AI 技术的发展时间线大致如下:
2024 年 AI 关键进展时间线:
当前 AI 前沿技术点包括:
学习路径方面: 偏向技术研究方向:
偏向应用方向:
无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
请注意,以上内容由 AI 大模型生成,请仔细甄别。
AI技术的发展历程和前沿技术点可以概括如下:[heading2]AI技术发展历程[content]1.早期阶段(1950s-1960s):专家系统、博弈论、机器学习初步理论2.知识驱动时期(1970s-1980s):专家系统、知识表示、自动推理3.统计学习时期(1990s-2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)4.深度学习时期(2010s-至今):深度神经网络、卷积神经网络、循环神经网络等[heading2]当前AI前沿技术点[content]1.大模型(Large Language Models):GPT、PaLM等2.多模态AI:视觉-语言模型(CLIP、Stable Diffusion)、多模态融合3.自监督学习:自监督预训练、对比学习、掩码语言模型等4.小样本学习:元学习、一次学习、提示学习等5.可解释AI:模型可解释性、因果推理、符号推理等6.机器人学:强化学习、运动规划、人机交互等7.量子AI:量子机器学习、量子神经网络等8.AI芯片和硬件加速
三、应用形态的重构。AI Agent的突破让行业看到更多可能性——机器人获得自主行动能力的新方向,而AI编程工具的进展,也许预示着人机协作模式的变革。2024 AI关键进展时间线2月OpenAI发布视频生成模型Sora,首次实现高质量文本生成视频,开创AI视频生成新纪元3月Suno发布V3版本,AI音乐生成方向进入生产力可用状态(production ready)4月Meta发布高性能开源大模型Llama-3,降低了AI技术的准入门槛5月GPT-4发布Ray-Ban与Meta合作的智能眼镜销量突破百万字节上线即梦AI6月快手发布可灵Apple Intelligence发布9月OpenAI发布o1预览版10月Rosetta和AlphaFold算法的研发者因在蛋白质结构设计和预测中的突破性贡献获得诺贝尔化学奖约翰·霍普菲尔德和杰弗里·辛顿因人工神经网络和深度学习的开创性贡献获诺贝尔物理学奖Anthropic大模型Claude 3.5 Sonnet获得“computer use”功能12月OpenAI发布o3系列模型
1.数学基础:线性代数、概率论、优化理论等2.机器学习基础:监督学习、无监督学习、强化学习等3.深度学习:神经网络、卷积网络、递归网络、注意力机制等4.自然语言处理:语言模型、文本分类、机器翻译等5.计算机视觉:图像分类、目标检测、语义分割等6.前沿领域:大模型、多模态AI、自监督学习、小样本学习等7.科研实践:论文阅读、模型实现、实验设计等[heading3]偏向应用方向[content]1.编程基础:Python、C++等2.机器学习基础:监督学习、无监督学习等3.深度学习框架:TensorFlow、PyTorch等4.应用领域:自然语言处理、计算机视觉、推荐系统等5.数据处理:数据采集、清洗、特征工程等6.模型部署:模型优化、模型服务等7.行业实践:项目实战、案例分析等无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。内容由AI大模型生成,请仔细甄别。