Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大模型 个性化 电商

Answer

大模型在电商领域的应用主要体现在以下方面:

  1. 生成电商服饰数据:以大元模型广场为例,可让大模型按要求生成电商服饰数据(含尺码、价格、描述等信息,输出为 Excel 结构),用于辅助运营小二回复问题沉淀;当缺少真实数据或担心数据安全时,还可用示例数据跑测试及做非结构化清洗。
  2. 个性化营销:在广告营销行业,大模型从初期的市场分析、中期的客户转化以及后期的客户复购均可参与,为消费者提供更个性化、智能化和互动性强的营销体验,而对于广告图案的生成完全可以通过 AI+设计相关的 SOP 来提高效率。

在医疗行业,大模型的应用主要涵盖三个方向:疾病的诊断与预测、药物研发以及个性化医疗。例如,麻省理工学院利用 AI 发现了新型广谱抗生素 Halicin,研究者通过训练集让 AI 学习分子特点,最终成功识别出符合要求的分子。目前很多医疗研究机构都进行医疗大模型的开发研究。

在图像生成领域,如 Midjourney 发布了模型个性化 Personalization 或'--p'的早期测试版本。其工作原理是学习用户的喜好,以便更可能用用户的口味来填补空白。使用时只需在提示后输入--p,或使用提示栏中的设置按钮为所有提示启用个性化功能,还可以使用--s 100 控制个性化效果的强度。但个性化目前不是一个稳定的功能,会随着更多的成对排名而变化,并且可能会推出算法更新。

Content generated by AI large model, please carefully verify (powered by aily)

References

开发:AI应用大模型商业化落地现状与思考

接下来,我们将深入了解大模型在商业化过程中的实际应用情况。首先来看医疗行业,这是关乎每个人生命健康的重要领域。大模型在医疗行业的应用主要涵盖三个方向:疾病的诊断与预测、药物研发以及个性化医疗。从医疗前期的图像诊断,基因组学和精准医疗到药物研发阶段再到最后病人的个性化医疗,人工智能都有其适合的应用场景。例如,在2020年,麻省理工学院利用AI发现了一种名为Halicin的新型广谱抗生素,它不仅能有效杀灭对现有抗生素产生耐药性的细菌,而且不会使细菌产生新的耐药性。这一突破性发现源于AI的助力。研究者先搞了一个由两千个性能已知的分子组成的训练集,这些分子都被标记好了是不是可以抑制细菌生长,用它们去训练AI。AI自己学习这些分子都有什么特点,总结了一套“什么样的分子能抗菌”的规律。之后又对美国FDA已通过的六万多个分子中进行分析,最终成功识别出了一个符合所有要求的分子,这就是Halicin。之后研究者开始做实验证明,它真的非常好使,大概很快就会用于临床,造福人类。这个例子充分展示了AI大模型在医疗领域的巨大潜力,目前很多医疗研究机构都进行医疗大模型的开发研究,大模型在医疗领域大有可为!广告营销行业目前仍然是AIGC()应用最多的业务场景之一,大模型在营销行业从初期的市场分析、中期的客户转化以及后期的客户复购均可参与打开营销生态新思路,为消费者提供更个性化、智能化和互动性强的营销体验,而对于广告图案的生成完全可以通过AI+设计相关的SOP来提高效率。大模型的应用不仅为营销策略提供了新的思路,还能为消费者带来更加个性化、智能化和互动性强的体验。此外,它们还能显著降低内容制作的成本并加速创意的实现过程。

入门篇:应用广场超多案例解析 2025年1月8日

[heading2]智能章节[01:19:05](https://waytoagi.feishu.cn/minutes/obcnzq961u739b88946h7y8h?t=4745000)银海讲解创建组织、应用及配置钉钉机器人和卡片的操作流程本章节银海带领大家进行图文操作,创建v to AGI测试组织,介绍在组织内创建应用的方法,包括设置应用名字、添加机器人、配置机器人基础信息和消息接收模式,还提及获取凭证信息、配置钉钉卡片ID及创建卡片模板等相关操作。[01:23:33](https://waytoagi.feishu.cn/minutes/obcnzq961u739b88946h7y8h?t=5013000)配置群机器人及展示其基于知识库答疑功能,提及数据问题本章节主要介绍了相关权限设置,包括开通卡片信息传回员工的权限操作(选中card权限,点击应用、权限管理等操作并批量申请),配置群机器人(复制回调地址,在钉钉页面添加机器人),以及展示机器人围绕企业知识库答疑场景,还提及数据清洗、获取等问题。[01:27:08](https://waytoagi.feishu.cn/minutes/obcnzq961u739b88946h7y8h?t=5228000)大模型可助力生成电商服饰数据及用于数据测试本章节银海展示了一个黑科技,以大元模型广场为例,可让大模型生成数据,如按要求生成电商服饰数据(含尺码、价格、描述等信息,输出为Excel结构),用于辅助运营小二回复问题沉淀;当缺少真实数据或担心数据安全时,还可用示例数据跑测试及做非结构化清洗。

