Navigate to WaytoAGI Wiki →
Home/All Questions
提示词
提示词相关知识如下: 1. 什么是提示词: 用于描绘您想生成的画面。 输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。 启用提示词优化后,能帮您扩展提示词,更生动地描述画面内容。 2. 如何写好提示词: 可以点击提示词上方官方预设词组进行生图,提示词内容要准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可以帮助 AI 理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印。 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先,也可对已有的提示词权重进行编辑。 辅助功能包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 3. 提示词要素: 提示词可以包含指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息,引导语言模型更好地响应)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。 4. 提示工程与提示词的区别: 提示工程是人工智能领域中,特别是在自然语言处理和大型语言模型的上下文中,一个相对较新的概念,涉及设计和优化输入提示,以引导 AI 模型生成特定类型的输出或执行特定的任务。其关键点包括精确性、创造性、迭代、上下文理解。 提示词通常指的是直接输入到 AI 模型中的问题、请求或指示,是提示工程的一部分。提示工程是一个更广泛的概念,不仅包括创建提示词,还涉及理解模型的行为、优化提示以获得更好的性能、以及创造性地探索模型的潜在应用。提示工程的目标是最大化 AI 模型的效用和性能,而提示词是实现这一目标的手段之一。在实际应用中,提示工程可能包括对 AI 模型的深入分析、用户研究、以及对特定任务的定制化提示设计。
2025-03-21
提示词
提示词相关知识如下: 1. 什么是提示词: 用于描绘您想生成的画面。 输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。 启用提示词优化后,可帮您扩展提示词,更生动地描述画面内容。 2. 如何写好提示词: 小白用户可以点击提示词上方官方预设词组进行生图。 提示词内容要准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可以帮助 AI 理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印。 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先,也可对已有的提示词权重进行编辑。 辅助功能包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 3. 提示词要素: 提示词可以包含指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息,引导语言模型更好地响应)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。 4. 提示工程与提示词的区别: 提示工程是人工智能领域中,特别是在自然语言处理和大型语言模型的上下文中一个相对较新的概念,涉及设计和优化输入提示,以引导 AI 模型生成特定类型的输出或执行特定的任务。其关键点包括精确性、创造性、迭代、上下文理解。 提示词通常指的是直接输入到 AI 模型中的问题、请求或指示,是提示工程的一部分。提示工程是一个更广泛的概念,不仅包括创建提示词,还涉及理解模型的行为、优化提示以获得更好的性能、以及创造性地探索模型的潜在应用。提示工程的目标是最大化 AI 模型的效用和性能,提示词是实现这一目标的手段之一。在实际应用中,提示工程可能包括对 AI 模型的深入分析、用户研究、以及对特定任务的定制化提示设计。
2025-03-21
有没有关于ai产品经理的课程
