Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

rpa技术

Answer

以下是关于 RPA 技术的相关信息:

RPA(机器人流程自动化)是一种软件技术,能够模仿人类在电脑上执行的重复性任务。它可以在不改变现有系统架构的情况下工作,是一种快速部署且成本效益高的解决方案。

对于中小企业利用人工智能进行转型,RPA 技术可用于以下方面来提高效率和自动化流程:

  1. 评估和识别日常重复性高的任务:通过分析日常工作流程,观察和记录员工的日常工作,确定哪些日常任务是耗时且重复性高的,这些任务通常是自动化的理想候选项。
  2. 确定具体目标:例如提高效率、减少错误率、优化工作流程等,并计划和安排对员工日常工作的观察,确保覆盖不同的部门和职位。
  3. 引入自动化工具:根据企业的具体需求和预算选择合适的自动化工具,如 RPA 技术,并在企业的 IT 系统中部署和配置,对自动化流程进行测试和优化。

在工作流编排领域,RPA 很早就已经出现。现在越来越多的 RPA 软件带上了 LLM。

此外,在一些新的应用中也有涉及 RPA 技术或类似的工作流自动化概念:

  1. ComfyUI 将开源绘画模型 Stable Diffusion 进行工作流化操作模式,提高了流程的可复用性,降低了时间成本。
  2. Dify.AI 的工作流设计语言与 ComfyUI 有相似之处,都定义了一套标准化的 DSL 语言,并支持导入导出功能进行工作流的复用。

然而,目前 Agentic Workflow 存在一些问题,如使用用户较少、在复杂流程上的开发不够稳定可靠等。

Content generated by AI large model, please carefully verify (powered by aily)

References

中小企业利用人工智能(AI)进行转型

"任务自动化"的目标是通过技术手段减少中小企业在日常运营中的重复性劳动,提高工作效率和准确性。首先,评估和识别日常重复性高的任务。确定哪些日常任务是耗时且重复性高的,这些任务通常是自动化的理想候选项。通过分析日常工作流程,观察和记录员工的日常工作,特别是那些耗时且重复性高的活动。为了有效地识别可以通过自动化或优化来提高效率的工作流程。其次,确定要通过观察和记录达成的具体目标,例如提高效率、减少错误率、优化工作流程等。计划和安排对员工日常工作的观察,确保覆盖不同的部门和职位。通过直接观察或使用工作跟踪工具来记录员工的工作流程和活动。特别注意那些看起来耗时、重复性高的任务,如数据输入、文件整理等。记录员工执行任务的时间、频率以及所采用的方法。与员工交谈,了解他们对当前工作流程的看法,以及他们认为可能存在的效率瓶颈或挑战。分析收集到的数据,识别哪些任务是最耗时和重复性最高的。基于分析结果,确定哪些任务可以通过引入自动化工具来优化。制定具体的行动计划,包括引入新工具、重新设计工作流程或提供额外培训。实施改进措施,并持续监测其效果,确保所采取的措施能够实际提高工作效率。通过这样的过程,企业可以更准确地识别并解决影响员工生产力的问题,从而提高整体工作效率和效果。最后引入自动化工具,通过引入自动化工具来处理上述识别的重复性任务,减少人工劳动,提高效率。根据企业的具体需求和预算选择合适的自动化工具。例如RPA(机器人流程自动化)技术,RPA是一种软件技术,能够模仿人类在电脑上执行的重复性任务。它可以在不改变现有系统架构的情况下工作,是一种快速部署且成本效益高的解决方案。RPA可以用于自动化各种标准化的、规则性的任务,如数据录入、文件处理等。在企业的IT系统中部署RPA或其他自动化软件。根据具体的工作流程,配置自动化软件,确保它可以准确执行所需任务。在初期实施后,对自动化流程进行测试,确保其按预期运行,并根据实际情况进行调整优化。

2024人工智能报告|一文迅速了解今年的AI界都发生了什么?

