Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

什么是MCP

Answer

模型上下文协议(Model Context Protocol,简称 MCP)是一种全新的开放协议,专门用于标准化地为大语言模型(LLMs)提供应用场景和数据背景。

它就像 AI 领域的“USB-C 接口”,能让不同的 AI 模型与外部工具和数据源轻松连接。其好处包括:

  • 简化开发:一次整合,多次复用,不再重复开发。
  • 灵活性强:轻松切换 AI 模型或工具,无需复杂的重新配置。
  • 实时互动:长连接保证数据实时更新。
  • 安全可靠:内置标准化安全和权限控制。
  • 扩展性强:AI 系统扩展时,只需连接新的 MCP 服务器。

MCP 最早由 Anthropic 公司开发,现已成为一个开放协议,越来越多的企业和开发者开始采用。

与传统 API 相比,通常 AI 系统连接外部工具时,需要单独整合多个不同的 API,每个 API 都有独立的代码、文档、认证方式、错误处理和后续维护,极大地增加了开发复杂度。而 MCP 就像不同的门只需一把通用钥匙,让 AI 模型更简单地获取数据、工具与服务。

但在某些情况下,传统 API 更适合,比如应用场景需要精准且严格受控的交互方式,如需要细粒度控制、功能严格限制;更偏好紧耦合以提升性能;希望最大化交互的可预测性。

快速集成 MCP 的步骤包括:

  1. 定义能力:明确 MCP 服务器提供的功能。
  2. 实现 MCP 层:按照协议标准进行开发。
  3. 选择通信方式:本地连接(标准输入输出)或远程连接(如 WebSockets)。
  4. 创建资源/工具:开发或连接数据源和服务。
  5. 建立客户端连接:与 MCP 服务器建立安全稳定的连接。

总之,MCP 是为 AI 模型统一连接数据与工具的标准接口,让 AI 与外部数据、工具的连接变得更加标准化和高效。而传统 API 则是每个服务单独连接,开发更复杂。

Content generated by AI large model, please carefully verify (powered by aily)

References

什么是模型上下文协议(MCP)?它如何比传统API更简单地集成AI?

什么是模型上下文协议(MCP)?它如何比传统API更简单地集成AI?模型上下文协议(Model Context Protocol,简称MCP)是一种全新的开放协议,专门用于标准化地为大语言模型(LLMs)提供应用场景和数据背景。你可以把MCP想象成AI领域的“USB-C接口”,它能让不同的AI模型与外部工具和数据源轻松连接。本文将清晰地解释MCP的价值、工作原理,以及它与传统API的关键区别。[heading2]什么是MCP?[content]模型上下文协议(MCP)就像是为AI模型量身定制的“USB-C接口”,可以标准化地连接AI系统与各类外部工具和数据源。什么是MCP?就像USB-C接口让你的电脑更容易连接各种设备一样,MCP让AI模型更简单地获取数据、工具与服务。[heading2]为什么要用MCP,而不是传统的API?[content]通常,AI系统想连接外部工具时,需要单独整合多个不同的API。每个API都有独立的代码、文档、认证方式、错误处理和后续维护,极大地增加了开发复杂度。[heading3]为什么说传统API就像每扇门都有一把不同的钥匙?[content]打个比方:API就像不同的门,每扇门都需要自己的钥匙和特定的规则。为什么使用MCP而非传统API?传统的API要求开发者为每个服务或数据源单独编写代码和整合方案。[heading2]MCP背后是谁?[content]MCP最早由Anthropic↗[1]公司开发,目的是帮助AI模型(如Claude)更容易地连接工具和数据源。但现在,MCP已经成为一个开放协议,越来越多的企业和开发者开始采用它,这也让它逐渐成为AI与工具互动的新标准。

什么是模型上下文协议(MCP)?它如何比传统API更简单地集成AI?

