Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

提示词工程

Answer

提示词工程师(Prompt Engineer)是在与人工智能模型交互时,负责设计和优化提示的专业人员。他们的目标是通过精心构造的提示,引导模型产生准确、有用和相关的回答。

其主要职责包括:

  1. 设计提示:根据用户需求和模型能力设计有效的提示,考虑提示的长度、结构、措辞和信息量等因素,确保清晰传达用户意图并引导模型生成满意结果。
  2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式不断优化提示,以提高模型性能。
  3. 评估提示:使用各种指标如模型的准确率、流畅度和相关性等来评估提示的有效性。

提示词工程师需要具备以下技能和知识:

  1. 领域知识:对所工作的领域有深入了解,以便设计出有效的提示。
  2. 自然语言处理(NLP):了解 NLP 的基本原理和技术,能够理解和生成自然语言文本。
  3. 人工智能(AI):了解 AI 的基本原理和技术,能够理解和使用 AI 模型。
  4. 沟通能力:具备良好的沟通能力,与用户、团队成员和其他利益相关者有效沟通。

以下是一些提示词工程师工作的实际案例: 无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能。其主要有两部分代码组成:提示词注入和工具结果回传。提示词注入用于将工具信息以及使用工具的提示词添加到系统提示中。工具结果回传则是解析 tool calling 的输出,并将工具返回的内容再次嵌入 LLM。

在生成式 AI 模型中,提示词工程是一门新兴的学科。提示词是用户与模型沟通愿望的文本界面,可从简单问题到复杂任务。提示词工程的核心在于制作出能实现特定目标的最佳提示词,这不仅要指导模型,还涉及对模型能力和局限性的深刻理解及所处的上下文。提示词工程还需要结合领域知识、对 AI 模型的理解及系统化方法为不同情境定制提示词,是一个迭代和探索的过程。本文旨在深入探讨这个新兴领域,重点关注其在 LLM 中的应用,且大多数技术也可应用于多模态生成式 AI 模型。

随着人工智能技术的不断发展,对提示词工程师的需求将会越来越大。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:什么是提示词工程师(Prompt Engineer)

提示词工程师(Prompt Engineer)是指在与人工智能模型进行交互时,负责设计和优化提示的专业人员。他们的目标是通过精心构造的提示,引导模型产生准确、有用和相关的回答。作为提示词工程师,他们需要具备一定的领域知识、理解人工智能模型的能力以及对用户需求的敏感性。提示词工程师的主要职责包括:设计提示:提示词工程师需要根据用户需求和模型能力设计有效的提示。他们需要考虑提示的长度、结构、措辞和信息量等因素,以确保提示能够清晰地传达用户意图并引导模型生成满意的结果。优化提示:提示词工程师需要不断优化提示,以提高模型的性能。他们可以通过收集用户反馈、分析模型结果和实验不同的提示策略等方式来优化提示。评估提示:提示词工程师需要评估提示的有效性。他们可以使用各种指标来评估提示,例如模型的准确率、流畅度和相关性等。提示词工程师需要具备以下技能和知识:领域知识:提示词工程师需要对他们所工作的领域有深入的了解,以便能够设计出有效的提示。自然语言处理(NLP):提示词工程师需要了解NLP的基本原理和技术,以便能够理解和生成自然语言文本。人工智能(AI):提示词工程师需要了解AI的基本原理和技术,以便能够理解和使用AI模型。沟通能力:提示词工程师需要具备良好的沟通能力,以便能够与用户、团队成员和其他利益相关者有效沟通。提示词工程师是一个新兴的职业,随着人工智能技术的不断发展,对提示词工程师的需求将会越来越大。以下是一些提示词工程师工作的实际案例:

无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能

本文采用的提示词工程主要有两部分代码组成:提示词注入和工具结果回传。提示词注入用于将工具信息以及使用工具的提示词添加到系统提示中。工具结果回传则是解析tool calling的输出,并将工具返回的内容再次嵌入LLM。[heading2]1、提示词注入阶段[content]INSTRUCTION为最后注入到系统提示中的字符串,他又包含了TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT三个部分。TOOL_EAXMPLE用于提示LLM如何理解tool以及如何使用tool。在编写TOOL_EAXMPLE时,请注意用一些无关紧要的工具作为示例,例如本文使用的将数字加一和数字减一的工具,从而避免LLM混淆真正可以使用的工具与示例工具。tools_instructions是由目前通用的工具字典转换成LLM可读的工具列表。实际使用LLM时,可以通过输入不同的工具来动态调整tools_instructions,让LLM得知目前可用的工具有哪些以及如何使用。REUTRN_FORMAT定义了调用API的格式。[heading2]2、工具结果回传阶段[content]利用正则表达式抓取输出中的"tool"和"parameters"参数。对于interpreter工具,使用了另一种正则表达式来提取LLM输出的代码,提高LLM使用interpreter工具的成功率。本文使用代码如下:通过识别LLM返回的调用工具的字典,提取出对应的值,再传入相应的工具函数,最后将工具返回的结果以observation的角色返回给LLM。对于一些不接受observation、tool、function角色的LLM接口,可以改为回传给user角色,例如:通过以上提示词工程,可以避免微调,让完全没有tool calling能力的LLM获得稳定的tool calling能力。