苹果Vision Pro成为必备的机器人研究工具尽管消费者对Vision Pro的需求平淡无奇,但它在机器人研究领域引起了轰动,在那里其高分辨率、高级跟踪和处理能力被研究人员用于远程操作控制机器人的运动和动作。如Open-TeleVision和Bunny-Vision Pro使用它来帮助实现精确控制多指机械手(例如前者距离为3000英里),展示比以前的方法更复杂的任务的改进性能,如实时控制、通过碰撞避免的安全性和有效的双臂协调。在医学中利用大模型生成合成数据微调Stable Diffusion中的U-Net和CLIP文本编码器,从大量真实胸部X射线(CXR)及其相应的放射科医生报告中生成一个大型数据集,从而产生由权威放射科医生评估为高保真度和概念正确性的合成CXR扫描数据,并且生成的X射线图像可用于数据增强和自监督学习。企业自动化获得人工智能后将优先升级传统的机器人流程自动化(RPA),如UiPath,面临着高昂的设置成本、脆弱的执行和繁重的维护。两个新颖的方法,FlowMind(JP Morgan)和ECLAIR(斯坦福大学),使用基础模型来解决这些限制。FlowMind专注于金融工作流,通过API使用LLM来生成可执行的工作流。在对NCEN-QA数据集进行实验时,FlowMind在工作流理解方面达到了99.5%的准确率。ECLAIR采取了更广泛的方法,使用多模态模型从演示中学习,并直接与各种企业环境中的图形用户界面交互。在网页导航任务上,ECLAIR将完成率提高了从0%到40%。

Inhai: Agentic Workflow:AI 重塑了我的工作流

RPA其实很早就已经出现,就是做工作流编排领域。流程机器人(RPA)软件的目标是使符合某些适用性标准的基于桌面的业务流程和工作流程实现自动化,一般来说这些操作在很大程度上是重复的,数量比较多的,并且可以通过严格的规则和结果来定义,现在越来越多的RPA软件带上了LLM。ComfyUI的工作流设计近期出现的ComfyUI是将开源绘画模型Stable Diffusion进行工作流化操作模式,用户需要在流程编辑器中配置出每一个的pipeline,并通过不同节点和连线来完成模型的操作和图片内容生成,提高了流程的可复用性,降低了时间成本,同时它的DSL配置文件还支持导出导入。Dify.AI可被复制的工作流设计在Dify.AI中,我很兴奋的看到它的工作流设计语言跟ComfyUI会有一些相似之处,都是定义了一套标注化的DSL语言,并且非常方便的可以使用导入导出的功能进行工作流的复用。模仿式工作流是最快的学习方法Large Action Model采用称为“通过演示进行模仿”的技术。检查人们在单击按钮或输入数据时如何与界面互动,然后准确地模仿这些操作,他们收集知识并从用户提供的示例中学习,使他们更能适应进一步的变化并能够处理不同的任务。但是,有没有想过一个问题:Agentic Workflow看起来十分美好,但是使用的用户究竟有多少呢?我看了很多Agent商店,通过工作流创建的应用目前来看还是比较少的(可能是出现周期、工作流使用的上手难度等等一系列因素导致),此外Agentic Workflow似乎在复杂流程上的开发又并不是那么稳定可靠。Idea Time:通过自然语言创建工作流

