Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

mcp

Answer

模型上下文协议(MCP)是一种全新的开放协议,专门用于标准化地为大语言模型(LLMs)提供应用场景和数据背景。它就像 AI 领域的“USB-C 接口”,能让不同的 AI 模型与外部工具和数据源轻松连接。

MCP 的好处包括:

  • 简化开发:一次整合,多次复用,不再重复开发。
  • 灵活性强:轻松切换 AI 模型或工具,无需复杂的重新配置。
  • 实时互动:长连接保证数据实时更新。
  • 安全可靠:内置标准化安全和权限控制。
  • 扩展性强:AI 系统扩展时,只需连接新的 MCP 服务器。

与传统 API 相比,通常 AI 系统连接外部工具时,需要单独整合多个不同的 API,每个 API 都有独立的代码、文档、认证方式、错误处理和后续维护,极大地增加了开发复杂度。传统 API 就像每扇门都有一把不同的钥匙,要求开发者为每个服务或数据源单独编写代码和整合方案。

MCP 最早由 Anthropic 公司开发,现在已成为一个开放协议,越来越多的企业和开发者开始采用它,逐渐成为 AI 与工具互动的新标准。

在某些情况下,传统 API 更适合,比如应用场景需要精准且严格受控的交互方式,包括需要细粒度控制、功能严格限制,更偏好紧耦合以提升性能,希望最大化交互的可预测性。

快速集成 MCP 的步骤包括:

  1. 定义能力:明确 MCP 服务器提供的功能。
  2. 实现 MCP 层:按照协议标准进行开发。
  3. 选择通信方式:本地连接(标准输入输出)或远程连接(如 WebSockets)。
  4. 创建资源/工具:开发或连接数据源和服务。
  5. 建立客户端连接:与 MCP 服务器建立安全稳定的连接。

总结来说,MCP 是为 AI 模型统一连接数据与工具的标准接口,让 AI 与外部数据、工具的连接变得更加标准化和高效,而传统 API 是每个服务单独连接,开发更复杂。例如,Claude 可以通过简单的 MCP 集成直接连接到 GitHub、创建新存储库并创建 PR。

Content generated by AI large model, please carefully verify (powered by aily)

References

什么是模型上下文协议(MCP)?它如何比传统API更简单地集成AI?

什么是模型上下文协议(MCP)?它如何比传统API更简单地集成AI?模型上下文协议(Model Context Protocol,简称MCP)是一种全新的开放协议,专门用于标准化地为大语言模型(LLMs)提供应用场景和数据背景。你可以把MCP想象成AI领域的“USB-C接口”,它能让不同的AI模型与外部工具和数据源轻松连接。本文将清晰地解释MCP的价值、工作原理,以及它与传统API的关键区别。[heading2]什么是MCP?[content]模型上下文协议(MCP)就像是为AI模型量身定制的“USB-C接口”,可以标准化地连接AI系统与各类外部工具和数据源。什么是MCP?就像USB-C接口让你的电脑更容易连接各种设备一样,MCP让AI模型更简单地获取数据、工具与服务。[heading2]为什么要用MCP,而不是传统的API?[content]通常,AI系统想连接外部工具时,需要单独整合多个不同的API。每个API都有独立的代码、文档、认证方式、错误处理和后续维护,极大地增加了开发复杂度。[heading3]为什么说传统API就像每扇门都有一把不同的钥匙?[content]打个比方:API就像不同的门,每扇门都需要自己的钥匙和特定的规则。为什么使用MCP而非传统API?传统的API要求开发者为每个服务或数据源单独编写代码和整合方案。[heading2]MCP背后是谁?[content]MCP最早由Anthropic↗[1]公司开发,目的是帮助AI模型(如Claude)更容易地连接工具和数据源。但现在,MCP已经成为一个开放协议,越来越多的企业和开发者开始采用它,这也让它逐渐成为AI与工具互动的新标准。

什么是模型上下文协议(MCP)?它如何比传统API更简单地集成AI?