小七姐:精读翻译《提示词设计和工程:入门与高级方法》

在生成式AI模型中,提示词工程是一门新兴的学科,它塑造了这些模型的交互和输出。提示词是用户与模型沟通愿望的文本界面,无论是在像DALLE-3或Midjourney这样的图像生成模型中描述图像,还是在像GPT-4和Gemini这样的LLM中提出复杂的问题。提示词可以是简单的问题到复杂的任务,包括指令、问题、输入数据和示例,以指导AI的响应。提示词工程的核心在于制作出能够实现特定目标的最佳提示词。这个过程不仅仅是指导模型,还涉及到对模型能力和局限性的深刻理解,以及它所处的上下文。例如,在图像生成模型中,提示词可能是对期望图像的详细描述,而在LLM中,它可能是一个包含各种类型数据的复杂查询。提示词工程不仅仅是构建提示词,它还需要结合领域知识、对AI模型的理解,以及一种系统化的方法来为不同情境定制提示词。这可能包括创建可以根据给定数据集或上下文进行程序化修改的模板。例如,基于用户数据生成个性化响应可能会使用一个动态填充相关信息的模板。此外,提示词工程是一个迭代和探索的过程,类似于传统软件工程实践,如版本控制和回归测试。这个领域的快速增长表明它有潜力彻底改变机器学习的某些方面,超越传统的特征或架构工程方法,尤其是在大型神经网络的背景下。另一方面,传统工程实践,如版本控制和回归测试,需要适应这个新范式,就像它们适应其他机器学习方法一样[1]。本文旨在深入探讨这个新兴领域,探索其基础方面和高级应用。我们将重点关注提示词工程在LLM中的应用。然而,大多数技术也可以应用于多模态生成式AI模型。