Others are asking
MacBook 如何做一个 RPA 机器人
以下是在 MacBook 上制作 RPA 机器人的详细步骤: 搭建前准备: 硬件准备: MacBook(需能科学上网) 一部 iPhone 手机 主板 Arduino UNO R4 Wifi(200RMB) 舵机 9g(32RMB) 杜邦线,公对公 7 条(手残党可多备) (可选)八爪鱼支架(10RMB) (二选一)usbtypeC 转接头,或一根两头 typeC 的线 Arduino UNO R4 WIFI 开发板 MG90s/SG90 舵机 9g 云台支架 可选八爪鱼手机支架 杜邦线公对公 搭建步骤: 完成代码: 在 Github 上下载完整代码。 根据需求修改文件: 【必改】在 head.py 中找到填写主板串口的地方,改成串口地址(可通过主板写入的第 3 步里的小字或 Tools>Get Board Info 重新查询,复制 sn 号替换 usbmodem 后面的编码)。 【必改】查询 iPhone 的 ip 地址,填到 talk.py 里(iPhone 设置>无线局域网>点击当前 wifi 旁的感叹号>找到 ipv4 地址里写的 ip 地址)。 【必改】把 open ai key 填到 talk.py 里。 【可选】在 talk.py 里,可以修改: Openai 调用的 model。 system prompt(机器人的人设)。 机器人的音色。 录音的设置。 【可选】在 head.py 里,可以修改不对话后,等待多久恢复人脸追踪。 运行程序: 在 MacBook 上按下 command+space(空格)打开一个新的终端,依次输入如下代码(每一次代码运行完以后再输入下一个),全部完成后,关闭端口。 将 iPhone 的屏幕关闭时间设置为 5 分钟或永不。 打开 iPhone 的 pythonista 并复制 face.py 的代码进去,运行。注意:每一次如果需要重新运行 pythonista,请先杀后台再运行,否则会因为端口已经被占用而无法播放声音。 找到下载下来的 AIinhindsightGPTEmbodimentRobot 文件夹,control+单击文件夹,选择最后一项“新建位于文件夹位置的终端端口”。 将 arduino R4 与 MacBook 相连,在终端中输入以下代码,运行后程序会申请一次摄像头权限,点击允许,然后出现运行失败,再运行一次即可。这个程序一旦运行,无法自然退出,建议直接拔掉 R4 的线或者终端输入 control+c 或者直接关闭终端,但多强制退出几次以后运行就会卡住需要重启或清进程。 再次在 AIinhindsightGPTEmbodimentRobot 文件夹,control+单击文件夹,选择最后一项“新建位于文件夹位置的终端端口”,在终端中输入以下代码,运行后程序会申请一次录音权限,点击允许,然后出现运行失败,再运行一次即可。如果运行中出现任何报错,将本文档,代码,报错信息给到 GPT4,让他帮助你就好~可能是有一些库没有预装。 把 talk.py 的终端放在最前面你能看到,出现 recording...的时候就可以说话了。 三个程序同时运行、iPhone 和 MacBook 在同一 wifi,iPhone 没有调静音的情况下,就可以正常对话啦。
2025-04-11
deepseek+RPA
以下是关于 deepseek+RPA 的相关信息: Deepseek 提示词方法论方面,有案例如笨笨 v 泡泡,以及 deepseekr1:7b 模型行测试题分析过程及结果的相关链接。在飞书多维表格上也可调用 DeepSeek,且支持 DeepSeek R1、V3 模型,以及 DeepSeek 官方、火山方舟、硅基流动三个服务商。 影刀 RPA+AI Power 方面,其功能亮点在于大模型虽有局限,但 AI Power 集成丰富组件可拓展能力边界打造 AI Agent,如搜索引擎组件和 RPA 组件等。使用方式无缝多样,包括嵌入方式如网页分享、对话助理、API 集成等,能适应企业分散系统的不同业务场景。同时提供贴身的企业级服务支持,包括教学培训、技术答疑、场景共创等。 在工作流方面,RPA 很早就用于工作流编排领域,现在越来越多的 RPA 软件带上了 LLM。如 ComfyUI 进行工作流化操作模式提高了流程可复用性,Dify.AI 工作流设计语言与 ComfyUI 有相似之处。Large Action Model 采用“通过演示进行模仿”技术,但 Agentic Workflow 存在用户使用少、复杂流程开发不稳定等问题,有人提出通过自然语言创建工作流的想法。
2025-04-11
如何用rpa来实现读取本地excel表格里的内容进行筛选,提取某些数据值后,再自动化填写到飞书的多维表格去。怎么来实现这个功能