•简化开发:一次整合,多次复用,不再重复开发。•灵活性强:轻松切换AI模型或工具,无需复杂的重新配置。•实时互动:长连接保证数据实时更新。•安全可靠:内置标准化安全和权限控制。•扩展性强:AI系统扩展时,只需连接新的MCP服务器。[heading2]什么时候传统API更适合?[content]如果你的应用场景需要精准且严格受控的交互方式,那么传统API可能更合适。MCP提供广泛而灵活的动态能力,更适合需要上下文理解的场景,但不一定适用于严格受控的场合。[heading3]传统API更合适的场景:[content]•需要细粒度控制、功能严格限制;•更偏好紧耦合以提升性能;•希望最大化交互的可预测性。[heading2]如何开始使用MCP?[content]快速集成MCP的步骤:1.1.定义能力:明确你的MCP服务器提供哪些功能。2.2.实现MCP层:按照协议标准进行开发。3.3.选择通信方式:本地连接(标准输入输出)或远程连接(如WebSockets)。4.4.创建资源/工具:开发或连接你的数据源和服务。5.5.建立客户端连接:与MCP服务器建立安全稳定的连接。[heading2]总结[heading3]再次回顾什么是MCP:[content]•MCP:为AI模型统一连接数据与工具的标准接口。•API:传统的方式,每个服务单独连接,开发更复杂。什么是MCP?MCP让AI与外部数据、工具的连接变得更加标准化和高效。

银海:MCP是大模型的 USB x.0 接口

LLM也不是万能的,它缺失了很多能力,LLM可以作为智能体的大脑,外部工具就是智能体的手和脚,协助智能体执行决策。一个典型的Agent的设计,LLM充当大脑模块,通过多模态输入,处理信息,然后做出决策和规划行动。MCP就是想要通过一个开放的协议,为外部工具(或数据源)提供统一和LLM交互的统一集成,MCP就是手脚连接身体的“关节”。

