Navigate to WaytoAGI Wiki →
Home/All Questions
gemini
Google 的多模态大模型叫 Gemini。Gemini 是由 Google DeepMind 团队开发的,它不仅支持文本、图片等提示,还支持视频、音频和代码提示。能够理解和处理几乎任何输入,结合不同类型的信息,并生成几乎任何输出。被称为 Google 迄今为止最强大、最全面的模型,是一种“原生多模态大模型”,从设计之初就支持多模态,能够处理语言、视觉、听觉等不同形式的数据。 Gemini report 有中文翻译,源文档为:https://storage.googleapis.com/deepmindmedia/gemini/gemini_1_report.pdf 。本报告介绍了一种新的多模态模型 Gemini,它在图像、音频、视频和文本理解方面具有卓越的能力。Gemini 系列包括 Ultra、Pro 和 Nano 三种尺寸,适用于从复杂的推理任务到设备内存受限的应用场景。 可以使用 Gemini 拆解视频,例如使用 Gemini 1.5 Pro 进行视频分析和拆解。有测试者表示拆解准确度很高,如阿强将用 AI 做的功夫熊猫相关视频丢进去分析,效果很好。
2025-03-18
如何利用ai进项数据分析并制图
利用 AI 进行数据分析并制图可以参考以下步骤: 1. 明确数据需求和目标:确定您想要分析的数据内容和期望得到的图表类型,例如柱状图、饼图等。 2. 数据准备:确保数据的准确性和完整性,查看数据列名是否与预期一致。 3. 选择合适的 AI 工具:如一些具备数据分析和绘图功能的软件或平台。 4. 分析数据:对数据进行深入研究,例如将多选答案进行合理拆分和统计。 5. 生成图表:根据分析结果,使用 AI 工具生成相应的图表,并注意图表的标题、标签和字体等显示效果。 6. 调整和优化:如果生成的图表不符合要求,需要进一步调整和优化,如重新分析数据、选择不同的图表类型等。 在实际操作中,例如在“教师的 AI 减负指南生成式人工智能在教学中的应用”中,对于“此前您是否使用过生成式 AI 大语言模型?”这样的问题,可以统计不同选择的次数并绘制柱状图或饼图。对于“AI 助教在以下哪些方面对您的学习有帮助?”这样的多选问题,需要将答案合理拆分后进行统计和制图。 在 AI 绘图方面,如参加相关比赛,需要明确创作主题,确定主体,增加叙事感,注意图片的构图、色彩和光影等构成因素,合理运用构图方式,如点中心构图、九宫格构图等。推荐在 AI 绘图中使用中景及以上景别。
2025-03-18
如何利用ai进项数据分析
利用 AI 进行数据分析可以参考以下实际案例与技巧: 1. 流程: SQL 分析:用户描述想分析的内容,后台连接数据库,附带表结构信息让 AI 输出 SQL 语句,校验为 SELECT 类型的 SQL 后执行,将结果数据传给 GPT(附带上下文),让其学习并分析数据,最后输出分析结论和建议,与结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。 个性化分析:用户上传文件,如有需要可简单描述数据、字段意义或作用辅助分析。前端解析用户上传的文件,传给 GPT 分析数据,后续步骤与 SQL 分析一致。 2. 问题与技巧: SQL 分析: 反复校验是否为 SELECT SQL 语句,不仅因为 AI 不完全可控,还因不能相信用户输入,防止恶意操作。 到 AI 分析步骤拼接上下文,包含表结构信息和 SQL 语句,助 GPT 更好理解数据和字段意义,使分析更准确。 针对表结构长类型字段,不允许直接查询,最好告知 GPT 只允许查询的字段或使用的 SQL 函数,控制生成内容。 个性化分析: 用户上传的数据解析后判断数据格式是否符合要求,超长可限制截取前面若干项,防止 token 消耗过多。 在前端解析用户上传的数据,分析完直接用于渲染数据图表,无需后端返回。 支持用户补充输入,简单描述数据、字段意义或作用,辅助 AI 分析。对于易理解语义化的字段名,可不描述,GPT 也能识别。遇到多维度数据,可输入特定指令帮助 AI 准确分析。 原文地址:https://mp.weixin.qq.com/s/Fld25MxyoFEnUbnDmGJNXg 本文作者:krryguo,腾讯 IEG 前端开发工程师。声明:本文涉及与 ChatGPT 交互的数据已严格脱敏。