要使用 RPA 实现读取本地 Excel 表格内容进行筛选,并将提取的数据值自动化填写到飞书的多维表格,可参考以下步骤: 1. 关于扣子:“”(Coze)是字节跳动在 2024 年上线的新一代一站式 AI Bot 开发平台,也被称为“字节版 GPTs”。它是一个低门槛的 AI 应用开发平台,其核心目标是让没有编程基础的用户也能够轻松参与到 AI 生态的建设中。 2. 登录后,在左侧功能列表的工作空间中,点击右上角“+字段”创建工作流,自行输入名称和描述。 3. 已做好工作流后,逐步拆解每个节点的配置: 开始节点:此节点不需要做任何配置,没有输入以及输出。 读取飞书表格内容节点:点击开始节点后面的“+”,搜索“飞书多维表格”,选择“search_record”功能。添加后,点击该节点的配置,在界面右侧的参数框中,需要填写 app_token、field_names。filter 是对数据的筛选条件,没有筛选需求可直接忽略。其中,app_token 是多维表格的唯一标识符,即表格 URL 中的一段;field_names 则是要读取的具体字段,比如“标题”、“内容”,以作为后续操作的输入。该节点运行后,就能将多维表格中的内容提取出来。
2025-04-09
rpa
RPA 很早就已出现,主要用于工作流编排领域,旨在使符合标准的基于桌面的业务流程和工作流程实现自动化,通常这些操作重复且数量多,可通过规则和结果定义,如今越来越多的 RPA 软件带上了 LLM。 近期出现的 ComfyUI 将开源绘画模型 Stable Diffusion 进行工作流化操作,用户在流程编辑器中配置 pipeline,通过节点和连线完成模型操作和图片生成,提高流程可复用性并降低时间成本,其 DSL 配置文件支持导出导入。 Dify.AI 的工作流设计语言与 ComfyUI 有相似之处,都定义了标准化的 DSL 语言,方便导入导出以复用工作流。 Large Action Model 采用“通过演示进行模仿”的技术,收集知识并从用户示例中学习,适应变化和处理不同任务。 但 Agentic Workflow 存在一些问题,如使用用户较少,可能因出现周期、上手难度等因素,在复杂流程开发上也不太稳定可靠。 单 Agent 模式下,有“技能”“知识”“记忆”“对话体验”等点,将一整套工作流组合,每个工具在节点执行任务,可体验并在工作流中使用。 不同 Agent 流程编排开发平台中,workflow 可成为组件被调用,也能嵌套新的 workflow,基础节点、插件工具、LLM、逻辑条件处理等都是输入、输出的组装模块。 大模型根源的“不太聪明”,加上 workflow 也无法解决意图理解准确率问题,工作流主要解决流程的可控性,吴恩达老师也提到提升大模型本身质量很重要。 LangGPT 提示词框架应用了 CoT 完成从输入到思维链再到输出的映射,可解决模型规划过程中的路径拆解。
2025-03-23
rpa学习
RPA(机器人流程自动化)学习相关内容如下: RPA 很早就已出现,用于工作流编排领域,旨在使符合标准的基于桌面的业务流程和工作流程实现自动化,操作多为重复且数量较多,可通过规则和结果定义,如今不少 RPA 软件带上了 LLM。 ComfyUI 将开源绘画模型 Stable Diffusion 进行工作流化操作,用户在流程编辑器中配置 pipeline,通过节点和连线完成模型操作和图片生成,提高流程可复用性,降低时间成本,其 DSL 配置文件支持导出导入。 Dify.AI 的工作流设计语言与 ComfyUI 有相似之处,都定义了标准化的 DSL 语言,支持导入导出功能进行工作流复用。 Large Action Model 采用“通过演示进行模仿”的技术,检查人们与界面的互动并模仿操作,从用户示例中学习。 中小企业可通过任务自动化提高效率和自动化流程。首先评估和识别日常重复性高的任务,确定具体目标并观察记录,然后引入自动化工具,如 RPA 技术,它能模仿人类执行重复性任务,快速部署且成本效益高。 关于 RPA+财务税务问答机器人制作,包括直播准备与开场、AI 在税务工作中的应用及实现方式、使用引到 AP 创建税务 AI 智能助手及相关部署、飞书机器人与引到 AP 的结合及相关问题、RPA 产品介绍及应用场景等。杭州分叉智能公司的 RPA 产品可控制桌面软件实现办公流程自动化,RPA 可替代电脑办公中的重复有逻辑工作,适用于开具大量发票、查询出租车违章、朋友圈点赞等场景,多人多部门使用可提高办公效率。
2025-03-23
rpa难学吗