Others are asking
MCP是什么
模型上下文协议(Model Context Protocol,简称 MCP)是一种全新的开放协议,主要用于标准化地为大语言模型(LLMs)提供应用场景和数据背景。 它就像 AI 领域的“USBC 接口”,能让不同的 AI 模型与外部工具和数据源轻松连接。其具有以下特点和优势: 简化开发:一次整合,多次复用,不再重复开发。 灵活性强:轻松切换 AI 模型或工具,无需复杂的重新配置。 实时互动:长连接保证数据实时更新。 安全可靠:内置标准化安全和权限控制。 扩展性强:AI 系统扩展时,只需连接新的 MCP 服务器。 MCP 最早由 Anthropic 公司开发,现已成为一个开放协议,越来越多的企业和开发者开始采用。 与传统 API 相比,通常 AI 系统连接外部工具时,需要单独整合多个不同的 API,每个 API 都有独立的代码、文档、认证方式、错误处理和后续维护,极大地增加了开发复杂度。而 MCP 提供了更简单的集成方式。 但如果应用场景需要精准且严格受控的交互方式,传统 API 可能更合适,比如在需要细粒度控制、功能严格限制,更偏好紧耦合以提升性能,希望最大化交互的可预测性等场景。 若要开始使用 MCP,可参考以下快速集成步骤: 1. 定义能力:明确 MCP 服务器提供的功能。 2. 实现 MCP 层:按照协议标准进行开发。 3. 选择通信方式:本地连接(标准输入输出)或远程连接(如 WebSockets)。 4. 创建资源/工具:开发或连接数据源和服务。 5. 建立客户端连接:与 MCP 服务器建立安全稳定的连接。 MCP 是一个典型的客户端服务端架构,对于有编程基础的同学来说较容易理解。通过简单案例,如让 AI 根据输入自动规划并调用 MCP 服务端,给本地电脑创建文件并写入一句话,可对其有初步且正确的认知。
2025-04-18
Mcp教程
以下是关于 MCP 教程的相关内容: 资源链接: 什么是 MCP 以及为什么要用它: Model Context Protocol(模型上下文协议),简称 MCP,是由 Anthropic 公司提出的一个开放标准,旨在解决 AI 模型与外部数据源和工具之间的连接问题。 MCP 就像是 AI 世界的“USBC 接口”,它提供了一种标准化的方式,让 AI 应用能够轻松连接到各种数据源和工具,不需要为每个新连接重新开发接口。 MCP 解决的主要问题包括: 碎片化集成:以前每个 AI 应用都需要单独开发与各种数据源的连接。 重复工作:不同团队重复构建相似的集成方案。 “N 乘 M 问题”:当有 N 个 AI 客户端需要连接 M 个数据源时,可能需要 N×M 个自定义集成。 希望这篇教程能帮助您了解 MCP 的基础知识,并开始构建自己的 MCP 服务器!随着实践的深入,您会发现 MCP 为 AI 应用与数据源及工具的集成提供了简单而强大的解决方案。 本篇内容由 Genspark 制作 https://www.genspark.ai/autopilotagent_viewer?id=c10e49b3228d4f65be347ab34777aaf8
2025-04-15
MCP是什么
模型上下文协议(Model Context Protocol,简称 MCP)是一种全新的开放协议,专门用于标准化地为大语言模型(LLMs)提供应用场景和数据背景。 它就像为 AI 模型量身定制的“USBC 接口”,能让不同的 AI 模型与外部工具和数据源轻松连接。 MCP 的好处包括: 简化开发:一次整合,多次复用,不再重复开发。 灵活性强:轻松切换 AI 模型或工具,无需复杂的重新配置。 实时互动:长连接保证数据实时更新。 安全可靠:内置标准化安全和权限控制。 扩展性强:AI 系统扩展时,只需连接新的 MCP 服务器。 MCP 最早由 Anthropic 公司开发,现在已成为一个开放协议,越来越多的企业和开发者开始采用。 MCP 是一个典型的客户端服务端架构,对于有编程基础的同学来说容易理解,就像开发中常见的 MySQL 一样。 与传统 API 相比,通常 AI 系统连接外部工具时,需要单独整合多个不同的 API,每个 API 都有独立的代码、文档、认证方式、错误处理和后续维护,极大地增加了开发复杂度。而 MCP 能简化这一过程。 在某些情况下,传统 API 更适合,比如应用场景需要精准且严格受控的交互方式,如需要细粒度控制、功能严格限制;更偏好紧耦合以提升性能;希望最大化交互的可预测性。 要开始使用 MCP,可按以下步骤: 1. 定义能力:明确 MCP 服务器提供的功能。 2. 实现 MCP 层:按照协议标准进行开发。 3. 选择通信方式:本地连接(标准输入输出)或远程连接(如 WebSockets)。 4. 创建资源/工具:开发或连接数据源和服务。 5. 建立客户端连接:与 MCP 服务器建立安全稳定的连接。 总之,MCP 让 AI 与外部数据、工具的连接变得更加标准化和高效。
2025-04-14
mcp 的内容
MCP(模型上下文协议)是一种创新的开放协议,由 Anthropic 公司在 2024 年 11 月推出并开源。 其主要特点和功能包括: 统一了交互标准,是链接所有 AI 应用与工具的桥梁,兼容所有 AI 应用。 具有三大功能:工具(Tools),底层使用 Function call 实现,与 OpenAI 格式兼容;资源(Resources),为 AI 提供参考信息;提示词(Prompts),预设对话模板。 主要接口路径包括获取工具列表、调用工具、获取资源列表、读取资源内容、获取提示词列表、获取提示词内容等。 转换步骤包括客户端向 MCP 服务器请求工具列表,将 MCP 工具定义转换为 Function call 格式,发送 Function Call 定义给 LLM,接收 LLM 生成的 Function call,将 Function call 转为 MCP 工具调用,发送工具调用结果给 LLM。 MCP 就像一个“转接头”或“通用插座”,其核心作用是统一不同外部服务,通过标准化接口与 AI 模型对接。它与传统 API 的关键区别在于: 单一协议:MCP 像一个统一接口,只要一次整合,就能连接多个服务。 动态发现:AI 模型能自动识别并使用可用的工具,不用提前写死每个接口。 双向通信:MCP 支持类似 WebSockets 的实时双向通信,模型不仅能查询数据,还能主动触发操作。 MCP 最早由 Anthropic 公司开发,目的是帮助 AI 模型(如 Claude)更容易地连接工具和数据源,现在已成为一个开放协议,被越来越多的企业和开发者采用,逐渐成为 AI 与工具互动的新标准。 官方文档:https://modelcontextprotocol.io/