2025-03-18
Ai搜索
以下是为您介绍的一些 AI 搜索引擎: 1. 秘塔 AI 搜索:由秘塔科技开发,具有多模式搜索、无广告干扰、结构化展示和信息聚合等功能,能提升用户搜索效率和体验。 2. Perplexity:聊天机器人式搜索引擎,允许用自然语言提问,通过生成式 AI 技术从各种来源收集信息并给出答案。 3. 360AI 搜索:360 公司推出,通过 AI 分析问题,生成清晰有理答案,支持增强模式和智能排序。 4. 天工 AI 搜索:昆仑万维推出,采用生成式搜索技术,支持自然语言交互和深度追问,未来将支持多模态搜索。 5. Flowith:创新的 AI 交互式搜索和对话工具,基于节点式交互,支持多种 AI 模型和图像生成技术,有插件系统和社区功能。 6. Devv:面向程序员的 AI 搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。 7. Phind:专为开发者设计,利用大型语言模型提供相关搜索结果和动态答案,擅长处理编程和技术问题。 开搜 AI 搜索是一款免费无广告、直达结果的面向大众的搜索工具。它在以下方面具有优势: 1. 论文资料搜集与整理:帮助在校学生快速搜集学术资料,智能总结关键信息,助力撰写论文和报告,且支持查看来源出处,参考价值高。 2. 教学内容准备:让教育教师群体获取丰富教学资源,自动生成教案和课题研究报告,提高教学准备效率。 3. 职场信息检索:使职场办公人群高效查找工作所需信息,简化文案撰写、PPT 制作和工作汇报准备工作。 4. 行业研究分析:为学术研究人员提供深入行业分析,通过 AI 技术整合和总结大量数据,形成有深度的研究报告。 从 AI 搜索引出 RAG:在学习 RAG 之初,可以从 AI 搜索切入。AI 大模型擅长语义理解和文本总结,但不擅长获取实时信息;搜索引擎擅长获取实时信息,但信息分散,需人为总结。AI 与搜索引擎结合,给 AI 配备活字典,让其随时查阅。
2025-03-18
AI文生图教程
以下是关于 AI 文生图的教程: Liblibai 简易上手教程: 1. 定主题:明确您想要生成的图片的主题、风格和表达的信息。 2. 选择 Checkpoint:根据主题选择贴近内容的 Checkpoint,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找与生成内容重叠的 lora,以控制图片效果和质量。 4. 设置 VAE:选择 840000 那一串。 5. CLIP 跳过层:设为 2。 6. Prompt 提示词:用英文写想要生成的内容,使用单词和短语组合,用英文半角逗号隔开,无需管语法和长句。 7. 负向提示词 Negative Prompt:用英文写想要避免产生的内容,同样是单词和短语组合,用英文半角逗号隔开,无需语法。 8. 采样方法:一般选 DPM++2M Karras,也可参考模型作者推荐的采样器。 9. 迭代步数:选 DPM++2M Karras 时,在 30 40 之间,多了意义不大且慢,少了出图效果差。 10. 尺寸:根据个人喜好和需求选择。 11. 生成批次:默认 1 批。 Tusiart 简易上手教程: 1. 定主题:明确生成图片的主题、风格和信息。 2. 选择基础模型 Checkpoint:根据主题选择贴近的 Checkpoint,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找重叠内容的 lora 控制图片效果和质量。 4. ControlNet:用于控制图片中特定图像,如人物姿态、特定文字、艺术化二维码等,属于高阶技能。 5. 局部重绘:后续学习。 