Others are asking
生成提示词的提示词
以下是关于生成提示词的相关内容: 生成提示词的思路和方法: 可以根据效果好的图片中的高频提示词去反推效果,结合不同字体效果的描述,打包到一组提示词中。提示词给到 AI 后,AI 会根据给定文字的文义,判断适合的情绪风格,然后给出适合情绪的字体和风格描述、情感氛围等,加上一些质量/品质词,形成输出提示词结构。为了让 AI 更能描述清晰风格,可以先给定多种参照举例。 具体操作步骤: 打开 AI 工具的对话框,将相关提示词完整复制粘贴到对话框。推荐使用 ChatGPT 4o。 当 AI 回复后,发送您想要设计的文字。可以仅发送想要的文字,也可以发送图片(适合有多模态的 AI)让 AI 识别和反推。 将 AI 回复的提示词部分的内容复制到即梦 AI。 对生成提示词的一些观点: 提示词生成提示词并非必要,不一定能生成最好的 Prompt 框架,修改过程可能耗时且不一定能修改好,不如花钱找人写。 一句话生成完整符合需求的 Prompt 非常困难,只能大概给出框架和构思,需要更低成本地调整需求和修改 Prompt。 不同生图工具生成提示词的特点: 即使是简短的描述,生成的提示词也非常细节、专业。 会解析需求,找出核心要点和潜在的诠释点,并给出不同的提示词方案。 提示词构建更多在于增强,而不是发散,生成的内容更符合期望。 同时生成中、英双版本,国内外工具通用无压力。 14 款 AI 生图工具实测对比: 本次实测用到的工具包括国内版的即梦 3.0(https://jimeng.jianying.com/aitool/home)、WHEE(https://www.whee.com)、豆包(https://www.doubao.com/chat)、可灵(https://app.klingai.com/cn/texttoimage/new)、通义万相(https://tongyi.aliyun.com/wanxiang/creation)、星流(https://www.xingliu.art)、LibiblibAI(https://www.liblib.art),以及国外版的相关工具。
2025-04-20
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
调教ai的利器,提示词工程
提示词工程是调教 AI 的重要手段,以下是关于提示词工程的相关知识: 作用:避免 AI 掉入“幻觉”陷阱,引导 AI 生成更可靠的内容。 原理:AI 对提示词的理解能力与幻觉的产生密切相关,清晰、具体的提示词能帮助其更好地理解意图,减少错误。 技巧: 明确要求 AI 引用可靠来源,如在询问历史事件时要求引用权威文献,询问科学事实时要求引用科研论文,询问法律条款时要求引用官方文件。 要求 AI 提供详细的推理过程,如询问数学公式时展示推导过程,询问代码功能时逐行解释含义。 明确限制 AI 的生成范围,如询问名人名言时指定名人姓名和相关主题,询问新闻事件时指定时间范围和关键词。 通过这些清晰、具体、有针对性的提示词技巧,可以引导 AI 生成更准确和可靠的内容。但提示词工程只是辅助手段,从根本上解决 AI 幻觉问题还需从数据、模型、训练方法等多方面努力。 提示词工程就像与博学但有点固执的老教授交流,精心设计输入文本能引导 AI 更好地理解需求并给出更准确有用的回答。比如,问“请用简单的语言,为一个 10 岁的小朋友解释什么是人工智能,并举一个生活中的例子”,AI 更可能给出通俗易懂的解释。 在使用 AI 工具的过程中,可能会出现答非所问、回答格式不标准等问题,为让 AI 更好地服务,需要学习提示词工程。当用户的需求接近 AI 真实范围时,可通过写提示词甚至创建 BOT 来优化使用效果。
2025-04-15
提示词
提示词是让 AI 听懂您的需求并生成想要画面的关键。 基础公式(新手必学):景别+运镜+主体+动作+风格。示例:特写镜头|镜头旋转|发光水晶球悬浮|星尘特效|赛博朋克风格。 进阶公式(提升质感):景别+运镜+主体(细节)+动作(速率)+场景(层次)+氛围+光影。示例:全景俯拍|无人机跟拍|雪山湖泊(镜面倒影)|慢动作|冷色调光线|自然纪录片风格。 在星流一站式 AI 设计工具中,prompt 输入框可输入提示词,使用图生图功能辅助创作。 提示词用于描绘您想生成的画面,支持中英文输入。不同模型对输入语言有不同要求,如通用大模型与基础模型 F.1、基础模型 XL 使用自然语言,基础模型 1.5 使用单个词组。 写好提示词要做到: 1. 内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 2. 调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。 3. 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可对已有的提示词权重进行编辑。 4. 借助辅助功能,如翻译功能可一键将提示词翻译成英文,还有删除所有提示词、会员加速等功能。 如果您接触过大量提示工程相关的示例和应用,会注意到提示词由一些要素组成,包括指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息,引导语言模型更好地响应)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。但提示词所需的格式取决于想要语言模型完成的任务类型,并非所有要素都是必须的。
2025-04-15
如何成为提示词工程师
提示词工程师是在与人工智能模型交互时,负责设计和优化提示的专业人员,旨在通过精心构造的提示引导模型产生准确、有用和相关的回答。 其主要职责包括: 1. 设计提示:根据用户需求和模型能力设计有效的提示,考虑提示的长度、结构、措辞和信息量等因素,以清晰传达用户意图并引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式不断优化提示,提高模型性能。 3. 评估提示:使用各种指标如模型的准确率、流畅度和相关性等来评估提示的有效性。 提示词工程师需要具备以下技能和知识: 1. 领域知识:对所工作的领域有深入了解,以便设计出有效的提示。 2. 自然语言处理(NLP):了解 NLP 的基本原理和技术,能够理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 的基本原理和技术,以便理解和使用 AI 模型。 4. 沟通能力:具备良好的沟通能力,与用户、团队成员和其他利益相关者有效沟通。 以下是一些提示词工程师工作的实际案例,比如在市场营销类和商业类中,有自动优化 Prompt 的案例,如 JackeyLiu 熟悉的转化步骤包括: 1. 角色和能力:基于问题思考 chatGPT 最适合扮演的角色,应是该领域最资深的专家,适合解决问题。 2. 上下文说明:思考提出问题的原因、背景和上下文。 3. 任务陈述:基于问题进行陈述。 提示词工程师是一个新兴职业,随着人工智能技术的不断发展,对其需求将会越来越大。