2025-04-13
如何使用MCP?提供教程
以下是关于如何使用 MCP 的详细教程: 前置准备工作: 任选一个客户端软件进行配置,大致分为四步: 1. 填入大模型 API 密钥。 2. 找到 MCP 配置界面。 3. 填入 MCP Server 对应的 json 脚本。 4. 使用 MCP。 不同客户端软件的配置方法: 1. Cherry Studio(推荐): 版本:2025 年 4 月发布的 1.1.17。 配置大模型 API:填入之前准备好的 AiHubMix 的 API 密钥。 配置 MCP:例如,图中填写的就是 Playwright 的 MCP Server 和百度地图的 MCP Server。 使用 MCP。 2. Cursor(推荐): 配置大模型 API:如果 Cursor Pro 在免费试用期,这一步可以不做;如果不在免费试用期,最好的办法是氪金,也可以试试填入之前准备好的 AiHubMix 的 API 密钥。 配置 MCP Server:填入 MCP Server 的 json,保存。 回到 Cursor 的 MCP 配置页面,等待几秒钟,多点几次蓝色框里的按钮,直到绿灯亮起,并显示出所有 MCP 工具。 使用 MCP:Ctrl+Shift+L 新建对话,将模式设置为 Agent。 3. Claude Desktop: 配置 MCP Server:用文本编辑器(VSCode、Sublime Text 等)打开 claude_desktop_config.json 文件,填入 MCP Server 对应的 json 文件,保存。 重启 Claude Desktop。 查看 MCP Server 连接状态。 使用 MCP。 MCP 的好处: 1. 简化开发:一次整合,多次复用,不再重复开发。 2. 灵活性强:轻松切换 AI 模型或工具,无需复杂的重新配置。 3. 实时互动:长连接保证数据实时更新。 4. 安全可靠:内置标准化安全和权限控制。 5. 扩展性强:AI 系统扩展时,只需连接新的 MCP 服务器。 传统 API 更适合的场景: 1. 需要细粒度控制、功能严格限制。 2. 更偏好紧耦合以提升性能。 3. 希望最大化交互的可预测性。 快速集成 MCP 的步骤: 1. 定义能力:明确您的 MCP 服务器提供哪些功能。 2. 实现 MCP 层:按照协议标准进行开发。 3. 选择通信方式:本地连接(标准输入输出)或远程连接(如 WebSockets)。 4. 创建资源/工具:开发或连接您的数据源和服务。 5. 建立客户端连接:与 MCP 服务器建立安全稳定的连接。 MCP 与 API 的比较: MCP 与传统 API 之间的主要区别在于: 1. 单一协议:MCP 充当标准化的“连接器”,因此集成一个 MCP 意味着可能访问多个工具和服务,而不仅仅是一个。 2. 动态发现:MCP 允许 AI 模型动态发现可用工具并与之交互,而无需对每个集成进行硬编码知识。 3. 双向通信:MCP 支持持久的实时双向通信 类似于 WebSockets。AI 模型既可以检索信息,也可以动态触发操作。 以 Cursor 驱动 blender 自动化建模的 MCP 项目为例: 首先,在 github 上找到项目说明(https://github.com/ahujasid/blendermcp)。以 Mac 安装为例,首先要安装一个 uv 包(如果不懂,就直接新建一个项目文件夹后,将相关需求丢给 AI)。显示 uv 安装完毕后(初次使用可能需要安装一系列的环境,只要一路让 AI 安装就可以了),还是找到点击界面右上角的小齿轮图标。找到 MCP 模块 Add new global MCP server,将相关内容粘贴进去。退回 MCP 界面时,就会发现已经连接上了这个 blender 服务器,并且增加了很多具体功能。
2025-04-13
如何开发MCP
MCP(模型上下文协议)是由 Anthropic 在 2024 年 11 月推出并开源的一项创新标准。它就像一个“转接头”或“通用插座”,其核心作用是统一不同的外部服务(如 Google Drive、GitHub、Slack、本地文件系统等),通过标准化接口与 AI 模型对接。 MCP 的好处包括: 简化开发:一次整合,多次复用,不再重复开发。 灵活性强:轻松切换 AI 模型或工具,无需复杂的重新配置。 实时互动:长连接保证数据实时更新。 安全可靠:内置标准化安全和权限控制。 扩展性强:AI 系统扩展时,只需连接新的 MCP 服务器。 与传统 API 相比,MCP 更适合需要上下文理解的场景,而传统 API 更适合需要精准且严格受控的交互方式,如需要细粒度控制、功能严格限制,更偏好紧耦合以提升性能,希望最大化交互的可预测性的场景。 开发 MCP 的步骤如下: 1. 定义能力:明确 MCP 服务器提供的功能。 2. 实现 MCP 层:按照协议标准进行开发。 3. 选择通信方式:本地连接(标准输入输出)或远程连接(如 WebSockets)。 4. 创建资源/工具:开发或连接数据源和服务。 5. 建立客户端连接:与 MCP 服务器建立安全稳定的连接。 MCP 是一个典型的 CS 架构,对于有编程基础的同学来说容易理解。开发 MCP 前需要进行环境安装,包括下载并安装 Python(官网:https://www.python.org/),安装 uv(借助 uv 进行虚拟环境创建和依赖管理,它是一个 Python 依赖管理工具,采用 Rust 编写,兼有创建虚拟环境和包管理工具的功能,可以平替 pip,venv)。
2025-04-12