AIGC 带来了一系列问题:
在知识产权方面,AI 技术的发展对现有的知识产权法律体系提出挑战。例如,在内容生成方面,对版权法的挑战主要体现在输入端的训练数据合法性问题和输出端的 AI 生成内容的版权属性问题。广州互联网法院的相关判决为 AI 企业在版权保护方面提供了指导思路。AI 生成式技术服务提供者在提供服务时应尽合理的注意义务。
AIGC 指利用 GenAI 创建的内容,GenAI 是一种基于深度学习技术,利用机器学习算法从已有数据中学习并生成新的数据或内容的 AI 应用,虽强大但在数据处理中存在多重潜在合规风险。目前典型的 GenAI 包括 OpenAI 推出的语言模型 ChatGPT、GPT-4、图像模型 DALL-E 以及百度推出的文心一言、阿里云推出的通义千问等。国内主要依据相关法律法规共同监管 AIGC 行业。
GenAI(即生成式AI)是一种能够从已有数据中学习并生成新的数据或内容的AI应用,利用GenAI创建的内容即AIGC(全称AI-Generated Content)。作为一种强大的技术,生成式AI能够赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对AIGC的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。AIGC主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs和Transformer等模型生成文本,如GPT-4和Gemini Ultra。图像生成依赖于GANs、VAEs和Stable Diffusion等技术,应用于数据增强和艺术创作,代表项目有Stable Diffusion和StyleGAN 2。音视频生成利用扩散模型、GANs和Video Diffusion等,广泛应用于娱乐和语音生成,代表项目有Sora和WaveNet。此外,AIGC还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。AIGC应用可能引发内生风险、数据隐私问题和知识产权风险。内生风险包括算法的不可解释性和不可问责性,以及代码开源可能带来的安全和伦理担忧。数据隐私方面,AIGC工具可能导致数据泄露、匿名化不足、未经授权的数据共享等问题。应用风险涉及作品侵权、不当竞争等问题。相关法律和规定对AIGC的透明性、数据收集和处理、知识产权归属等提出了要求。然而,著作权归属、数据隐私等问题尚需更多法律明确规定。此外,AIGC的滥用可能导致虚假信息传12AIGC法律风险研究报告播、侵犯隐私等问题,因此需要进一步加强监管和伦理约束。13AIGC法律风险研究报告14AIGC法律风险研究报告
在当今数字化时代,AI技术的迅猛发展不仅改变了我们的日常生活,也对现有的知识产权法律体系提出了前所未有的挑战。随着AI技术在内容创作领域的广泛应用,尤其是生成式AI服务,我们面临着一系列复杂的知识产权问题。最近,广州互联网法院对一起生成式AI服务侵犯著作权的案件作出了判决,这一判决不仅在全球范围内具有开创性,也标志着我国在知识产权保护方面的司法实践迈出了重要一步。AI在内容生成方面,对版权法的挑战主要体现在两个方面:一是输入端的训练数据合法性问题,二是输出端的AI生成内容的版权属性问题。例如,纽约时报诉OpenAI案就凸显了训练数据来源的合法性问题。而广州互联网法院的判决则为AI生成内容的版权问题提供了司法案例,为AI企业在版权保护方面提供了新的指导思路。这起案件中,被告的人工智能公司因侵犯原告对奥特曼作品的复制权和改编权而被判承担相应的民事责任。这一判决不仅是全球范围内的首例,也是继北京互联网法院对“AI文生图”著作权侵权纠纷作出裁判之后,我国在知识产权保护领域的又一次重要司法实践。这一判决强调了AI服务提供者在提供服务时必须遵守的法律义务,同时也为AI企业在处理版权问题时提供了宝贵的参考。AGIC企业应当采取一系列细化的措施,以确保其在法律框架内进行创新和发展。以下是AI生成式技术服务提供者在提供生成式人工智能服务时应尽合理的注意义务:
在引入AIGC的概念之前,本报告将先解释另一相关的热门词条“GenAI”,全称Generative AI,即生成式AI。GenAI是一种基于深度学习技术(deep learning algorithm),利用机器学习(machine learning)算法从已有数据中学习并生成新的数据或内容的AI应用。其工作原理是通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,实现对输入数据的分析、理解和生成。GenAI为游戏、娱乐和产品设计等应用提供了新颖且有创意的解决方案,如自动写作、虚拟现实、音乐创作等,甚至协助科学研究开辟了新的可能性。目前典型的GenAI包括OpenAI推出的语言模型ChatGPT、GPT-4、图像模型DALL-E以及百度推出的文心一言、阿里云推出的通义千问等。虽然生成式AI是一种非常强大的技术,能够应用于诸多专业领域;但其在数据处理过程中存在多重潜在合规风险,如未经授权收集信息、提供虚假信息、侵害个人隐私等。AIGC(全称AI-Generated Content)指利用GenAI创建的内容,如图像、视频、音频、文本和三维模型。具体来讲,AIGC工具使用机器学习算法,通常以自然语言处理为基础,分析大型文本数据集,并学习如何生成风格和语气相似的新内容。国内目前主要是在《网络安全法》《数据安全法》以及《个人信息保护法》的框架下,由《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》共同监管AIGC行业。