Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI 如何服务供应链管理

Answer

AI 在供应链管理方面有以下应用:

  1. 预测性维护:通过分析设备运行数据预测机器故障,帮助工厂避免停机,提高供应链的稳定性。
  2. 质量控制:检测产品缺陷,提高产品质量,减少因质量问题导致的供应链中断。
  3. 优化供应链:根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率,降低成本。
  4. 工具支持:如利用保证技术和技术标准等工具,支持供应链风险管理,建立对系统的合理信任,使用户相信关键的 AI 相关风险已在整个供应链中得到识别、解决和缓解。
  5. 责任评估:持续评估法律责任在 AI 中的分布是否有效和公平,特别是对于基础模型,关注其在生命周期问责方面可能带来的潜在挑战。通过集中评估 AI 问责是否有足够的措施,评估是否需要对整个经济和 AI 生命周期中的 AI 责任进行进一步干预。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:请问 AI 有哪些应用场景?

人工智能(AI)已经渗透到各行各业,并以各种形式改变着我们的生活。以下是一些人工智能的主要应用场景:1.医疗保健:医学影像分析:AI可以用于分析医学图像,例如X射线、CT扫描和MRI,以辅助诊断疾病。药物研发:AI可以用于加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。个性化医疗:AI可以用于分析患者数据,为每个患者提供个性化的治疗方案。机器人辅助手术:AI可以用于控制手术机器人,提高手术的精度和安全性。2.金融服务:风控和反欺诈:AI可以用于识别和阻止欺诈行为,降低金融机构的风险。信用评估:AI可以用于评估借款人的信用风险,帮助金融机构做出更好的贷款决策。投资分析:AI可以用于分析市场数据,帮助投资者做出更明智的投资决策。客户服务:AI可以用于提供24/7的客户服务,并回答客户的常见问题。3.零售和电子商务:产品推荐:AI可以用于分析客户数据,向每个客户推荐他们可能感兴趣的产品。搜索和个性化:AI可以用于改善搜索结果并为每个客户提供个性化的购物体验。动态定价:AI可以用于根据市场需求动态调整产品价格。聊天机器人:AI可以用于提供聊天机器人服务,回答客户的问题并解决他们的问题。4.制造业:预测性维护:AI可以用于预测机器故障,帮助工厂避免停机。质量控制:AI可以用于检测产品缺陷,提高产品质量。供应链管理:AI可以用于优化供应链,提高效率和降低成本。机器人自动化:AI可以用于控制工业机器人,提高生产效率。5.交通运输:

问:有制造业的 AI 应用吗?

在制造业领域也有一些AIGC(AI Generated Content)的应用:1.产品设计和开发:利用AI生成工具如Adobe Firefly、Midjourney等,可以根据文字描述快速生成产品的3D模型、渲染图、插图等设计元素,大幅提高产品设计效率。2.工艺规划和优化:结合大语言模型的自然语言处理能力,可以自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。3.设备维护和故障诊断:利用AI模型分析设备运行数据,可以预测设备故障,并自动生成维修建议,提高设备可靠性。4.供应链管理:AI可以根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。5.客户服务:基于对话模型的AI客服机器人,可以自动生成个性化的客户回复,提升客户体验。总的来说,AIGC技术正在制造业各环节得到广泛应用,从产品设计到生产管理再到客户服务,都能发挥重要作用,提高企业的效率和竞争力。内容由AI大模型生成,请仔细甄别

【法律法规】《促进创新的人工智能监管方法》.pdf

125 What is the UK constitution?The Constitution Unit,University College London,2023.55A pro-innovation approach to AI regulation1.84.Tools for trustworthy AI like assurance techniques and technical standards can support supply chain risk management.These tools can also drive the uptake and adoption of AI by building justified trust in these systems,giving users confidence that key AI-related risks have been identified,addressed and mitigated across the supply chain.For example,by describing measures that manufacturers should take to ensure the safety of AI systems,technical standards can provide reassurance to purchasers and users of AI systems that appropriate safety-focused measures have been adopted,ultimately encouraging adoption of AI.2.85.Our evaluation of the framework will assess whether the legal responsibility for AI is effectively and fairly distributed.As we implement the framework,we will continue our extensive engagement to gather evidence from regulators,industry,academia,and civil society on its impact on different actors across the AI life cycle.This will allow us to monitor the effects of our framework on actors across the AI supply chain on an ongoing basis.We will need a particular focus on foundation models given the potential challenges they pose to life cycle accountability,especially when available as open-source.By centrally evaluating whether there are adequate measures for AI accountability,we can assess the need for further interventions into AI liability across the whole economy and AI life cycle.Consultation questions:L1.What challenges might arise when regulators apply the principles across different AI applications and systems?How could we address these challenges through our proposed AI regulatory framework?L2.1.Do you agree that the implementation of our principles through existing legal frameworks will fairly and effectively allocate legal responsibility for AI across the life cycle?L.2.2.How could it be improved,if at all?

