 其次,基于 AI 分析结果,制定相应的风险应对策略。根据风险类型和程度,制定具体的应对措施,如制定应急计划、调整业务策略等,并持续监控效果,根据变化调整策略,定期复审风险评估模型和管理策略。 在扣子模板分享中,关于供应链的部分: 供应链与营销联动:结合供应链数据,预测市场需求,调整生产和库存,避免缺货或积压。
2025-02-17
AI 如何服务供应链管理
AI 在供应链管理方面有以下应用: 1. 预测性维护:通过分析设备运行数据预测机器故障,帮助工厂避免停机,提高供应链的稳定性。 2. 质量控制:检测产品缺陷,提高产品质量,减少因质量问题导致的供应链中断。 3. 优化供应链:根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率,降低成本。 4. 工具支持:如利用保证技术和技术标准等工具,支持供应链风险管理,建立对系统的合理信任,使用户相信关键的 AI 相关风险已在整个供应链中得到识别、解决和缓解。 5. 责任评估:持续评估法律责任在 AI 中的分布是否有效和公平,特别是对于基础模型,关注其在生命周期问责方面可能带来的潜在挑战。通过集中评估 AI 问责是否有足够的措施,评估是否需要对整个经济和 AI 生命周期中的 AI 责任进行进一步干预。
2025-02-11
AI如何应用到供应链工作中
AI 在供应链工作中的应用主要包括以下几个方面: 1. 预测性维护:通过分析设备运行数据,预测机器故障,帮助避免供应链中的生产停机。 2. 质量控制:检测产品缺陷,提高供应链中产品的质量。 3. 采购计划和库存预测:根据历史数据和市场变化,自动生成采购计划和库存预测,优化供应链的资源配置。 4. 物流优化:对物流环节进行优化,提高运输效率,降低成本。 5. 风险管理:利用工具如保证技术和技术标准,支持供应链风险管理,建立对系统的信任,让用户相信关键的 AI 相关风险已被识别、解决和减轻。 6. 责任评估与分配:评估法律责任在 AI 供应链中的有效和公平分配,持续收集各方证据,监测框架对不同参与者的影响,关注基础模型带来的潜在挑战,评估是否需要进一步干预 AI 责任。
2025-02-07
我是做供应链相关的岗位,AI可以为我的职业赋能那些能力呢
AI 可以为您从事的供应链相关岗位赋能以下能力: 1. 预测性维护:通过分析设备运行数据预测可能的故障,帮助避免供应链中的生产停机。 2. 质量控制:检测产品缺陷,确保供应链中产品的高质量。 3. 优化供应链管理:根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等方案,提高供应链效率和降低成本。 在制造业领域,AI 的应用包括: 1. 产品设计和开发:利用 AI 生成工具快速生成产品的 3D 模型、渲染图、插图等设计元素,提高产品设计效率。 2. 工艺规划和优化:结合大语言模型生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 3. 设备维护和故障诊断:分析设备运行数据预测设备故障,并自动生成维修建议,提高设备可靠性。 4. 供应链管理:根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 5. 客户服务:基于对话模型的 AI 客服机器人,自动生成个性化的客户回复,提升客户体验。 在医疗药品零售领域,AI 的应用有: 1. 药品推荐系统:利用机器学习算法分析用户购买记录、症状描述等数据,为用户推荐合适的非处方药品和保健品,提升销售转化率。 2. 药品库存管理:通过分析历史销售数据、天气、疫情等因素,预测未来某段时间内的药品需求量,优化药店的库存管理策略,降低成本。 3. 药品识别与查询:借助计算机视觉技术,用户可以用手机拍摄药品图像,AI 系统自动识别药名并提供说明、用法、禁忌等信息查询服务。 4. 客户服务智能助手:基于自然语言处理技术,AI 虚拟助手可以回答顾客关于购药、用药、保健等常见问题,减轻人工客服的工作压力。 5. 药店运营分析:AI 可以分析药店的销售、顾客流量、库存等大数据,发现潜在的运营问题和优化空间,为决策提供参考。 6. 药品质量监控:通过机器视觉、图像识别等技术,AI 能够自动检测药品的包装、标签、颜色等是否合格,及时发现问题。 7. 药品防伪追溯:利用区块链等技术,AI 可以实现全流程的药品溯源,确保药品供应链的安全性和真实可信度。
2025-01-26
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
请找到 AI 用于知识管理的案例