Midjourney 更新 · 模型个性化

MJ今天发布了模型个性化Personalization或'--p'的早期测试版本。以下是其工作原理和使用方法。[heading1]官方说明[content]每次您写提示时,很多信息都是“隐含的”。MJ的算法通常会用它们自己的“偏好”来填补这些空白,这些偏好实际上是MJ社区的综合偏好。且每个人的偏好都是不同的!模型个性化会学习你的喜好,以便更可能用你的口味来填补空白。模型个性化的要求·目前,模型个性化从成对排名中的投票和你喜欢的探索页面上的图像中学习。·你需要大约200个成对排名/喜欢,才能使此功能生效。·你可以在排名页面查看你的评分数量,或在Discord上输入/info。如何使用模型个性化·只需在提示后输入--p,或使用提示栏中的设置按钮为所有提示启用个性化功能。·当你启用个性化功能时,会在提示后添加一个“代码”,你可以分享这个代码,让其他人也能使用应用于该图像的个性化效果。·你可以使用--s 100控制个性化效果的强度(0为关闭,1000为最大,100为默认)。请注意:个性化目前不是一个稳定的功能,它会随着你进行更多的成对排名而变化(细微的),并且我们可能会在接下来的几周内推出算法更新。所以请将其视为一个“不断变化的有趣功能”(表脸,就是没做好提前放出来赶进度的说辞)。