•简化开发:一次整合,多次复用,不再重复开发。•灵活性强:轻松切换AI模型或工具,无需复杂的重新配置。•实时互动:长连接保证数据实时更新。•安全可靠:内置标准化安全和权限控制。•扩展性强:AI系统扩展时,只需连接新的MCP服务器。[heading2]什么时候传统API更适合?[content]如果你的应用场景需要精准且严格受控的交互方式,那么传统API可能更合适。MCP提供广泛而灵活的动态能力,更适合需要上下文理解的场景,但不一定适用于严格受控的场合。[heading3]传统API更合适的场景:[content]•需要细粒度控制、功能严格限制;•更偏好紧耦合以提升性能;•希望最大化交互的可预测性。[heading2]如何开始使用MCP?[content]快速集成MCP的步骤:1.1.定义能力:明确你的MCP服务器提供哪些功能。2.2.实现MCP层:按照协议标准进行开发。3.3.选择通信方式:本地连接(标准输入输出)或远程连接(如WebSockets)。4.4.创建资源/工具:开发或连接你的数据源和服务。5.5.建立客户端连接:与MCP服务器建立安全稳定的连接。[heading2]总结[heading3]再次回顾什么是MCP:[content]•MCP:为AI模型统一连接数据与工具的标准接口。•API:传统的方式,每个服务单独连接,开发更复杂。什么是MCP?MCP让AI与外部数据、工具的连接变得更加标准化和高效。

Claude 直接连接到 GitHub、创建新存储库并通过简单的 MCP 集成创建 PR。

https://x.com/alexalbert__/status/1861079762506252723Anthropic推出模型上下文协议(MCP)Claude Desktop现在可以直接连接到GitHub、创建新的存储库并创建PR模型上下文协议(MCP)简介我们在Anthropic一直在研究一个开放标准,它解决了LLM应用程序的核心挑战-将它们连接到您的数据。不再为每个数据源构建自定义集成。MCP提供一种协议来连接它们:

Others are asking
MCP是什么
模型上下文协议(Model Context Protocol,简称 MCP)是一种全新的开放协议,主要用于标准化地为大语言模型(LLMs)提供应用场景和数据背景。 它就像 AI 领域的“USBC 接口”,能让不同的 AI 模型与外部工具和数据源轻松连接。其具有以下特点和优势: 简化开发:一次整合,多次复用,不再重复开发。 灵活性强:轻松切换 AI 模型或工具,无需复杂的重新配置。 实时互动:长连接保证数据实时更新。 安全可靠:内置标准化安全和权限控制。 扩展性强:AI 系统扩展时,只需连接新的 MCP 服务器。 MCP 最早由 Anthropic 公司开发,现已成为一个开放协议,越来越多的企业和开发者开始采用。 与传统 API 相比,通常 AI 系统连接外部工具时,需要单独整合多个不同的 API,每个 API 都有独立的代码、文档、认证方式、错误处理和后续维护,极大地增加了开发复杂度。而 MCP 提供了更简单的集成方式。 但如果应用场景需要精准且严格受控的交互方式,传统 API 可能更合适,比如在需要细粒度控制、功能严格限制,更偏好紧耦合以提升性能,希望最大化交互的可预测性等场景。 若要开始使用 MCP,可参考以下快速集成步骤: 1. 定义能力:明确 MCP 服务器提供的功能。 2. 实现 MCP 层:按照协议标准进行开发。 3. 选择通信方式:本地连接(标准输入输出)或远程连接(如 WebSockets)。 4. 创建资源/工具:开发或连接数据源和服务。 5. 建立客户端连接:与 MCP 服务器建立安全稳定的连接。 MCP 是一个典型的客户端服务端架构,对于有编程基础的同学来说较容易理解。通过简单案例,如让 AI 根据输入自动规划并调用 MCP 服务端,给本地电脑创建文件并写入一句话,可对其有初步且正确的认知。
2025-04-18
Mcp教程
以下是关于 MCP 教程的相关内容: 资源链接: 什么是 MCP 以及为什么要用它: Model Context Protocol(模型上下文协议),简称 MCP,是由 Anthropic 公司提出的一个开放标准,旨在解决 AI 模型与外部数据源和工具之间的连接问题。 MCP 就像是 AI 世界的“USBC 接口”,它提供了一种标准化的方式,让 AI 应用能够轻松连接到各种数据源和工具,不需要为每个新连接重新开发接口。 MCP 解决的主要问题包括: 碎片化集成:以前每个 AI 应用都需要单独开发与各种数据源的连接。 重复工作:不同团队重复构建相似的集成方案。 “N 乘 M 问题”:当有 N 个 AI 客户端需要连接 M 个数据源时,可能需要 N×M 个自定义集成。 希望这篇教程能帮助您了解 MCP 的基础知识,并开始构建自己的 MCP 服务器!随着实践的深入,您会发现 MCP 为 AI 应用与数据源及工具的集成提供了简单而强大的解决方案。 本篇内容由 Genspark 制作 https://www.genspark.ai/autopilotagent_viewer?id=c10e49b3228d4f65be347ab34777aaf8
2025-04-15
MCP是什么
模型上下文协议(Model Context Protocol,简称 MCP)是一种全新的开放协议,专门用于标准化地为大语言模型(LLMs)提供应用场景和数据背景。 它就像为 AI 模型量身定制的“USBC 接口”,能让不同的 AI 模型与外部工具和数据源轻松连接。 MCP 的好处包括: 简化开发:一次整合,多次复用,不再重复开发。 灵活性强:轻松切换 AI 模型或工具,无需复杂的重新配置。 实时互动:长连接保证数据实时更新。 安全可靠:内置标准化安全和权限控制。 扩展性强:AI 系统扩展时,只需连接新的 MCP 服务器。 MCP 最早由 Anthropic 公司开发,现在已成为一个开放协议,越来越多的企业和开发者开始采用。 MCP 是一个典型的客户端服务端架构,对于有编程基础的同学来说容易理解,就像开发中常见的 MySQL 一样。 与传统 API 相比,通常 AI 系统连接外部工具时,需要单独整合多个不同的 API,每个 API 都有独立的代码、文档、认证方式、错误处理和后续维护,极大地增加了开发复杂度。而 MCP 能简化这一过程。 在某些情况下,传统 API 更适合,比如应用场景需要精准且严格受控的交互方式,如需要细粒度控制、功能严格限制;更偏好紧耦合以提升性能;希望最大化交互的可预测性。 要开始使用 MCP,可按以下步骤: 1. 定义能力:明确 MCP 服务器提供的功能。 2. 实现 MCP 层:按照协议标准进行开发。 3. 选择通信方式:本地连接(标准输入输出)或远程连接(如 WebSockets)。 4. 创建资源/工具:开发或连接数据源和服务。 5. 建立客户端连接:与 MCP 服务器建立安全稳定的连接。 总之,MCP 让 AI 与外部数据、工具的连接变得更加标准化和高效。
2025-04-14
mcp 的内容
MCP(模型上下文协议)是一种创新的开放协议,由 Anthropic 公司在 2024 年 11 月推出并开源。 其主要特点和功能包括: 统一了交互标准,是链接所有 AI 应用与工具的桥梁,兼容所有 AI 应用。 具有三大功能:工具(Tools),底层使用 Function call 实现,与 OpenAI 格式兼容;资源(Resources),为 AI 提供参考信息;提示词(Prompts),预设对话模板。 主要接口路径包括获取工具列表、调用工具、获取资源列表、读取资源内容、获取提示词列表、获取提示词内容等。 转换步骤包括客户端向 MCP 服务器请求工具列表,将 MCP 工具定义转换为 Function call 格式,发送 Function Call 定义给 LLM,接收 LLM 生成的 Function call,将 Function call 转为 MCP 工具调用,发送工具调用结果给 LLM。 MCP 就像一个“转接头”或“通用插座”,其核心作用是统一不同外部服务,通过标准化接口与 AI 模型对接。它与传统 API 的关键区别在于: 单一协议:MCP 像一个统一接口,只要一次整合,就能连接多个服务。 动态发现:AI 模型能自动识别并使用可用的工具,不用提前写死每个接口。 双向通信:MCP 支持类似 WebSockets 的实时双向通信,模型不仅能查询数据,还能主动触发操作。 MCP 最早由 Anthropic 公司开发,目的是帮助 AI 模型(如 Claude)更容易地连接工具和数据源,现在已成为一个开放协议,被越来越多的企业和开发者采用,逐渐成为 AI 与工具互动的新标准。 官方文档:https://modelcontextprotocol.io/