6. 设置 VAE:选择 840000 。 7. Prompt 提示词:用英文写生成需求,单词和短语组合,用英文半角逗号隔开,无需语法和长句。 8. 负向提示词 Negative Prompt:用英文写避免产生的内容,单词和短语组合,用英文半角逗号隔开,无需语法。 9. 采样算法:一般选 DPM++2M Karras,参考模型作者推荐的采样器更有保障。 10. 采样次数:选 DPM++2M Karras 时,在 30 40 之间,多了意义不大且慢,少了出图效果差。 11. 尺寸:根据个人喜好和需求选择。 此外,还为您提供了一些相关的参考视频和教程链接,供您进一步深入学习。
2025-03-18
怎么学习AI知识
以下是新手学习 AI 知识的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是新手还是中学生,学习 AI 可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2025-03-18
现在是2025年3月18日,我现在要整理一份AI行业的最新动态,在每天早上十点发布,请你整理今天的最新动态,10条左右
以下是 2025 年 3 月 18 日 AI 行业的最新动态: 1. 3 月 AI 发展持续升温。 2. 3 月潞晨科技发布 OpenSora。 3. 3 月 Suno 发布 V3 版本爆火。 4. OpenAI CPO Kevin Weil 访谈亮点:GPT5 近在眼前,将融合多个模型能力,快速推进,AI 代码自动化将在今年内达到 99%,强化推理能力和大规模预训练是关键方向,AI 不仅会写代码,还将让人人都能成为软件创造者。 5. 2025 年职场思考与建议:高管们面临“经验贬值”与“转型焦虑”,非 AI 公司的估值与融资变难,软件开发方式正被重构,“等风来”的代价越来越高,加入 AI 公司也并非万能,市场冷却下招聘更挑剔。 6. 你的孩子可能已经在用 AI“作弊”。 7. 过去一年,头部 AI 应用的品类变化不显著,创意工具仍占据最大比重。 8. 2024 年 9 月,OpenAI 发布新一代语言模型 o1,采用全新训练与推理方案,结合强化学习技术,显著增强推理能力,可能通过生成内部“思维链”模拟人类系统 2 思维方式。 9. 5 月伊莉雅离开 OpenAI,AI 竞争白热化。 10. 5 月伊利亚成立新公司,估值超五亿美金。
2025-03-18
AI发展时间线
AI 的发展有着较长的时间线,以下是其主要历程: 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 1950 年,图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院召开的会议上,人工智能一词被正式提出,并作为一门学科确立下来。 2022 年 11 月 30 日,OpenAI 发布基于 GPT 3.5 的 ChatGPT,引发全球 AI 浪潮。 2024 年 AI 关键进展时间线: 2 月,OpenAI 发布视频生成模型 Sora,首次实现高质量文本生成视频,开创 AI 视频生成新纪元。 3 月,Suno 发布 V3 版本,AI 音乐生成方向进入生产力可用状态。 4 月,Meta 发布高性能开源大模型 Llama3,降低了 AI 技术的准入门槛。 5 月,GPT4 发布。 5 月,RayBan 与 Meta 合作的智能眼镜销量突破百万。 5 月,字节上线即梦 AI。 6 月,快手发布可灵。 6 月,Apple Intelligence 发布。 9 月,OpenAI 发布 o1 预览版。 10 月,Rosetta 和 AlphaFold 算法的研发者因在蛋白质结构设计和预测中的突破性贡献获得诺贝尔化学奖;约翰·霍普菲尔德和杰弗里·辛顿因人工神经网络和深度学习的开创性贡献获诺贝尔物理学奖;Anthropic 大模型 Claude 3.5 Sonnet 获得“computer use”功能。 12 月,OpenAI 发布 o3 系列模型。 AI 技术发展历程还包括: 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点有: 大模型(Large Language Models):GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。