以下是为您找到的关于 AI 产品经理的课程: 1. 第三期「AI 实训营」: 课程时间:2025.02.25/26 日每晚 20:00 讲师:许键 课程内容: 用 DeepSeek 搭建智能体 全网最简单的 DeepSeek 的部署和蒸馏手把手教程 飞书会议链接:https://vc.feishu.cn/j/254331715 共学文档链接: 讲师介绍:AI 产品经理,创业公司联合创始人,WayToAGI 社区 Agent 版主,各大 Agent 平台奖项“杀手” 2. 2024 年 9 月 3 日的课程: 《》:介绍了函数调用的应用,展示了 Gemini 在数字营销、教学总结和视频答中的辅助作用,以及自定义函数在处理金融信息时的有效性。 《》:讨论了如何成为一名“懂 AI”的产品经理,强调理解 AI 产品的工程化过程和大模型的局限性。 3. AI 市场与 AI 产品经理分析——2024 是否是 AI 应用创业的好机会: 个人划分了 AI 产品经理的层级: 入门级:能通过 WaytoAGI 等开源网站或一些课程了解 AI 的概念,使用 AI 产品并尝试动手实践应用搭建。 研究级:有技术研究和商业化研究两个路径,能根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 落地应用级:有一些成功落地应用的案例,产生商业化价值。 总结来说,对 AI 产品经理要求懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。产品经理要关注的还是场景、痛点、价值。
2025-03-21
如何转行ai产品经理
以下是关于转行 AI 产品经理的一些建议: 1. 积累相关经验:像案例中的贤峰,有医学、计算机、医生、码农、产品经理等多领域经验,Sundy 有 5 年产品运营经验。您可以通过在不同行业和岗位工作,积累丰富的经验,为转行打下基础。 2. 学习 AI 知识:了解生文生图的原理和应用等 AI 相关技术,熟悉 AI 领域的发展动态。 3. 明确自身定位:不同公司对 AI 产品经理的定位不同,要了解市场需求,找准自己的方向。 4. 提升业务能力:具备咨询和商业化的思维,能帮公司厘清业务增长机会。 5. 行业沉淀与创新:有行业沉淀和认知的产品经理转型更有机会,要找到细分的场景痛点并完成 PMF 验证,关注海外优秀案例,进行业务创新。 6. 拓展人脉资源:混入各种群结交朋友,跟他们聊业务、技术,获取更多信息和机会。 7. 做好信息甄别:在求职时,对公司做好充分的了解和评估。
2025-03-21
一个高中毕业普通人学习AI如何从小白到精通
对于一个高中毕业的普通人,若想从 AI 小白成长为精通者,可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,对于纯小白开发 AI 应用,还可以参考以下经验: 1. 从小白学代码,看人类导师和硅基助教的协作之道: 像案例中,女儿在 Claude 和父亲的帮助下,用 Unity 开发了一个 RPG 小游戏。起初父亲不相信纯小白能通过 AI 搞定 Unity 程序,但女儿通过让 Claude 教她做一个简单任务,半小时内完成并明白了 Unity 里的基本概念。 开发过程有顺利也有挫折,挫折原因包括问题描述不清、AI 给的方案复杂、配置错误等。这让我们意识到小白需要通过 AI 能直接搞定的小项目,先学明白背后的原理,在此基础上才能开发复杂项目。最好有人类导师,一开始把任务拆解到足够小,针对性地设计学习路径,并密切关注随时从坑里捞人。 2. 基础小任务: 推荐从一个最最基础的小任务开始,让 AI 先帮你按照 best practice 写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,学会必备的调试技能。 如果用的是 o1mini,可以在 prompt 最后添加“请生成 create.sh 脚本,运行脚本就能直接创建插件所需要的所有文件。请教我如何运行脚本。”(如果 windows 机器则是 create.cmd),足够勤勉的 o1mini 会为你生成一段超级长的代码,并给出提示,复制粘贴并执行,一次性生成十多个目录和文件,超方便。 3. 明确项目需求: 通过和 AI 的对话,来逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,这样的文档会包含影响技术方案选择的细节,比直接给 AI 一段口头的需求描述要准确得多。在后续开发时每次新起一个聊天就把文档发给 AI 并告知在做第几点功能,会非常方便。
2025-03-21
COZE接入企业微信
要将 COZE 接入企业微信,您可以按照以下步骤进行操作: 1. 登录宝塔面板,在宝塔面板中可视化控制云服务器,部署 docker 容器,启动 COW 项目与微信取得关联。具体操作包括:点击“Docker”中的“项目模板”中的“添加”按钮,将编译好的内容复制进来,在容器中创建容器,选择容器编排,填入模板和名称,确定。运行成功后,点击容器,查看运行的服务,手动刷新日志,若看到“WeChat login success”,则接入成功。 2. 在 COZE 官网左下角选择 COZE API,在 API 令牌中选择“添加新令牌”,为令牌命名,选择永久有效,指定团队空间,勾选所有权限,保存好令牌的 Token,切勿向他人泄露。 3. 获取机器人 ID:在个人空间中找到要接入微信的机器人,进入机器人编辑界面,浏览器地址栏“bot/”之后的数据即为该机器人的 Bot ID。 