2025-04-15
我想学提示词工程
提示词工程是指在与人工智能模型进行交互时,负责设计和优化提示的专业领域。 提示词工程师的职责包括: 1. 设计提示:根据用户需求和模型能力,考虑提示的长度、结构、措辞和信息量等因素,设计有效的提示,清晰传达用户意图,引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同策略等方式,不断优化提示,提高模型性能。 3. 评估提示:使用准确率、流畅度和相关性等指标评估提示的有效性。 提示词工程师需要具备以下技能和知识: 1. 领域知识:对工作领域有深入了解,以便设计有效提示。 2. 自然语言处理(NLP):了解 NLP 基本原理和技术,能够理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 基本原理和技术,能够理解和使用 AI 模型。 4. 沟通能力:与用户、团队成员和其他利益相关者有效沟通。 提示工程是在人工智能领域,特别是自然语言处理和大型语言模型的背景下,一个相对较新的概念。它涉及设计和优化输入提示,以引导 AI 模型生成特定输出或执行特定任务。其关键点包括精确性、创造性、迭代和上下文理解。提示词通常指直接输入到 AI 模型中的问题、请求或指示,是提示工程的一部分。提示工程不仅包括创建提示词,还涉及理解模型行为、优化提示以获得更好性能、探索模型潜在应用等。 目前提示词工程发展火热,出现了各种流派和框架,但结构化虽降低沟通难度、提高结果准确度,却也限制了更多可能性,且大部分框架不太适合解决过于主观、个人情绪或过于简单的问题,一个框架往往难以完全满足需求。
2025-03-31
提示词工程入门
提示词工程入门: 基本概念: 简单的提示词能获得结果,但结果质量与提供信息的数量和完善度有关。提示词可包含指令、问题、上下文、输入、示例等元素,以更好地指导模型获得更好结果。 如使用 OpenAI 的聊天模型,有 system、user 和 assistant 三种角色,system 非必需但有助于设定 assistant 行为。本指南示例通常仅用 user 消息作 prompt。 语言模型能基于给出的上下文续写,可通过改进提示词获得更好结果。提示工程探讨如何设计最佳提示词以高效完成任务,可用于多种高级任务。 相关精读: 在生成式 AI 模型中,提示词工程是新兴学科,塑造模型交互和输出。提示词是用户与模型沟通的文本界面,涵盖简单问题到复杂任务。 提示词工程核心是制作实现特定目标的最佳提示词,涉及对模型能力和局限性的理解及所处上下文。 提示词工程不仅构建提示词,还需结合领域知识、对 AI 模型理解和系统化方法定制提示词,是迭代和探索过程。 关于提示词工程师: 是负责设计和优化提示的专业人员,目标是引导模型产生准确、有用和相关回答。 主要职责包括设计、优化、评估提示,需具备领域知识、自然语言处理、人工智能、沟通能力等。 是新兴职业,随着人工智能发展需求将增大,有实际工作案例。
2025-03-27
我是一个没有技术背景且对AI感兴趣的互联网产品经理,目标是希望理解AI的实现原理并且能够跟开发算法工程师沟通交流,请给我举出AI模型或者机器学习的分类吧。
以下是 AI 模型和机器学习的分类: 1. AI(人工智能):是一个广泛的概念,旨在使计算机系统能够模拟人类智能。 2. 机器学习:是人工智能的一个子领域,让计算机通过数据学习来提高性能。包括以下几种类型: 监督学习:使用有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:是机器学习的一个子领域,模拟人脑创建人工神经网络处理数据,包含多个处理层,在图像识别、语音识别和自然语言处理等任务中表现出色。 4. 大语言模型:是深度学习在自然语言处理领域的应用,目标是理解和生成人类语言,如 ChatGPT、文心一言等。同时具有生成式 AI 的特点,能够生成文本、图像、音频和视频等内容。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。生成式 AI 生成的内容称为 AIGC。
2025-03-26
关于提示词工程的教程
以下是关于提示词工程的教程: 1. 提示词工程教程:为帮助大型语言模型更好地理解任务,提供了在线教程。任务可分解为两步,第一步模型检查当前提示词和样本,第二步编写改进的提示词。 2. 逐步推理模板:指导提案模型回答一系列问题,如输出是否正确、提示词是否准确描述任务等,以鼓励模型仔细检查示例并反思提示词局限性。 3. 上下文规定:提示词插入输入序列的位置灵活,可能在输入文本之前或之后,元提示词中应明确提示词和输入的相互作用。 4. 基础提示词:简单提示词能获得结果,但结果质量与提供信息的数量和完善度有关。提示词可包含指令、问题、上下文、输入或示例等元素。使用 OpenAI 聊天模型时,有 system、user 和 assistant 三种角色,本指南示例通常仅使用 user 消息作为 prompt。通过改进提示词可获得更好结果,提示工程探讨如何设计最佳提示词以高效完成任务。 5. 无需微调,仅用提示词工程让 LLM 获得 tool calling 功能:主要由提示词注入和工具结果回传两部分代码组成。提示词注入将工具信息及使用提示添加到系统提示中,包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。工具结果回传解析 tool calling 输出,并将工具返回内容嵌入 LLM,利用正则表达式抓取相关参数,对于不同工具和 LLM 接口有不同处理方式。
2025-03-26