RPA 的学习难度因人而异。 RPA 很早就已出现,用于工作流编排领域,旨在使符合特定标准的基于桌面的业务流程和工作流程实现自动化,通常这些操作具有重复性和数量较多的特点,且能通过严格规则和结果定义。如今越来越多的 RPA 软件带上了 LLM。 头部商家都在使用 RPA,它 10 年前就有了,可理解为游戏外挂,主要用于办公领域,能控制桌面软件和操作 Web 端,代码被封装成组件,普通用户可搭建机器人,解决办公标准化、重复工作,还可结合人工智能,底层语言为 Python 但使用不需代码。 在财务领域,RPA 也有相应应用,比如数据操作、与多个信息化系统结合等场景有相应 SOP,不同公司因信息化系统不同工作流有差异。 但 RPA 在复杂流程上的开发可能不是那么稳定可靠,使用的上手难度也可能因多种因素而存在一定挑战。比如在 Agentic Workflow 中,通过工作流创建的应用目前来看还比较少,可能是出现周期、上手难度等因素导致。 不过,模仿式工作流是一种较快的学习方法,例如 Large Action Model 采用“通过演示进行模仿”的技术,从用户提供的示例中学习。同时,像 ComfyUI 和 Dify.AI 等在工作流设计方面也有各自的特点和优势。
2025-03-20
能画技术路线图的prompt
以下是关于能画技术路线图的 prompt 相关内容: Midjourney Bot 的 Prompt 类型: 基本 Prompts:可以只是一个单词、短语或表情符号。 高级 Prompts:包括一个或多个图片 URL、多个文本短语以及一个或多个参数。其中,图片 URL 始终位于 prompt 的最前面,以影响完成结果的风格和内容。提示文字是对希望生成的图像的文本描述,精心编写的提示有助于生成惊艳的图像。参数可以改变生成图片的方式,需放在提示语的末尾。 ComfyUI Flux 与 runway 制作绘画视频: 生成图片:提示词告诉 flux 生成一张技术草图,如 CAD。 绘制的视频:在 runway 里面,使用提示词从空白页面开始逐行创建,并把生成的图片作为尾帧。 草图上色:使用 flux 的 controlNet,depth 固定,目前 Union 版本不建议权重调太高,结束时间也需注意。 Prompt engineering(提示工程): 开发测试用例:定义任务和成功标准后,创建多样化的测试用例,包括典型示例和边界情况,以确保提示具有鲁棒性。 设计初步提示:制定初步提示,概述任务定义、良好响应的特征及必要上下文,添加规范输入和输出的示例供参考。 根据测试用例测试提示:使用初步提示将测试用例输入,评估模型响应与预期输出和成功标准的一致性,使用一致的评分标准进行系统性的性能评估。
2025-04-19
金融业相关AI应用场景或AI技术介绍
在金融业中,AI 有以下应用场景和技术: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,辅助投资者做出更明智的投资决策。 4. 客户服务:提供 24/7 的客户服务,回答客户常见问题。 例如,Hebbia 获得近 1 亿美元 B 轮融资,其 AI 技术能够一次处理多达数百万份文档,在短时间内浏览数十亿份包括 PDF、PowerPoint、电子表格和转录内容等,并返回具体答案,主要面向金融服务公司,如对冲基金和投资银行,同时也适用于律师事务所等其他专业领域。
2025-04-15
stable diffusion底层技术
Stable Diffusion 的底层技术主要来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach 之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型的文本到图像生成模型,其原理包括以下几个步骤: 1. 使用新颖的文本编码器(OpenCLIP),由 LAION 开发并得到 Stability AI 的支持,将文本输入转换为向量表示,以捕捉文本语义信息并与图像空间对齐。 2. 采用扩散模型,将随机噪声图像逐渐变换为目标图像。扩散模型是一种生成模型,能从训练数据中学习概率分布并采样新数据。 3. 在扩散过程中,利用文本向量和噪声图像作为条件输入,给出每一步变换的概率分布,根据文本指导噪声图像向目标图像收敛,并保持图像的清晰度和连贯性。 4. 使用超分辨率放大器(Upscaler Diffusion Model),将生成的低分辨率图像放大到更高分辨率,从低分辨率图像中恢复细节信息并增强图像质量。 此外,ComfyUI 的底层依赖 Stable Diffusion,去噪过程由 UNet 网络完成。UNet 是一种编码器解码器结构,能处理多尺度特征表示。在 ComfyUI 中,去噪的每个步骤通过模型推理模块实现,调用训练好的 UNet 模型逐步将噪声图像还原成有意义的图像。交叉注意力机制在 Stable Diffusion 中很重要,允许模型在生成过程中融入文本提示、图像、语义信息等条件,在 ComfyUI 中通过“文本提示”和“条件输入”节点实现。跳跃连接是 UNet 的核心部分,能在不同尺度之间共享特征,在 ComfyUI 的节点网络中表现为中间过程数据的流转。切换器代表在去噪过程中的不同阶段对特征流的控制,在 ComfyUI 中可通过修改模型参数节点或自定义网络结构节点对不同阶段的噪声去除策略进行微调。 Stable Diffusion 还具有以下优点: 1. 可以处理任意领域和主题的文本输入,并生成与之相符合的多样化和富有创意的图像。 2. 可以生成高达 2048x2048 或更高分辨率的图像,且保持良好的视觉效果和真实感。 它还可以进行深度引导和结构保留的图像转换和合成,例如根据输入图片推断出深度信息,并利用深度信息和文本条件生成新图片。