4. 进行 API 授权:点击右上角发布,出现“Bot as API”,勾选并确定应用已成功授权。 5. 配置微信客服: 访问微信客服 https://kf.weixin.qq.com/,点击开通,勾选同意,点击下一步,按步骤填写,注册企业微信。 点击配置,到微信客服的企业信息,复制企业 ID 到 COZE 页面进行粘贴填写企业 ID,并点击下一步。 到微信客服的开发配置,找到回调配置,复制 Token、EncodingAESKey(若为空,点击“随机获取”),到 COZE 页面进行粘贴,点击下一步。 到微信客服的开发配置,配置回调地址 URL、复制 Secret 到 COZE 页面粘贴。 到微信客服的客服账号,创建一个客服账号,复制客服账号名称,到 COZE 页面粘贴,点击保存。 请注意,第一次设置回调地址时,目前需要企业认证,才可以进行接入微信客服。如果企业没有进行认证,则会在配置回调 URL 时报错:回调域名校验失败。另外,之前未进行企业认证就发布过微信客服的不受影响。
2025-03-21
动画方面的AI
以下是关于动画方面的 AI 相关信息: AI 漫画 Anifusion: 网址:https://anifusion.ai/ ,Twitter 账号:https://x.com/anifusion_ai 功能: AI 文本生成漫画:输入描述性提示生成漫画页面或图像。 直观的布局工具:提供预设模板,可自定义漫画布局。 强大的画布编辑器:在浏览器中优化和完善生成的作品。 多种 AI 模型支持:高级用户可访问多种 LoRA 模型实现不同风格和效果。 商业使用权:用户对创作作品拥有完整商业使用权。 使用案例: 独立漫画创作:帮助无绘画技能的艺术家实现故事创作。 快速原型设计:专业艺术家快速可视化故事概念和布局。 教育内容:为课程和演示创建视觉内容。 营销材料:制作动漫风格促销漫画或活动分镜脚本。 粉丝艺术和同人志:基于喜欢的作品创作衍生作品。 优点:非艺术家也能轻松创作漫画;基于浏览器,无需安装额外软件;快速迭代和原型设计能力;拥有创作的全部商业权利。 3 月 12 日 AI 资讯中的动画相关: 【AI 3D】 BlenderMCP:与 Claude AI 沟通,在 Blender 实现快速 3D 建模 MIDI:单幅图像到 3D 场景生成 Move AI:更新动作捕捉能力,提出 Gen 2 Spatial Motion 【AI 写作】 MMStoryAgent:AI 多模态故事生成系统 【AI 视频】 VACE:阿里推出一体化视频创作和编辑技术 VideoPainter:腾讯开源视频编辑技术 Wonder Dynamics:推出摄像机轨道(Camera Track)和清洁板(Clean Plate)功能 【其他】 OpenAI:为开发者推出一套 AI Agent 开发套件 R1Omni:阿里情感识别模型,通过视频识别情感 Luma AI:发布新的预训练范式 IMM,旨在突破算法瓶颈,提高生成预训练算法的性能 Manus:宣布与阿里通义千问团队达成战略合作 游戏中的生成式 AI 革命中的动画相关: 生成纹理:几个团队正在追求根据文本或图像提示轻松生成纹理的机会,包括 BariumAI(https://barium.ai/)、Ponzu(https://www.ponzu.gg/)和 ArmorLab(https://armorlab.org/)。 动画生成与处理:涉足从视频中捕捉动画及给现有动画应用滤镜的公司包括 Kinetix(https://www.kinetix.tech/)、DeepMotion(https://www.deepmotion.com/)、RADiCAL(https://getrad.co/)、Move Ai(https://www.move.ai/)和 Plask(https://plask.ai/)。
2025-03-21
COZE接入企业微信
要将 COZE 接入企业微信,您可以按照以下步骤进行操作: 1. 登录宝塔面板,在宝塔面板中可视化控制云服务器,部署 docker 容器,启动 COW 项目与微信取得关联。具体操作包括:点击“Docker”中的“项目模板”中的“添加”按钮,将编译好的内容复制进来,在容器中创建容器,选择容器编排,填入模板和名称,确定。运行成功后,点击容器,查看运行的服务,手动刷新日志,若看到“WeChat login success”,则成功接入微信。 2. 在 COZE 官网左下角选择 COZE API,在 API 令牌中选择“添加新令牌”,为令牌命名,选择永久有效,指定团队空间,勾选所有权限,保存好令牌的 Token,切勿向他人泄露。 3. 获取机器人 ID:在个人空间中找到要接入微信的机器人,进入机器人编辑界面,浏览器地址栏“bot/”之后的数据即为该机器人的 Bot ID。 4. 进行 API 授权,点击右上角发布,勾选 Bot as API,确定应用已成功授权 Bot as API。 