Others are asking
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
供应链管理
在制造业中,AI 在供应链管理方面有以下应用: 1. 根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 2. 模拟不同的市场条件和供应链动态,优化库存管理和物流配送。 在 B 端,供应链管理可能是大模型服务的辐射范围之一,但在面对复杂的巨头/独角兽公司业务时,不太可能仅用 GPT 解决。目前可能还未达到解决相关能力问题的时候,可通过将私有领域知识训练在私有模型或训练小模型、构建请求链等方式来解决。 总的来说,AI 技术正在为供应链管理带来诸多优化和改进。
2025-03-27
AI如何应用到供应链中
AI 在供应链中的应用主要包括以下几个方面: 1. 预测性维护:AI 可以用于预测供应链中机器设备的故障,帮助避免停机,保障供应链的稳定运行。 2. 质量控制:通过检测产品缺陷,提高供应链中产品的质量。 3. 优化供应链:利用 AI 分析历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,从而提高供应链的效率和降低成本。 4. 风险管理:诸如保障技术和技术标准等可信 AI 工具能够支持供应链风险管理。这些工具还能通过在这些系统中建立合理的信任,推动 AI 的采用和应用,使用户相信整个供应链中的关键 AI 相关风险已被识别、解决和减轻。例如,通过描述制造商应采取的确保 AI 系统安全的措施,技术标准可以向 AI 系统的购买者和用户提供保证,即已采取了适当的以安全为重点的措施,最终鼓励采用 AI。 5. 责任评估与分配:对 AI 框架的评估将评估法律责任在不同的 AI 应用和系统中是否得到有效和公平的分配。在实施框架时,将持续广泛地收集来自监管机构、行业、学术界和民间社会关于其对 AI 生命周期中不同参与者的影响的证据,以持续监测框架对 AI 供应链中参与者的影响。特别关注基础模型,因为它们可能对生命周期问责制构成潜在挑战,尤其是作为开源模型时。通过集中评估是否有足够的 AI 问责措施,可以评估是否需要对整个经济和 AI 生命周期中的 AI 责任进行进一步干预。
2025-03-08
AI如何应用到供应链
AI 在供应链领域有以下应用: 1. 预测性维护:可预测机器故障,帮助工厂避免停机,保障供应链的稳定运行。 2. 质量控制:检测产品缺陷,提高产品质量,减少因质量问题导致的供应链中断。 3. 优化供应链:通过分析数据来优化供应链流程,提高效率和降低成本。 4. 风险管理:利用工具如保证技术和技术标准来支持供应链风险管理,增强对系统的信任,让用户确信关键的 AI 相关风险已被识别、处理和减轻。 5. 物流和配送:优化物流路线和配送计划,降低运输成本,提高货物送达的及时性和准确性。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-08
供应链预测
在制造业领域,AIGC 技术在供应链管理方面有以下应用: AI 可以根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 在中小企业转型中,关于供应链风险的管理: 首先,使用 AI 工具进行风险评估。利用数据分析软件、预测模型等工具,收集财务报表、市场数据、供应链信息等相关数据进行分析,预测潜在的风险,如财务风险、供应链风险等,并识别风险的来源和可能的影响。 其次,基于 AI 分析结果,制定相应的风险应对策略。根据风险类型和程度,制定具体的应对措施,如制定应急计划、调整业务策略等,并持续监控效果,根据变化调整策略,定期复审风险评估模型和管理策略。 在扣子模板分享中,关于供应链的部分: 供应链与营销联动:结合供应链数据,预测市场需求,调整生产和库存,避免缺货或积压。
2025-02-17
AI如何应用到供应链工作中
AI 在供应链工作中的应用主要包括以下几个方面: 1. 预测性维护:通过分析设备运行数据,预测机器故障,帮助避免供应链中的生产停机。 2. 质量控制:检测产品缺陷,提高供应链中产品的质量。 3. 采购计划和库存预测:根据历史数据和市场变化,自动生成采购计划和库存预测,优化供应链的资源配置。 4. 物流优化:对物流环节进行优化,提高运输效率,降低成本。 5. 风险管理:利用工具如保证技术和技术标准,支持供应链风险管理,建立对系统的信任,让用户相信关键的 AI 相关风险已被识别、解决和减轻。 6. 责任评估与分配:评估法律责任在 AI 供应链中的有效和公平分配,持续收集各方证据,监测框架对不同参与者的影响,关注基础模型带来的潜在挑战,评估是否需要进一步干预 AI 责任。
