Navigate to WaytoAGI Wiki →
Home/All Questions
介绍MCP的文档有哪些
以下是关于 MCP 的一些文档介绍: 1. 《Windsurf Wave3:MCP 协议让 AI 直接读取控制台错误,自动化网页调试不用复制粘贴了!Tab 智能跳转、Turbo 模式》:介绍了 MCP 的基本概念,即纯 LLM 无法行动,MCP 工具可充当其与现实世界交互的手并反馈结果指导下一步行动。同时提供了 MCP 官方文档和 Cursor 关于 MCP 的介绍链接:https://modelcontextprotocol.io/ 、https://docs.cursor.com/context/modelcontextprotocol 。还提到了一些相关工具如 Brave Search、Puppeteer 和 Sequential Thinking 等能让调试和搜索更顺畅,以及热门的 Playwright CDP 能让 AI 控制浏览器变得简单等内容。 2. 《Model Context Protocol官方网站找到,包括架构详细说明、基础协议文档、服务器功能说明、客户端功能文档、贡献指南等。此规范为 AI 应用生态系统提供了标准化的集成方案。 3. 《什么是模型上下文协议(MCP)?它如何比传统 API 更简单地集成 AI?》:解释了 MCP 的价值、工作原理,以及它与传统 API 的关键区别。如 MCP 是一种全新的开放协议,专门用于标准化地为大语言模型(LLMs)提供应用场景和数据背景,像 AI 领域的“USBC 接口”能让不同的 AI 模型与外部工具和数据源轻松连接。还对比了传统 API 整合的复杂性,以及介绍了 MCP 最早由 Anthropic 公司开发,现已成为开放协议并被更多企业和开发者采用。
2025-03-18
介绍MCP的文件有哪些
以下是关于 MCP 的相关介绍文件: 1. 官方文档:https://modelcontextprotocol.io/ 2. Cursor 文档中关于 MCP 的介绍:https://docs.cursor.com/context/modelcontextprotocol 3. 社区网站:https://smithery.ai/ MCP 相关知识: 1. MCP 本质是 Claude 官方推出的一个协议。纯 LLM 无法行动,MCP 工具可以充当其与现实世界交互的“手”,并反馈结果指导下一步行动。 2. 模型上下文协议(MCP)是一种全新的开放协议,用于标准化地为大语言模型(LLMs)提供应用场景和数据背景,可将其想象成 AI 领域的“USBC 接口”,能让不同的 AI 模型与外部工具和数据源轻松连接。 3. MCP 最早由 Anthropic 公司开发,现已成为开放协议,越来越多的企业和开发者开始采用。 4. Anthropic 推出的 MCP 协议旨在规范和优化人工智能模型生成内容的方式,关注内容的安全性、合规性以及对用户的透明度,提供更为标准化的方法来管理 AI 模型输出。
2025-03-18
coze教程
以下是为您提供的 Coze 教程相关内容: 1. 一泽 Eze 的教程:可能是全网最好的 Coze 教程之一,一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,包括通过实际案例演示用 Coze 工作流构建生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法等。适合玩过 AI 对话产品的一般用户和对 AI Agent 工作流配置感兴趣的爱好者。注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容。 2. 大圣的教程: Coze 概述:字节的官方解释为 Coze 是新一代一站式 AI Bot 开发平台,无论是否有编程基础,都可在其上快速搭建各类问答 Bot,并能发布到各类社交平台和通讯软件上互动。个人认为 Coze 是字节针对 AI Agent 领域的初代产品,在 Coze 中称 AI Agent 为 Bot。字节针对 Coze 部署了国内版和海外版两个站点。 国内版:网址为 https://www.coze.cn ,官方文档教程为 https://www.coze.cn/docs/guides/welcome ,使用字节自研的云雀大模型,国内网络可正常访问。 海外版:网址为 https://www.coze.com ,官方文档教程为 https://www.coze.com/docs/guides/welcome ,使用 GPT4、GPT3.5 等大模型,访问需要突破网络限制的工具,参考文档:https://www.coze.com/docs/zh_cn/welcome.html 。 AI Agent 的开发流程:Bot 的开发和调试页面布局主要分为提示词和人设的区块、Bot 的技能组件、插件、工作流、Bot 的记忆组件、知识库、变量、数据库、长记忆、文件盒子、一些先进的配置(如触发器、开场白、自动建议、声音)等,下面会逐一讲解每个组件的能力以及使用方式。 3. 7 颗扣子的搭建视频: 第一颗扣子野菩萨出品:2 分钟解锁超野速度的图像流 bot 创建过程,链接为 https://www.coze.cn/store/bot/7384556560263020583 。 第二颗扣子Stuart:2 分钟教您制作炉石卡牌,链接为 https://www.coze.cn/s/i68g8bLY/ ,原理拆解: 。 第三颗扣子陈慧凌:2 分钟做毛毡效果,链接为 https://www.coze.cn/s/i65gDW2Y/ 。 第四颗扣子银海:银河照相馆,链接为 https://www.coze.cn/store/bot/7384885149625761801 。 第五颗扣子Speed 团队:Speed 团队菜品秀秀,链接为 https://www.coze.cn/store/bot/7384434376446148618 ,原理拆解: 。