以下是一些 AI 用于知识管理的案例: 1. 在法学领域,当模型培训针对组织内特定的基于文本的知识体系进行微调时,生成式人工智能可以有效地管理组织的知识。例如摩根士丹利正在与 OpenAI 的 GPT3 合作,微调财富管理内容的培训,以便财务顾问既可以搜索公司内部的现有知识,又可以轻松地为客户创建量身定制的内容。 2. 在构建高效的知识管理体系方面,可以通过一系列创新的 AI 应用来实现。比如,AI 可以通过分析工作模式和内容类型,自动生成提示词,帮助将信息和知识分类到 PARA(项目、领域、资源、档案)的相应部分,还能帮设计笔记标签系统。此外,知识助手 Bot 可以根据学习进度和兴趣点,定期推送相关的文章、论文和资源,实现渐进式积累领域知识。 3. 在代码库相关的知识管理中,Cursor 有针对大代码库精准找到相关函数,并利用其信息帮助撰写代码的功能。对于非开发性质的问答,它是一个天然的 RAG 引擎。在问答窗口使用特定操作时,它会先在当前文件夹下搜索并显示相关文档和相关度,最后用这些信息构建提示词完成生成。而且,它能与私有文档自然结合进行问答,并将新生成的见解沉淀成新文档,形成知识闭环,提高知识检索和管理的效率。
2025-04-14
如何运用ai写作一篇行政管理专业本科毕业论文
以下是运用 AI 写作一篇行政管理专业本科毕业论文的一些参考方法: 首先,您可以向 LLM 提供关于您的背景信息和具体指令,例如:“根据以下关于我的信息,写一篇行政管理专业本科毕业论文:”。但需要注意的是,利用 AI 写作论文并非是道德的使用方式,了解这种可能性的存在以及它已被部分学生使用这一情况很重要。这超出了简单介绍的范围,关于 LLM 或整个生成式 AI 引入的所有可能的伦理、法律或道德问题,不在此详细讨论。另一方面,如果您是接收方,最好为您的组织准备好迎接各种 AI 生成的内容。幸运的是,对于此类情况,已经有检测 AI 生成内容的相关努力正在进行。
2025-04-14
请给我提供一个 AI辅助我进行知识管理的方案
以下是一个 AI 辅助知识管理的方案: 1. 利用提示词规划 PARA 分类模式:PARA 代表项目(Projects)、领域(Areas)、资源(Resources)和档案(Archives)。AI 可分析您的工作模式和内容类型,自动生成提示词,助您将信息和知识分类到相应部分,简化分类过程,加快组织和检索信息。核心是理解以行动为驱动的笔记逻辑。 2. 借助提示词设计笔记标签系统:有效的标签系统对知识管理很关键,AI 能分析笔记内容和使用习惯,推荐合适的标签和结构,提高检索效率。 3. 让知识助手 Bot 渐进式积累领域知识:随着在特定领域的深入,需要系统积累和更新知识。知识助手 Bot 可根据学习进度和兴趣点,定期推送相关文章、论文和资源,实现渐进式学习,扩展知识边界并确保知识更新。例如基于 dify.ai 将数百个思维模型整合成知识库,根据不同对话和条件判断为用户选择适用的思维模型分析工具,封装成智能分析的 Bot。 4. 基于已积累知识的 RAG 方法进行深度研究:RAG 是结合检索和生成的 AI 模型,应用于知识管理,能在深度研究时自动检索相关知识点和资料,辅助构建更全面深入的分析。 5. 打造个人知识导师,随时对话辅助梳理线索:创建个人知识管理员机器人,随时与之对话,询问特定知识点或寻求解决问题思路。它能基于知识库自学习,了解您的知识结构和需求,成为不可或缺的知识伙伴。 6. 构建最了解您的智能体作为 AI 写作助手:涵盖构思、草稿生成、内容迭代、润色与优化等全流程。构思阶段利用智能体生成创意点、主题或大纲;草稿生成基于构思让智能体生成文本草稿;内容迭代通过 promptchain 工具设计迭代提示修改完善草稿;润色与优化对最终文本进行语言风格和语调调整。通过实践和反馈优化 prompt 设计,使写作助手贴合个人风格和需求。 此外,生成式人工智能在知识管理应用程序方面也有新兴应用,例如用作管理组织内基于文本(或可能基于图像或视频)知识的手段。一些研究表明,针对组织内特定知识体系微调模型培训,可有效管理组织知识。一些公司正与领先的商业提供商合作探索基于生成式人工智能的知识管理理念,但用户可能需要培训或帮助来创建有效提示,且知识输出应用前可能仍需编辑或审查。
2025-04-11
AI如何优化库存管理、员工排班
以下是关于 AI 优化库存管理和员工排班的相关内容: 库存管理: 1. 利用 AI 预测需求,优化库存管理,减少积压和缺货情况。 2. AI 可以分析不同产品的销售速度、市场趋势等数据,为库存的补货和调整提供决策依据。 3. 通过 AI 生成的库存周转分析工具,预测滞销品并推荐促销策略。 员工排班: 1. 智能排班优化,根据客流预测自动调整员工排班表。 2. 实时话术提示工具,在员工与客户沟通时 AI 推荐应答策略。 3. 自动化周报生成,汇总销售数据、客户反馈生成可视化报告,为排班提供参考。 4. 培训模拟考试系统,基于产品知识库生成随机测试题,提升员工能力,优化排班安排。 5. 客户潜力评分系统,根据消费行为自动标记高价值客户,据此安排合适的员工服务。 6. 舆情预警系统,实时监测负面评价并推送处理建议,灵活调整员工工作安排。 7. 客户流失预测模型,通过行为数据预警流失风险,合理安排员工进行客户维护。 8. 会议纪要自动生成,转录会议录音并提取任务清单,辅助排班决策。 9. 员工满意度分析,通过匿名问卷分析员工工作痛点,优化排班以提高员工满意度。
2025-04-09