2025-02-07
我是做供应链相关的岗位,AI可以为我的职业赋能那些能力呢
AI 可以为您从事的供应链相关岗位赋能以下能力: 1. 预测性维护:通过分析设备运行数据预测可能的故障,帮助避免供应链中的生产停机。 2. 质量控制:检测产品缺陷,确保供应链中产品的高质量。 3. 优化供应链管理:根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等方案,提高供应链效率和降低成本。 在制造业领域,AI 的应用包括: 1. 产品设计和开发:利用 AI 生成工具快速生成产品的 3D 模型、渲染图、插图等设计元素,提高产品设计效率。 2. 工艺规划和优化:结合大语言模型生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 3. 设备维护和故障诊断:分析设备运行数据预测设备故障,并自动生成维修建议,提高设备可靠性。 4. 供应链管理:根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 5. 客户服务:基于对话模型的 AI 客服机器人,自动生成个性化的客户回复,提升客户体验。 在医疗药品零售领域,AI 的应用有: 1. 药品推荐系统:利用机器学习算法分析用户购买记录、症状描述等数据,为用户推荐合适的非处方药品和保健品,提升销售转化率。 2. 药品库存管理:通过分析历史销售数据、天气、疫情等因素,预测未来某段时间内的药品需求量,优化药店的库存管理策略,降低成本。 3. 药品识别与查询:借助计算机视觉技术,用户可以用手机拍摄药品图像,AI 系统自动识别药名并提供说明、用法、禁忌等信息查询服务。 4. 客户服务智能助手:基于自然语言处理技术,AI 虚拟助手可以回答顾客关于购药、用药、保健等常见问题,减轻人工客服的工作压力。 5. 药店运营分析:AI 可以分析药店的销售、顾客流量、库存等大数据,发现潜在的运营问题和优化空间,为决策提供参考。 6. 药品质量监控:通过机器视觉、图像识别等技术,AI 能够自动检测药品的包装、标签、颜色等是否合格,及时发现问题。 7. 药品防伪追溯:利用区块链等技术,AI 可以实现全流程的药品溯源,确保药品供应链的安全性和真实可信度。
2025-01-26
如何本地部署大模型,如何选择是否使用云服务商
以下是关于本地部署大模型以及选择是否使用云服务商的相关内容: 本地部署大模型的主要步骤: 1. 选择合适的部署方式,包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 以 SDXL 为例的本地部署步骤: 1. SDXL 的大模型分为两个部分,base+refiner 是必须下载的,base 是基础模型,用于文生图操作;refiner 是精炼模型,用于对生成的模型进行细化,生成细节更丰富的图片。还有一个配套的 VAE 模型,用于调节图片的画面效果和色彩。 2. 想要在 webUI 中使用 SDXL 的大模型,首先要在秋叶启动器中将 webUI 的版本升级到 1.5 以上。 3. 将模型放入对应的文件夹中,base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下;vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。完成之后,启动 webUI,就可以在模型中看到 SDXL 的模型。 以 LLM 大语言模型为例的本地部署步骤: 1. 下载并安装 Ollama,点击进入根据电脑系统下载 Ollama:https://ollama.com/download ,下载完成后,双击打开,点击“Install”,安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 。 2. 下载 qwen2:0.5b 模型(0.5b 是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型)。如果是 windows 电脑,点击 win+R,输入 cmd,点击回车;如果是 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。复制相关命令行,粘贴进入,点击回车,等待下载完成。 总的来说,部署大模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2025-04-14
AI服务器配置