2025-03-18
ai婚纱照
以下是为您整理的关于“ai 婚纱照”的相关信息: 摊位方面:有提供 AI 肖像及写真(包括婚纱写真)的摊位,摊位区域为 D,编号为 46,类型为写真。 AI 绘画方面:有多种关于婚纱系的绘画描述,如“haute couture,high fashion,dark blue wedding dress,stardust,stars,glimmer,wedding,dramatic,ultra realistic,volumetric,atmospheric lighting,unreal engine,artgerm,ultra resolution,8k,—ar 9:16uplight”等。 还有开源项目作者 ailm 在 ComfyUI 上搭建的可接入飞书的 AI 女友麦洛薇(mylover),实现了稳定人设、无限上下文、永久记忆、无缝联动 SD 绘图等功能。
2025-03-18
AI时代下人才的发展
在 AI 时代,人才的发展具有以下重要方面: 跨学科思维与知识整合能力: AI 善于单领域的深度计算,但跨领域的综合创新仍是人类的优势。能够将不同学科的知识串联,进行类比、迁移和融合,是产生创新思路的源泉之一。未来复杂问题往往涉及多方面因素,仅靠单一领域视角难以解决。人类大脑在跨域联想方面远胜机器,能把看似无关的点联系起来,这正是创造力的体现。 要培养跨学科思维,首先要建立广博的知识面,对主要学科门类有基本了解。其次要刻意练习融会贯通,面对问题时尝试多学科视角。学校和培训应鼓励跨学科项目、通识教育。可以采取“T 字型”发展,一方面在主攻领域深耕,另一方面广泛涉猎相关领域。培养该能力还需提高系统思考和抽象概括能力。长远看,这种跨界整合能力将非常抢手,因为创造性突破往往发生在学科交叉处。 适应 AI 时代的关键技能: 技术专业人士需要发展 AI 难以替代的技能,包括团队建设、跨文化交流、创新解决方案的设计等。AI 虽然可以输出代码,但无法建立团队、跨越文化界限交流或激发团队创造力。对于从事可能被 AI 取代风险工作的技术工作者,需要重新思考职业生涯规划,可能意味着学习新技能或转向更需要人类特质的工作领域。 总的来说,生成式人工智能正在重塑技术就业市场的未来,既带来挑战也提供机遇。关键在于理解并适应这一变化,发展 AI 无法替代的技能,并在新的技术生态中找到自己的位置。同时要注重人类的创造力和创新能力。
2025-03-18
AI如何助力职业发展
AI 可以从以下几个方面助力职业发展: 1. 职业规划: 职业趋势分析:基于最新市场数据和行业报告,协助分析自身专业或职业的前景,了解未来趋势。 技能评估与提升:通过测评工具评估当前职业兴趣,提供针对性学习资源和课程建议,提升专业技能。 职业匹配与推荐:根据兴趣、技能和目标,推荐适合的职业路径和职位,提供个性化建议。 职业发展规划:结合个人情况和市场需求,制定详细的短、中、长期职业发展计划,帮助在 AI 时代找到职业定位。 2. 成为“超级个体”: 效率提升与技能拓展:个人借助 AI 工具学会新技能,参与跨职能工作,成为“全能型人才”。 专注深耕专业技能:AI 接管浅层、重复工作,让人有更多时间修炼深层次专业技能。 提高绩效与解锁可能性:掌握 AI 辅助技能,不仅提高当下绩效,还为自己创造更多发展机会。 放大个人价值:在效率革命推动下,个人利用 AI 成倍放大时间和精力价值,如个人创业者完成全链条工作,教师扩大授课规模,科研人员产出更多数据等。 3. 技术应用与转型: 企业运营:将 AI 前沿技术应用于企业运营,帮助企业完成数字化转型,优化运营效率。 个人成长:协助个人利用 AI 重构知识体系,实现个人成长,在 AI 时代轻松前行。
2025-03-18
提示词设计方法,请从初级到高级一步步进行说明讲解
以下是从初级到高级的提示词设计方法的讲解: 初级阶段: 在初级阶段,重点是明确表达您的需求和期望。例如,清晰地描述任务、问题或所需的输出类型。 中级阶段: 随着经验的积累,可以尝试更详细和具体的描述。包括提供更多的背景信息、限制条件和关键要点,以引导模型生成更符合期望的结果。 高级阶段: 1. 自动提示词工程(APE): 提示词生成:利用 LLM 针对特定任务产生多种提示词,借助其语言数据库和上下文理解。 提示词评分:根据清晰度、特定性和推动期望结果的潜力等关键指标对提示词进行严格评估。 完善和迭代:根据评分调整和优化提示词,增强其与任务要求的一致性,通过持续改进提高提示词质量。 2. 样例驱动的渐进式引导: 把相关的样例文件与提示词同时发送给模型,让模型自行总结所需结果。 经过多次调试和根据测试 bug 微调提示词,以确保稳定运行。 3. 格式选择: 对于刚入门的朋友,推荐使用直观易懂的 LangGPT 结构化提示词,以便快速上手。 对于进阶用户,一方面可以继续使用 LangGPT 结构化提示词,另一方面如有精力和好奇心,可尝试 Lisp 伪代码格式,有助于精炼提示词和提升对措辞理解、概念认知的能力。 需要注意的是,部署 APE 并非没有挑战,可能需要大量计算资源和建立有效评分指标,初始设置也可能需要精心策划的种子提示词集来有效指导生成过程。重要的是提示词的内容要与 AI 的“理解机制”相契合,而非外在形式。
2025-03-18
dify