Others are asking
我想做电商主图,用什么ai
如果您想制作电商主图,可以考虑以下几种 AI 工具和方法: 1. Midjourney:通过输入相关关键词,如“Guerlain Perfume,plant flowers,top light.cean natural backaround with water,saturation color scheme.The productis bright,Motled shading,studo lighfing,contrast high precision,Fine gloss,Centered composition,Photography,HD4Krealism–q 2–v 5–s 750–ar 9:16”,生成图片后再进行后期修改调整和文字排版。 2. Stable Diffusion:对于运营网店的女装店主,可采用局部重绘的方法。先真人穿衣服拍照,获取真实质感的照片,选好真人照片风格的底模,如 majicmixRealistic_v7,再根据不同平台需求换头,如面向海外市场换白女头,然后在图生图下的局部重绘选项卡下涂抹自己替换的部分,并设置相关的 prompts 和 parameters,如“breathtaking cinematic photo,masterpiece,best quality,,blonde hair,silver necklace,carrying a white bag,standing,full body,detailed face,big eyes,detailed hands”。
2025-04-15
Ai如何帮助电商
AI 在电商领域有以下多方面的帮助: 1. 产品推荐:通过分析客户数据,为每个客户推荐他们可能感兴趣的产品。 2. 搜索和个性化:改善搜索结果,为客户提供个性化的购物体验。 3. 动态定价:根据市场需求动态调整产品价格。 4. 聊天机器人:提供服务,回答客户问题并解决他们的问题。 5. 生成产品照片:像这样的工具帮助品牌创建引人注目的产品照片,提升产品对在线购物者的吸引力。 6. 创作营销内容:可以编写经过 SEO 优化的产品描述。 7. 商品展示图制作:可以借助 Stable Diffusion 等 AI 作图工具,通过局部重绘等方法美化商品展示图,比如真人穿衣服拍照后进行处理和替换等操作。
2025-03-29
我是一名电商设计师,现在想学习SD AI绘图,有一点基础,但学习课程资源有限,请你帮我制定一份详细的学习计划,并提供一些学习资源。
以下是为您制定的学习 SD AI 绘图的详细计划及相关学习资源: 学习计划: 1. 首先,深入学习 Stable Diffusion 的核心基础原理,包括模型工作流程、核心基础原理、训练全过程以及其他主流生成式模型介绍。 2. 接着,掌握 Stable Diffusion 的核心网络结构,如 SD 模型整体架构、VAE 模型、UNet 模型、CLIP Text Encoder 模型等。 3. 学习从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画的不同方式,如使用 ComfyUI、SD.Next、Stable Diffusion WebUI、diffusers 搭建推理流程,并查看生成示例。 4. 了解 Stable Diffusion 的经典应用场景,如文本生成图像、图片生成图片、图像 inpainting、使用 controlnet 辅助生成图片、超分辨率重建等。 5. 最后,尝试从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型,包括配置训练环境与训练文件,以及基于 Stable Diffusion 训练 LoRA 模型。 学习资源: 1. 教程:深入浅出完整解析 Stable Diffusion(SD)核心基础知识 知乎。 目录涵盖了 Stable Diffusion 系列的各个方面,包括核心基础知识、网络结构解析、搭建推理流程、应用场景和模型训练等。 2. SD 模型权重百度云网盘: 关注 Rocky 的公众号 WeThinkIn,后台回复:SD 模型,即可获得资源链接,包含多种模型权重。 3. SD 保姆级训练资源百度云网盘: 关注 Rocky 的公众号 WeThinkIn,后台回复:SDTrain,即可获得资源链接,包含数据处理、模型微调训练以及基于 SD 的 LoRA 模型训练代码全套资源。 4. Stable Diffusion 中 VAE,UNet 和 CLIP 三大模型的可视化网络结构图下载: 关注 Rocky 的公众号 WeThinkIn,后台回复:SD 网络结构,即可获得网络结构图资源链接。
2025-03-28
怎么用AI做电商
以下是关于如何用 AI 做电商的一些方法和应用场景: 在商品展示方面,可以利用 AI 绘画工具如 Stable Diffusion 来制作商品展示图。对于女装商品,可先让真人穿衣服拍照,获取真实质感的照片。选好真人照片风格的底模,如 majicmixRealistic_v7,并根据不同平台需求进行换头操作,如面向海外市场换白女头。在图生图下的局部重绘选项卡下涂抹需要替换的部分,并设置合适的 prompts 和 parameters。 在电商运营中,AI 有多种应用场景: 1. 产品推荐:通过分析客户数据,为每个客户推荐可能感兴趣的产品。 2. 搜索和个性化:改善搜索结果,提供个性化的购物体验。 3. 动态定价:根据市场需求动态调整产品价格。 4. 聊天机器人:提供服务,回答客户问题并解决问题。 此外,还可以利用 AI 数字人带货本地生活电商: 1. 用 ChatGPT 生成短视频选题文案,明确身份、描述需求和回答要求。 2. 用 ChatGPT 生产短视频文案,结合需求与框架。 3. 生成虚拟数字人短视频:打开相关网站,输入内容,选择头像、国家和声音,等待生成后结合产品讲解并发布进行视频带货。