以下是关于 AI 服务器配置的相关内容: 对于 Coze AI 机器人对接微信的服务器配置: 1. 如果按照上一篇教程操作,此次配置只需修改容器编排模板。最新的容器编排模板如下,同时提供无描述性的参考配置方便新手直接参考使用。 2. 若之前没有容器编排模板,新建一个即可,新建和修改逻辑类似。 3. 更新后的编排模板,若之前创建过相似机器人容器编排服务,建议先删除以防冲突,删除步骤如下。 4. 基于新的编排模板创建新的容器编排,然后启动服务。 5. 服务启动成功后,进入 COW 服务扫码绑定微信机器人,具体步骤参考上一篇入门教程。 对于视频相关的 AI 服务器配置: 1. 购买服务器:直接点击去购买:https://buy.cloud.tencent.com/lighthouse?blueprintType=APP_OS&blueprintOfficialId=lhbpr8j2ftq0&regionId=8&zone=apbeijing3&bundleId=bundle_rs_mc_med1_02&loginSet=AUTO&from=lhconsole ,并根据以下配置购买。 2. 购买并付款完成后,回到服务器“控制台”。 3. 点击服务器卡片空白处添加防火墙,添加 8887、8080 端口。 4. 点击右上角“登录”按钮,扫码验证后在命令行窗口中操作,注意复制粘贴代码的方式和命令执行完毕的标志。 5. 在命令行中依次输入相关命令。 6. 保存并打开外网面板地址,输入账号和密码。
2025-04-10
如何利用AIGC技术给企业提供咨询服务
利用 AIGC 技术为企业提供咨询服务可以从以下几个方面入手: 1. 招募具备实战经验的 AI 讲师与咨询专家:工信部大数据产业人才基地依托丰富的企业渠道资源,计划为传统行业客户提供 AI 技术培训、场景化咨询与解决方案落地服务,并面向社区招募相关人才。 2. 开展公开课:针对 B 端渠道持续展开公益科普,形式免费,部分渠道有一定经费,内容为企业端的 AI 应用场景案例和 AI 通识类的科普分享,目的是建立与企业渠道之间的信任,构建收费培训/咨询的转化通道。 3. 组织线下培训:通过培训转化或直接招生,开设两天一夜、三天两夜的培训班,一般 50 人以上开班,建议 100 人。 4. 提供咨询陪跑服务:包括 AI 营销能力搭建,企业客服机器人搭建、企业端内容分析智能体搭建、企业运营数据大盘搭建、无人直播/数字人直播间搭建等。 此外,一些成功的案例和产品也可供参考: 1. 为阿里妈妈、阿里国际、搜狗、途虎、太平洋保险、哔哩哔哩、滴滴、百度金融、浦发银行、花旗银行、振华重工、中国电信、中国移动、中兴通讯、SMG 等企业提供设计咨询与训练。 2. Runway 上线文字生成语音功能,英文效果好,中文存在外国人口音问题,功能可选择语音模型多。 3. Delphi 可以将个人的所有视频、播客、PDF、博客文章等信息训练为一个分身,并能用分身对外提供咨询服务,支持文字、语音甚至视频沟通,还支持对话内容的数据分析以优化交流。 4. Osum 是一款人工智能市场研究工具,可通过按下按钮获取产品或企业的详细研究、SWOT 分析、买家人物画像、增长机会等信息,还提供销售前景分析器,并能在几秒钟内为任何商务或产品提供完整 SWOT 分析。
2025-04-01
mcp服务是什么
MCP(模型上下文协议)是一项创新标准,由 Anthropic 于 2024 年 11 月推出并开源。它是为 AI 模型统一连接数据与工具的标准接口,旨在让大语言模型能够无缝连接至第三方的数据源。 MCP 的好处包括: 简化开发:一次整合,多次复用,不再重复开发。 灵活性强:轻松切换 AI 模型或工具,无需复杂的重新配置。 实时互动:长连接保证数据实时更新。 安全可靠:内置标准化安全和权限控制。 扩展性强:AI 系统扩展时,只需连接新的 MCP 服务器。 MCP 与传统 API 的关键区别在于: 单一协议:MCP 像一个统一接口,只要一次整合,就能连接多个服务。 动态发现:AI 模型能自动识别并使用可用的工具,不用提前写死每个接口。 双向通信:MCP 支持类似 WebSockets 的实时双向通信,模型不仅能查询数据,还能主动触发操作。 传统 API 更适合的场景包括: 需要细粒度控制、功能严格限制。 更偏好紧耦合以提升性能。 希望最大化交互的可预测性。 快速集成 MCP 的步骤: 1. 定义能力:明确 MCP 服务器提供的功能。 2. 实现 MCP 层:按照协议标准进行开发。 3. 选择通信方式:本地连接(标准输入输出)或远程连接(如 WebSockets)。 4. 创建资源/工具:开发或连接数据源和服务。 5. 建立客户端连接:与 MCP 服务器建立安全稳定的连接。 通过 MCP,我们可以让 AI 使用各种强大工具,比如查询实时天气、联网搜索最新信息、调用私人数据库等。
2025-03-27
我公司想部署一个deepseek-R1,用云服务器请问大概需要多少钱?