2025-03-18
手绘风格图片生成模型
以下是关于手绘风格图片生成模型的相关内容: 艺术字生成: 模型选择:图片 2.1,输入提示词(可参考案例提示词)。 案例参考提示词: 金色立体书法,“立冬”,字体上覆盖着积雪,雪山背景,冬季场景,冰雪覆盖,枯树点缀,柔和光影,梦幻意境,温暖与寒冷对比,静谧氛围,传统文化,唯美中国风。 巨大的春联,金色的书法字体,线条流畅,艺术美感,“万事如意”。 巨大的字体,书法字体,线条流畅,艺术美感,“书法”二字突出,沉稳,大气,背景是水墨画。 巨大的奶白色字体“柔软”,字体使用毛绒材质,立在厚厚的毛绒面料上,背景是蓝天。 原文链接:https://mp.weixin.qq.com/s/jTMFYKxsN8dYNZu3VHKBnA 【06】在线生图定制主题海报: 操作步骤: 选择模型:推荐使用的模型,如(例图 1)风格模型>中国风>水墨工笔;(例图 2)风格模型>儿童>童话绘本;(例图 3)风格模型>MJ>剪纸艺术;(例图 4)风格模型>儿童>皮克斯(模型选择过程如图所示)。 输入画面描述:更好地描述画面的方法包括使用本课件提供的自选关键词、按主体+氛围+视角+画质的顺序输入关键词、使用括号()强调关键词。 选择画面大小:无界 AI 已将尺寸与用途标注在选项中,制作主题海报可选择 9:16 的宣传海报比例,选择 17283072 的分辨率可以更快生成图片。 其他设置:增加作图数量可以在同样参数的控制下一次性生成多幅图片,方便挑选。 优化海报:使用可画(https://www.canva.cn/?displaycomoption=true)在线编辑海报。 0 基础手搓 AI 拍立得: 背景:每次使用大模型工具时流程繁琐冗长,出于简化操作、提升效率的需求,萌生了“AI 拍立得”的概念,即拍即得,简化流程,让操作更直观、更高效。之前的直播分享内容中也有提到关于 AI 拍立得的能力,往期回顾: 在线体验:快速体验 AI 拍立得,微信小程序搜索:Pailido,丰富场景自由切换,可快速生成闲鱼文案、生成外卖/大众点评。 交互逻辑:用户选择拍摄场景类型并立即拍照,AI 自动识别和分析照片中的内容信息,依据预设场景规则迅速生成符合情境的反馈,避免繁琐操作。 实现场景: 图片转成文本:逻辑为用户上传图片后,大模型根据选择的场景生成与内容相关的文字描述或解说文本,核心是图片理解和文本整理润色,场景包括生成美食点评、朋友圈发布文案、闲鱼上架示例模版等。 图片转绘图片:逻辑为用户上传图片后,大模型按照指定的风格快速生成图像的转绘版本,适应不同风格和场景需求,核心是图片风格化滤镜,场景包括图片粘土风、图片积木风、图片像素风等。
2025-03-18
2025.3.18 新的大模型新闻
以下是 2025 年 3 月 18 日的一些新的大模型新闻: DeepSeek 深夜发布大一统模型 JanusPro,将图像理解和生成统一在一个模型中。其官网发声渠道包括微信公众号:DeepSeek;小红书:@DeepSeek(deepseek_ai);X:DeepSeek(@deepseek_ai);知乎账号(2025 年 3 月 1 日注册)。模型(7B)和(1B)的相关信息可参考特定链接。 2025 年 3 月 10 日的新闻:《大模型的未来,是 Agent 还是 App?》中提到 OpenAI 的 Deep Research 被视为一种新型的研究语言模型,具备自主执行搜索任务的能力。 2025 年 3 月 3 日的新闻:2025 年将是智谱的开源年,即将发布全新大模型并开源。2024 年 12 月,智谱已完成 D+轮 30 亿元人民币融资。
2025-03-18