2025-03-24
做电商的话如何使用AI结合拍摄的产品图片生成推广图片和视频
以下是关于在电商中使用 AI 结合拍摄的产品图片生成推广图片和视频的方法: 虚拟数字人结合产品做视频: 1. 添加产品/介绍背景:如果有自己的视频/图片素材可以使用,没有的话可以根据搜索添加。 2. 扣像结合背景:在剪映中把数字人扣下来,导入视频,点击画面选择抠像,点击智能抠像,调整到合适的大小和位置。 3. 添加字幕和音乐:智能识别字幕,可搜索添加音乐或手动添加自己喜欢的音乐。 使用数字人无需真人模特: 只需上传产品图片,数字人即可手持产品进行口播展示。支持语音和口型同步,动作、姿势定制,提供 1000 多种国家数字人模特,覆盖全球 28 种语言,能快速生成产品宣传视频,省去拍摄烦恼。在线体验: 。 此外,使用 AI 来完成阿里巴巴营销技巧和产品页面优化,可以采取以下步骤: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速识别关键信息。 2. 关键词优化:AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述。 3. 产品页面设计:AI 设计工具根据市场趋势和用户偏好生成吸引人的页面布局。 4. 内容生成:AI 文案工具撰写有说服力的产品描述和营销文案。 5. 图像识别和优化:AI 图像识别技术选择或生成高质量产品图片。 6. 价格策略:AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:AI 分析客户评价和反馈,优化产品和服务。 8. 个性化推荐:AI 根据用户购买历史和偏好提供个性化产品推荐。 9. 聊天机器人:AI 驱动的聊天机器人提供 24/7 客户服务。 10. 营销活动分析:AI 分析不同营销活动效果,了解哪些活动更吸引顾客并产生销售。 11. 库存管理:AI 预测需求,优化库存管理。 12. 支付和交易优化:AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:AI 帮助在社交媒体上找到目标客户群体,精准营销提高品牌知名度。 14. 直播和视频营销:AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。
2025-03-22
0AI实习经验,该如何破局进入AI相关行业。bg:小语种专业,有电商+互联网实习经历
对于没有 AI 实习经验但想进入 AI 相关行业的小语种专业背景且有电商和互联网实习经历的您来说,可以从以下几个方面破局: 1. 学习基础知识:通过在线课程、书籍等途径,系统学习 AI 的基础知识,包括机器学习、深度学习、自然语言处理等。 2. 参加培训项目:报名参加专业的 AI 培训项目,获取实践经验和项目成果。 3. 构建个人项目:利用所学知识,在开源数据集上构建自己的 AI 项目,展示实践能力。 4. 拓展人脉:参加 AI 相关的行业活动、论坛、社群,结识业内人士,争取内推机会。 5. 优化简历:在简历中突出您在电商和互联网实习中所培养的相关技能,如数据分析、问题解决等,并强调您对 AI 的学习热情和潜力。 6. 申请实习岗位:即使是一些小型公司或初创企业的 AI 实习岗位,也积极申请,积累经验。 7. 考取相关证书:获取一些被行业认可的 AI 相关证书,增加竞争力。
2025-03-21
基于多维评价数据,使用大模型生成个性化的家庭教育方案的可靠性高吗?
基于多维评价数据使用大模型生成个性化的家庭教育方案具有一定的可靠性,但也存在一些限制。 一方面,大模型在教育领域展现出了强大的能力。例如,能够为教师提供源源不断的真题库和错题练习库,模仿各类考试题型有模有样。在作文批改评分方面,如 GLM 模型,具备好词好句识别评测、作文综合评价评分等功能,能够综合考虑文章的多个维度给出评价,提供个性化反馈,保证评分的一致性等。 另一方面,也存在一些挑战。对于高学段理科等复杂领域,大模型的表现可能有限。在解读学生作文中的深层次含义,如隐喻、双关等修辞技巧,以及涉及特定文化背景和历史知识的内容时,仍存在一定难度。 然而,只要提示词到位、示例清晰,大模型在生成个性化家庭教育方案方面具有很大的潜力,可以为家长和孩子提供有价值的参考和帮助。但不能完全依赖大模型,还需要结合人工的判断和调整。
2025-04-13
我需要一个能够生成适合初中生的个性化的英语单词清单,用什么工具比较合适
以下为您推荐几种适合生成适合初中生个性化英语单词清单的工具: 1. DeepSeek:您可以输入单词主题、图片风格、单词数量等,它会为您输出指定数量的相关单词,并以数组形式呈现,包括单词、中文、美式音标以及相关的英文句子和中文翻译。 2. Claude:您可以输入任意三个中文词语或一个主题让其随机生成 Word Search 表格,有助于提升初中生的语言能力、专注力、认知能力等。 3. 利用搞定设计结合 ChatGPT:通过搞定设计制作单词卡模板,然后使用 ChatGPT 生成单词内容并整理放入 Excel 文件中,实现批量制作单词卡片。
2025-02-26
我想做一个产品(生涯规划领域的垂直大模型),这个产品服务的对象是所有人:帮助所有人进行更好的职业规划。每个人都能通过使用这个产品更好地了解自己,了解自己的天赋、兴趣、优势,然后找到自己的热爱的领域和热爱的事业,并且能够个性化地推荐相关的行业和职业,包括职业的主要工作内容和核心能力要求等等。 请对这个产品进行可行性分析,并给出产品的发展规划,别忘了给这个项目起一个名字。