2025-04-13
如何使用MCP?提供教程
以下是关于如何使用 MCP 的详细教程: 前置准备工作: 任选一个客户端软件进行配置,大致分为四步: 1. 填入大模型 API 密钥。 2. 找到 MCP 配置界面。 3. 填入 MCP Server 对应的 json 脚本。 4. 使用 MCP。 不同客户端软件的配置方法: 1. Cherry Studio(推荐): 版本:2025 年 4 月发布的 1.1.17。 配置大模型 API:填入之前准备好的 AiHubMix 的 API 密钥。 配置 MCP:例如,图中填写的就是 Playwright 的 MCP Server 和百度地图的 MCP Server。 使用 MCP。 2. Cursor(推荐): 配置大模型 API:如果 Cursor Pro 在免费试用期,这一步可以不做;如果不在免费试用期,最好的办法是氪金,也可以试试填入之前准备好的 AiHubMix 的 API 密钥。 配置 MCP Server:填入 MCP Server 的 json,保存。 回到 Cursor 的 MCP 配置页面,等待几秒钟,多点几次蓝色框里的按钮,直到绿灯亮起,并显示出所有 MCP 工具。 使用 MCP:Ctrl+Shift+L 新建对话,将模式设置为 Agent。 3. Claude Desktop: 配置 MCP Server:用文本编辑器(VSCode、Sublime Text 等)打开 claude_desktop_config.json 文件,填入 MCP Server 对应的 json 文件,保存。 重启 Claude Desktop。 查看 MCP Server 连接状态。 使用 MCP。 MCP 的好处: 1. 简化开发:一次整合,多次复用,不再重复开发。 2. 灵活性强:轻松切换 AI 模型或工具,无需复杂的重新配置。 3. 实时互动:长连接保证数据实时更新。 4. 安全可靠:内置标准化安全和权限控制。 5. 扩展性强:AI 系统扩展时,只需连接新的 MCP 服务器。 传统 API 更适合的场景: 1. 需要细粒度控制、功能严格限制。 2. 更偏好紧耦合以提升性能。 3. 希望最大化交互的可预测性。 快速集成 MCP 的步骤: 1. 定义能力:明确您的 MCP 服务器提供哪些功能。 2. 实现 MCP 层:按照协议标准进行开发。 3. 选择通信方式:本地连接(标准输入输出)或远程连接(如 WebSockets)。 4. 创建资源/工具:开发或连接您的数据源和服务。 5. 建立客户端连接:与 MCP 服务器建立安全稳定的连接。 MCP 与 API 的比较: MCP 与传统 API 之间的主要区别在于: 1. 单一协议:MCP 充当标准化的“连接器”,因此集成一个 MCP 意味着可能访问多个工具和服务,而不仅仅是一个。 2. 动态发现:MCP 允许 AI 模型动态发现可用工具并与之交互,而无需对每个集成进行硬编码知识。 3. 双向通信:MCP 支持持久的实时双向通信 类似于 WebSockets。AI 模型既可以检索信息,也可以动态触发操作。 以 Cursor 驱动 blender 自动化建模的 MCP 项目为例: 首先,在 github 上找到项目说明(https://github.com/ahujasid/blendermcp)。以 Mac 安装为例,首先要安装一个 uv 包(如果不懂,就直接新建一个项目文件夹后,将相关需求丢给 AI)。显示 uv 安装完毕后(初次使用可能需要安装一系列的环境,只要一路让 AI 安装就可以了),还是找到点击界面右上角的小齿轮图标。找到 MCP 模块 Add new global MCP server,将相关内容粘贴进去。退回 MCP 界面时,就会发现已经连接上了这个 blender 服务器,并且增加了很多具体功能。
2025-04-13
如何开发MCP
MCP(模型上下文协议)是由 Anthropic 在 2024 年 11 月推出并开源的一项创新标准。它就像一个“转接头”或“通用插座”,其核心作用是统一不同的外部服务(如 Google Drive、GitHub、Slack、本地文件系统等),通过标准化接口与 AI 模型对接。 MCP 的好处包括: 简化开发:一次整合,多次复用,不再重复开发。 灵活性强:轻松切换 AI 模型或工具,无需复杂的重新配置。 实时互动:长连接保证数据实时更新。 安全可靠:内置标准化安全和权限控制。 扩展性强:AI 系统扩展时,只需连接新的 MCP 服务器。 与传统 API 相比,MCP 更适合需要上下文理解的场景,而传统 API 更适合需要精准且严格受控的交互方式,如需要细粒度控制、功能严格限制,更偏好紧耦合以提升性能,希望最大化交互的可预测性的场景。 开发 MCP 的步骤如下: 1. 定义能力:明确 MCP 服务器提供的功能。 2. 实现 MCP 层:按照协议标准进行开发。 3. 选择通信方式:本地连接(标准输入输出)或远程连接(如 WebSockets)。 4. 创建资源/工具:开发或连接数据源和服务。 5. 建立客户端连接:与 MCP 服务器建立安全稳定的连接。 MCP 是一个典型的 CS 架构,对于有编程基础的同学来说容易理解。开发 MCP 前需要进行环境安装,包括下载并安装 Python(官网:https://www.python.org/),安装 uv(借助 uv 进行虚拟环境创建和依赖管理,它是一个 Python 依赖管理工具,采用 Rust 编写,兼有创建虚拟环境和包管理工具的功能,可以平替 pip,venv)。
2025-04-12