使用 Dify 构建知识库的具体步骤如下: 1. 准备数据: 收集需要纳入知识库的文本数据,包括文档、表格等格式。 对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集: 在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。 为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 3. 配置索引方式: Dify 提供了三种索引方式供选择:高质量模式、经济模式和 Q&A 分段模式。 根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 4. 集成至应用: 将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。 在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化: 收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。 定期更新知识库,增加新的内容以保持知识库的时效性。 总的来说,Dify 提供了一个可视化的知识库管理工具,使得构建和维护知识库变得相对简单。关键步骤包括数据准备、数据集创建、索引配置,以及将知识库集成到应用中并持续优化。 Dify 是一个开源的大模型应用开发平台,它通过结合后端即服务和 LLMOps 的理念,为用户提供了一个直观的界面来快速构建和部署生产级别的生成式 AI 应用。该平台具备强大的工作流构建工具,支持广泛的模型集成,提供了一个功能丰富的提示词 IDE,以及一个全面的 RAG Pipeline,用于文档处理和检索。此外,Dify 还允许用户定义 Agent 智能体,并通过 LLMOps 功能对应用程序的性能进行持续监控和优化。Dify 提供云服务和本地部署选项,满足不同用户的需求,并且通过其开源特性,确保了对数据的完全控制和快速的产品迭代。Dify 的设计理念注重简单性、克制和快速迭代,旨在帮助用户将 AI 应用的创意快速转化为现实,无论是创业团队构建 MVP、企业集成 LLM 以增强现有应用的能力,还是技术爱好者探索 LLM 的潜力,Dify 都提供了相应的支持和工具。Dify 官方手册:https://docs.dify.ai/v/zhhans 。一般地,如果是个人研究,推荐单独使用 Dify,如果是企业级落地项目推荐使用多种框架结合,效果更好。 Dify 有两种使用方式: 1. 云服务版本。直接在官网 dify.ai 上注册账号使用。 2. 部署社区版。开源,可商用,但是不能作为多租户服务使用。对个人使用完全无限制。 部署前提条件:2 核 4G 云服务器一台=159 元(不懂的也不用懂,不重要)。其实本地也可以,但是本地更折腾,作者不喜欢在自己电脑上部署 Web 服务,所以未分享本地部署方法。【小插曲】今天在腾讯云开新服务器的时候,发现腾讯云居然提供了一键部署,更简单了!而且看了下,挺便宜的,羊毛不薅白不薅。
2025-03-18
comfyUI
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细信息: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 1. 系统:Windows7 以上。 2. 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 3. 硬盘留有足够的空间,最低 100G 起步(包括模型)。 4. 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,功能不全,出错率偏高,严重影响使用体验个人建议升级设备或者采用云服务器玩耍。 5. 下载并更新 Nvidia 显卡驱动下载地址 https://www.nvidia.cn/ geforce/drivers/ 下载并安装所需要环境: 依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 1. 安装 Python https://www.python.org/downloads/release/python3119/ ,安装的时候选中“将 Python 添加到系统变量”。 2. 安装 VSCode https://code.visualstudio.com/Download 。 3. 安装 Git https://gitscm.com/download/win 。 4. 安装 CUDA https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 安装地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git 或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 1. 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 2. Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 3. Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 快捷键:(未提供相关内容)
2025-03-18
什么是RAG
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型存在一些缺点,如无法记住所有知识(尤其是长尾知识)、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有诸多优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型本身的理解能力,降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景是知识问答系统。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档。 2. 文本分割:把 Documents 切分为指定大小的块。 3. 存储:包括将切分好的文档块进行嵌入转换成向量的形式,以及将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-03-18