2025-04-15
学习AI怎么在工作中使用,提高工作效率,有必要从技术原理开始学习吗
学习 AI 在工作中使用以提高工作效率,不一定需要从技术原理开始学习。以下是一些相关的案例和建议: 案例一:GPT4VAct 是一个多模态 AI 助手,能够模拟人类通过鼠标和键盘进行网页浏览。其应用场景在于以后互联网项目产品的原型设计自动化生成,能使生成效果更符合用户使用习惯,同时优化广告位的出现位置、时机和频率。它基于 AI 学习模型,通过视觉理解技术识别网页元素,能执行点击和输入字符操作等,但目前存在一些功能尚未支持,如处理视觉信息程度有限、不支持输入特殊键码等。 案例二:对于教师来说,有专门的 AI 减负指南。例如“AI 基础工作坊用 AI 刷新你的工作流”,从理解以 GPT 为代表的 AI 工作原理开始,了解其优势短板,学习写好提示词以获得高质量内容,并基于一线教师工作场景分享优秀提示词与 AI 工具,帮助解决日常工作中的常见问题,提高工作效率。 建议:您可以根据自身工作的具体需求和特点,有针对性地选择学习方向。如果您只是想快速应用 AI 提高工作效率,可以先从了解常见的 AI 工具和应用场景入手,掌握基本的操作和提示词编写技巧。但如果您希望更深入地理解和优化 AI 在工作中的应用,了解技术原理会有一定帮助。
2025-04-15
AI相关的最前沿技术网站
以下是一些 AI 相关的前沿技术网站: 1. OpenAI:提供了诸如 GPT 等先进的语言模型和相关技术。 2. Google AI:涵盖了多种 AI 领域的研究成果和应用。 3. Microsoft Research:在 AI 方面有众多创新研究和技术展示。 此外,WaytoAGI 也是一个致力于人工智能学习的中文知识库和社区平台,汇集了上千个人工智能网站和工具,提供最新的 AI 工具、应用、智能体和行业资讯。在没有任何推广的情况下,WaytoAGI 两年时间已有超过 300 万用户和超千万次的访问量,其目标是让每个人的学习过程少走弯路,让更多的人因 AI 而强大。目前合作过的公司/产品包括阿里云、通义千问、淘宝、智谱、支付宝等。
2025-04-15
,当前AI数字人发展的新态势,以及新技术和成果
当前 AI 数字人的发展呈现出以下新态势,并取得了一系列新技术和成果: 数字人简介: 数字人是运用数字技术创造的,虽现阶段未达科幻作品中的高度智能,但已在生活多场景中出现且应用爆发。业界对其尚无准确定义,一般可按技术栈分为真人驱动和算法驱动两类。真人驱动的数字人重在通过动捕设备或视觉算法还原真人动作表情,主要用于影视和直播带货,其表现质量与建模精细度及动捕设备精密程度相关,不过视觉算法进步使在无昂贵动捕设备时也能通过摄像头捕捉关键点信息实现不错效果。 B 端变现与创业方向: B 端变现细分包括高频率和大规模的内容生产细分,如文字、视频、3D 模型、AI 智能体等,底层是需求和数据收集及训练模型,算力和能源是关键。自媒体创业需具备内容创新和差异化,内容成本低且更新迭代快。游戏创业可做轻量化游戏,结合 AI 技术满足放松和社交需求,专注垂类赛道避免与大厂竞争。影视创业在 25 年将是拐点,更多内容会采用 AI 技术。广告营销创业重点是 AI 虚拟人,数字插画可走治愈类型,要明确平台用户画像和产品定位,做好次留存和引入私域。 AI 虚拟人的发展与创业机遇: AI 虚拟人从早期以首位为核心的宅文化虚拟偶像,发展到以 CG 技术和动捕语音合成技术为核心的角色,再到如今以动捕和人工智能技术为核心的服务型虚拟人。虚拟人产业链包括基础层的硬件和软件研发,平台层如商汤、百度等提供工具和系统,应用层涉及影视、传媒、游戏、金融、文旅等内容变现。未来 3 10 年,AI 虚拟人是 Web 3.0 的风口,提前布局有潜力的赛道可迎接机遇,但创业对创业者综合能力要求极高。 未来展望: 数字人未来有很多应用场景,如家庭中的数字人管家、学校中的数字人老师、商场里的数字人导购等。未来还会有很多技术突破,如将五感数据和躯壳控制参数作为输入,次世代算法可自我迭代升级和自行演化躯壳控制方式。通过 Dify 搭建数字人的开源项目可展现低门槛高度定制数字人的基本思路,数字人的核心在于 Agent 即灵魂,如何在 Dify 上编排专属数字人灵魂值得体验。期望随着数字人的多模态能力接入、智能化水平升级、模型互动控制更精确,AI 既能提供高质量信息,也能关注用户情绪。
2025-04-14