部署 DeepSeekR1 模型使用云服务器的价格因云计算厂商而异: 华为昇腾社区:部署 DeepSeekR1 模型用 BF16 权重进行推理至少需要 4 台 Atlas 800I A2(864G)服务器,用 W8A8 量化权重进行推理则至少需要 2 台 Atlas 800I A2。服务器调用 Docker 下载部署权重资源,非 API 调用模式。 阿里云(人工智能平台 PAI):以 R1 为例,所需计算资源价格 316.25/小时。模型部署成在线服务,在人工智能平台 PAI 下的模型部署下的模型在线服务 EAS。 阿里云(阿里云百炼):免费额度:10000000/10000000,通过 API 调用。 腾讯云(自建服务器):多机分布式部署,节点数量:2 个,单节点配置:HCCPNV6 机型,可在线体验(需开通 T1 平台服务)。 腾讯云(调用 API):API 调用 DeepSeek 系列模型限时免费。即日起至北京时间 2025 年 2 月 25 日 23:59:59,所有腾讯云用户均可享受 DeepSeekV3、DeepSeekR1 模型限时免费服务,单账号限制接口并发上限为 5。在此之后,模型价格将恢复至原价。 京东云:“deepseekr1:1.5b、“deepseekr1:7b”、“deepseekr1:32b”,1.89/小时起;服务器部署的方式。 gitee ai:R1 价格 0.1 元/次,基于沐曦曦云 GPU 及曦源一号国产替代算力集群,有在线体验。 需要注意的是,价格可能会有所变动,具体以各云计算厂商的最新公布为准。
2025-03-25
可以为我找到在线更换图片颜色服务的AI网站吗
以下是一些可以在线更换图片颜色服务的 AI 网站相关信息: 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染的功能,能在显存不够的情况下将图片放大到足够的倍数。 在最近新上线的 controlnet 模型中,Recolor 新模型可将黑白图片重新上色。 对于人物照片还原,可选择 realisian 的写实大模型,通过提示词描述颜色和对应内容,如黑色的头发、黄色的皮肤、深蓝色的衣服、浅蓝色的背景等。ControlNet 选择 Recolor,预处理器选择“recolor_luminance”效果较好。 您可以通过以下网址获取更详细内容:https://mp.weixin.qq.com/s/hlnSTpGMozJ_hfQuABgLw
2025-03-25
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
请找到 AI 用于知识管理的案例
以下是一些 AI 用于知识管理的案例: 1. 在法学领域,当模型培训针对组织内特定的基于文本的知识体系进行微调时,生成式人工智能可以有效地管理组织的知识。例如摩根士丹利正在与 OpenAI 的 GPT3 合作,微调财富管理内容的培训,以便财务顾问既可以搜索公司内部的现有知识,又可以轻松地为客户创建量身定制的内容。 2. 在构建高效的知识管理体系方面,可以通过一系列创新的 AI 应用来实现。比如,AI 可以通过分析工作模式和内容类型,自动生成提示词,帮助将信息和知识分类到 PARA(项目、领域、资源、档案)的相应部分,还能帮设计笔记标签系统。此外,知识助手 Bot 可以根据学习进度和兴趣点,定期推送相关的文章、论文和资源,实现渐进式积累领域知识。 3. 在代码库相关的知识管理中,Cursor 有针对大代码库精准找到相关函数,并利用其信息帮助撰写代码的功能。对于非开发性质的问答,它是一个天然的 RAG 引擎。在问答窗口使用特定操作时,它会先在当前文件夹下搜索并显示相关文档和相关度,最后用这些信息构建提示词完成生成。而且,它能与私有文档自然结合进行问答,并将新生成的见解沉淀成新文档,形成知识闭环,提高知识检索和管理的效率。
2025-04-14
如何运用ai写作一篇行政管理专业本科毕业论文