以下是对您提出的生涯规划领域垂直大模型产品的可行性分析和发展规划,并为项目取名为“生涯智途”。 可行性分析: 1. 需求广泛:帮助人们进行职业规划是一个普遍存在的需求,涵盖了各个年龄段和职业阶段的人群。 2. 数据可用性:可以通过各种渠道收集大量与职业相关的数据,包括行业报告、职位描述、人才需求等。 3. 技术支持:当前大模型技术的发展为实现这样的产品提供了可能,能够处理和分析大量复杂的数据。 发展规划: 1. 数据收集与整理:广泛收集各类职业数据,建立丰富的数据库,确保数据的准确性和完整性。 2. 模型训练与优化:利用收集到的数据进行模型训练,不断优化模型,提高预测和推荐的准确性。 3. 功能开发: 个性化测评:开发能够准确评估用户天赋、兴趣、优势的功能模块。 精准推荐:根据用户的特点,提供个性化的行业和职业推荐,并详细介绍职业的工作内容和核心能力要求。 持续学习与更新:随着行业变化,及时更新数据和模型,以提供最新的职业信息。 4. 用户体验优化:设计简洁、易用的界面,提供良好的用户交互体验。 5. 市场推广:通过线上线下多种渠道进行推广,提高产品的知名度和用户覆盖面。 希望以上分析和规划对您有所帮助。
2025-02-18
如何进入AI时代,如何寻找和使用AI工具来提高工作和学习效率,以及如何解决个性化和专业化需求的问题
进入 AI 时代并利用 AI 工具提高工作和学习效率、解决个性化和专业化需求问题,可参考以下要点: 1. 对于 AI 发展的态度:不盲目跟风(FOMO),也不消极对待(JOMO)。 2. 成功的 AI 公司可能需要打造自身的数据飞轮,尤其是在 ToC 场景中寻求突破,因为 C 端能带来的数据飞轮效应在 AI 早期可能是决胜关键。 3. 有专业壁垒的垂直模型可能是机会所在,很多高价值、特定领域的工作流程依赖于丰富的专有数据集。 4. 大模型产品的两个方向: 个性化:给 AI 装上“记忆”,使其成为工作助理或陪伴者。 场景化:给 AI 装上“手”和“眼睛”。 5. 在工作中使用 AI 工具的情况: 最常用的是通过自然语言对话完成一次性任务,90%的产品从业者用其辅助文本信息处理生成。 63%的用户用其辅助搜索,甚至优先用 AI 搜索信息。 45%的用户借助其生成图片以及音视频用于快速制作 demo 演示效果,也有少部分用于制作最终产品。 29%的用户将其作为工作创意助手以及数据报告的处理。 6. AI 工具的改进方向: 提高创新性和创新辅助能力,关注产品从业者的工作模式和思维习惯。 提升个性化和智能化程度,理解并适应用户的个性化需求。 更精准识别合适场景,满足不同场景的使用需求。 7. 使用 AI 完成任务时: 对于简单需求,给 AI 下达明确命令完成一次性任务。 了解 AI 编程的边界和限制。 遵循编程准则,能不编尽量不编。优先找线上工具、其次找插件、最后是本地应用;对于 API 功能,先找现成开源工具,然后考虑付费服务,实在找不到才考虑自己编程,且编程要以终为始,聚焦目标。 总之,在 AI 时代,要积极拥抱 AI,用起来并有效迭代,形成正确的底层工作逻辑,设计合理流程,按节奏确定目标和复盘。同时,把握好融资节奏,适应对创始人更高、更全面的要求。
2025-02-11
为不同学生制定个性化的学习计划
以下是为不同学生制定个性化学习计划的相关内容: 教育科技长期以来在有效性和规模之间权衡,而 AI 的出现改变了这一状况,使得大规模部署个性化学习计划成为可能。例如,有像 Speak、Quazel、Lingostar 这样的应用能提供实时交流和反馈的语言学习服务;Photomath 和 Mathly 可指导学生解决数学问题;PeopleAI 和 Historical Figures 能通过模拟与杰出人物聊天教授历史。此外,Grammarly、Orchard 和 Lex 等工具能帮助学生提升写作水平,Tome 和 Beautiful.ai 能协助创建演示文稿。 大模型在教育行业也发挥着重要作用,它能精确洞察每个学生的独特需求,为其量身打造学习方案,还能赋能教师提高教学效果和工作效率。基于 GLM 模型的先进功能,教师和学生能接触到高效的数据分析及智能化评价系统。 对于教育工作者,可通过以下方式为不同学生制定个性化学习计划: 1. 尝试使用 AI 辅助设计课程大纲或生成教学材料 ideas,为课程带来新视角。 2. 探索使用 AI 分析学生学习数据,从而制定个性化学习路径。 3. 考虑将 AI 工具整合到课堂活动中,如使用 AI 生成的案例研究或模拟场景。 4. 开发简单的课程模块,教导学生了解 AI 的基础知识、应用领域及其对社会的影响。 总之,与 AI 协作是一个学习过程,应保持好奇心和开放态度,从小处着手,将 AI 视为强大工具,同时保持批判性思维。
2025-01-13
哪个智能体能够根据用户的购物历史、浏览行为和偏好,提供个性化的产品推荐。
以下智能体能够根据用户的购物历史、浏览行为和偏好提供个性化的产品推荐: 1. 电子商务网站:通过收集用户的购物历史和浏览习惯等数据,使用机器学习和数据挖掘技术进行分析,从而推荐相似产品。 2. 基于人工智能的语音助手:可以分析用户行为、偏好以及历史购买记录,为用户提供更个性化的商品推荐,提升购物体验。 3. 中小企业:利用 AI 分析客户行为数据,包括购买历史、浏览记录、反馈等,基于分析结果生成个性化的产品推荐和服务。 4. 扣子模板中的个性化推荐引擎:利用人工智能和机器学习算法,根据用户的历史行为和偏好,实时推荐最相关的产品或服务,以提升转化率。
2024-12-20
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14