5. 配置微信客服: 访问微信客服 https://kf.weixin.qq.com/,点击开通,勾选同意,点击下一步,按步骤填写,注册企业微信。 点击配置>到微信客服的企业信息,复制企业 ID>到 COZE 页面进行粘贴填写企业 ID,并点击下一步。 到微信客服的开发配置,找到回调配置,复制 Token、EncodingAESKey(若为空,点击“随机获取”),到 COZE 页面进行粘贴,点击下一步。 到微信客服的开发配置,配置回调地址 URL、复制 Secret 到 COZE 的页面粘贴。 到微信客服的客服账号,创建一个客服账号,复制客服账号名称,到 COZE 的页面粘贴,点击保存。 请注意,第一次设置回调地址时,目前需要企业认证,才可以进行接入微信客服。如果企业没有进行认证,则会在配置回调 URL 时报错:回调域名校验失败。另外,之前未进行企业认证就发布过微信客服的不受影响。
2025-03-21
介绍一些AI科研工具
以下为您介绍一些 AI 科研工具: 一、综合类 1. AI 研究工具:Claude、ChatGPT、Bing Chat、Perplexity 2. 图片处理:DallE、Leonardo、BlueWillow、Midjourney 3. 版权写作:Rytr、Copy AI、Wordtune、Writesonic 4. 设计:Canva、Clipdrop、Designify、Microsoft Designer 5. 网站搭建:10Web、Framer、Hostinger、Landingsite 6. 视频处理:Klap、Opus、Invideo、Heygen 7. 音频处理:Murf、LovoAI、Resemble、Eleven Labs 8. SEO 优化:Alli AI、BlogSEO、Seona AI、Clearscope 9. Logo 设计:Looka、LogoAI、Brandmark、Logomaster 10. 聊天机器人:Droxy、Chatbase、Voiceflow、Chatsimple 11. 自动化工具:Make、Zapier、Bardeen、Postman 12. 市场营销 二、医学课题修改 1. Scite.ai:为研究人员等打造的创新平台,提供引用声明搜索等工具,增强对科学文献的洞察。 2. Scholarcy:可提取文档结构化数据,生成文章概要,包含关键概念等板块内容。 3. ChatGPT:强大的自然语言处理模型,可提供医学课题修改意见。 三、论文写作 1. 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,管理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议。 Quillbot:基于 AI 的重写和摘要工具,优化论文内容。 3. 研究和数据分析: Google Colab:提供云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,进行复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 使用这些工具时,应结合自身写作风格和需求,选择最合适的辅助工具。同时,请注意内容由 AI 大模型生成,请仔细甄别。
2025-03-21
Stable Diffusion 是 Diffusion Model 的优化版本,引入了潜在空间(Latent Space)技术,这个潜在空间(Latent Space)是什么意思,它的实现原理是什么?
在 Stable Diffusion 模型中,潜在空间(Latent Space)指的是图像的潜在分布,它包含了与图像相关的所有信息。 图像被映射到潜在空间后,扩散过程在这个空间中进行。ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点就是在这个空间中执行采样过程。在潜在空间中,通过节点调整对潜在空间的操作,如噪声添加、去噪步数等,这部分通常由潜在空间操作模块来实现。 在 Stable Diffusion 模型中,图像的潜在分布是通过一个编码器解码器结构来学习的。编码器将图像映射到潜在空间,而解码器则将潜在空间中的向量映射回图像空间。通过这种方式,模型可以学习到图像的潜在分布,从而实现图像生成、编辑和操作。 在采样过程中,Stable Diffusion 模型通过逐步降低噪声水平来生成图像。在这个过程中,模型根据当前的噪声水平预测图像的潜在分布,然后根据这个分布生成一个新的图像。这个过程重复进行,直到生成一个高质量的图像。 与之对应的是像素空间(Pixel Space),像素空间指的是图像中每个像素的原始颜色或强度值所组成的空间。图像可以看作是一个二维或三维的矩阵,其中每个元素代表一个像素。在像素空间中,图像的表示是密集的,且包含了大量的细节信息。
2025-03-21