以下是运用 AI 写作一篇行政管理专业本科毕业论文的一些参考方法: 首先,您可以向 LLM 提供关于您的背景信息和具体指令,例如:“根据以下关于我的信息,写一篇行政管理专业本科毕业论文:”。但需要注意的是,利用 AI 写作论文并非是道德的使用方式,了解这种可能性的存在以及它已被部分学生使用这一情况很重要。这超出了简单介绍的范围,关于 LLM 或整个生成式 AI 引入的所有可能的伦理、法律或道德问题,不在此详细讨论。另一方面,如果您是接收方,最好为您的组织准备好迎接各种 AI 生成的内容。幸运的是,对于此类情况,已经有检测 AI 生成内容的相关努力正在进行。
2025-04-14
请给我提供一个 AI辅助我进行知识管理的方案
以下是一个 AI 辅助知识管理的方案: 1. 利用提示词规划 PARA 分类模式:PARA 代表项目(Projects)、领域(Areas)、资源(Resources)和档案(Archives)。AI 可分析您的工作模式和内容类型,自动生成提示词,助您将信息和知识分类到相应部分,简化分类过程,加快组织和检索信息。核心是理解以行动为驱动的笔记逻辑。 2. 借助提示词设计笔记标签系统:有效的标签系统对知识管理很关键,AI 能分析笔记内容和使用习惯,推荐合适的标签和结构,提高检索效率。 3. 让知识助手 Bot 渐进式积累领域知识:随着在特定领域的深入,需要系统积累和更新知识。知识助手 Bot 可根据学习进度和兴趣点,定期推送相关文章、论文和资源,实现渐进式学习,扩展知识边界并确保知识更新。例如基于 dify.ai 将数百个思维模型整合成知识库,根据不同对话和条件判断为用户选择适用的思维模型分析工具,封装成智能分析的 Bot。 4. 基于已积累知识的 RAG 方法进行深度研究:RAG 是结合检索和生成的 AI 模型,应用于知识管理,能在深度研究时自动检索相关知识点和资料,辅助构建更全面深入的分析。 5. 打造个人知识导师,随时对话辅助梳理线索:创建个人知识管理员机器人,随时与之对话,询问特定知识点或寻求解决问题思路。它能基于知识库自学习,了解您的知识结构和需求,成为不可或缺的知识伙伴。 6. 构建最了解您的智能体作为 AI 写作助手:涵盖构思、草稿生成、内容迭代、润色与优化等全流程。构思阶段利用智能体生成创意点、主题或大纲;草稿生成基于构思让智能体生成文本草稿;内容迭代通过 promptchain 工具设计迭代提示修改完善草稿;润色与优化对最终文本进行语言风格和语调调整。通过实践和反馈优化 prompt 设计,使写作助手贴合个人风格和需求。 此外,生成式人工智能在知识管理应用程序方面也有新兴应用,例如用作管理组织内基于文本(或可能基于图像或视频)知识的手段。一些研究表明,针对组织内特定知识体系微调模型培训,可有效管理组织知识。一些公司正与领先的商业提供商合作探索基于生成式人工智能的知识管理理念,但用户可能需要培训或帮助来创建有效提示,且知识输出应用前可能仍需编辑或审查。
2025-04-11
AI如何优化库存管理、员工排班
以下是关于 AI 优化库存管理和员工排班的相关内容: 库存管理: 1. 利用 AI 预测需求,优化库存管理,减少积压和缺货情况。 2. AI 可以分析不同产品的销售速度、市场趋势等数据,为库存的补货和调整提供决策依据。 3. 通过 AI 生成的库存周转分析工具,预测滞销品并推荐促销策略。 员工排班: 1. 智能排班优化,根据客流预测自动调整员工排班表。 2. 实时话术提示工具,在员工与客户沟通时 AI 推荐应答策略。 3. 自动化周报生成,汇总销售数据、客户反馈生成可视化报告,为排班提供参考。 4. 培训模拟考试系统,基于产品知识库生成随机测试题,提升员工能力,优化排班安排。 5. 客户潜力评分系统,根据消费行为自动标记高价值客户,据此安排合适的员工服务。 6. 舆情预警系统,实时监测负面评价并推送处理建议,灵活调整员工工作安排。 7. 客户流失预测模型,通过行为数据预警流失风险,合理安排员工进行客户维护。 8. 会议纪要自动生成,转录会议录音并提取任务清单,辅助排班决策。 9. 员工满意度分析,通过匿名问卷分析员工工作痛点,优化排班以提高员工满意度。
2025-04-09