Navigate to WaytoAGI Wiki →
Home/All Questions
AI出来的视频有版权吗
AI 生成的视频是否有版权,情况较为复杂,需要从多个方面来考虑: 版权基础知识方面,版权是知识产权的一部分,包括著作权,具有独创性,是人类智力成果。商标用于区分商品,专利包括发明、实用新型和外观设计。 传统与 AI 版权场景对比,传统的文字、口述、音乐、美术等作品与 AI 生成的问答、口播视频文本、生图等在版权方面存在不同。 AI 版权问题探讨,涉及声音权、IP 形象版权等。例如,用他人声音做二创并发布到公共平台可能侵权,AI 设计的 IP 形象版权认定及商标申请等。 AI 内容生成侵权情形包括:不知情时,若模型厂商用他人版权作品作训练数据,用户可能无辜躺枪;故意生成与他人风格相似作品,如提示词明确指向著名 IP 或公众认为相似,以及拿他人图片做基础生成视频等,均可能构成侵权。 在一些特定的比赛如 filMarathon 全球 AI 电影马拉松大赛中,参赛作品需要创作者对版权负责,确保其通过 AI 工具创作的参赛视频作品不侵犯任何第三方的肖像权、知识产权等合法权益。若参赛视频作品涉及侵权纠纷,由创作者承担相应法律责任。作品一经参赛,版权归主办方所有,创作者保留署名权,参赛视频作品一经提交,创作者仅享有作品的著作人身权,所有著作财产权均无偿归上影所有。
2025-03-17
现在哪个应用文生图的效果最好?
目前在应用文生图方面,以下几个模型效果较好: 1. DALL·E 3:与当前最流行的文生图应用 Midjourney 相比能打个平手甚至超越,使用门槛较低,不需要用户掌握复杂的 Prompt 编写知识,且已正式上线 ChatGPT,Plus 用户和 Enterprise 用户都可以使用。 2. Imagen 3:真实感满分,指令遵从强。 3. Recraft:真实感强,风格泛化很好,指令遵从较好(会受风格影响)。 但不同模型也有各自的特点和不足,例如: 1. Midjourney:风格化强,艺术感在线,但会失真,指令遵从较差。 2. 快手可图:影视场景能用,风格化较差。 3. Flux.1.1:真实感强,需要搭配 Lora 使用。 4. 文生图大模型 V2.1L(美感版):影视感强,但会有点油腻,细节不够,容易糊脸。 5. Luma:影视感强,但风格单一,糊。 6. 美图奇想 5.0:AI 油腻感重。 7. 腾讯混元:AI 油腻感重,影视感弱,空间结构不准。 8. SD 3.5 Large:崩。 您可以根据具体需求和使用体验选择适合的模型。
2025-03-17
我想要学习如何获取ai新闻并每天自动发送到微信等平台
以下是获取 AI 新闻并每天自动发送到微信等平台的方法: 1. 通过 Coze 实现多模态资讯的跨平台推送: 创意构思:创建 Bot 作为专属的资讯助手,通过 Coze 这样的 AI agent 流程获取最新资讯,并以多模态形式自动推送到不同平台,如微信群、企业微信群、飞书云文档多维表格等。可根据用户定制化检索需求,自动化抓取热点资讯,进行分析处理,整合成资讯文档返回 Bot 对话界面,并同步自动发送到不同平台。 效果呈现:Coze Bot 可通过不同提问触发检索功能,实现企业微信群自动同步获得资讯检索结果、与企业微信群的信息同步联动,还能获取飞书云文档多维表格中的用户需求,以及在微信群聊中调用 Coze Bot 进行对话交互检索信息。 2. 伊登:最新 Deepseek+coze 实现新闻播报自动化工作流: 工作流程: 内容获取:输入新闻链接,系统自动提取核心内容。添加网页图片链接提取插件获取网页里的图片,利用图片链接提取节点获取新闻主图,使用链接读取节点提取文字内容,接上大模型节点重写新闻成为口播稿子。 3. 用 Coze 免费打造自己的微信 AI 机器人: 搭建步骤: 组装&测试“AI 前线”Bot 机器人:返回个人空间,在 Bots 栏下找到创建的“AI 前线”,点击进入。将写好的 prompt 黏贴到【编排】模块,在【技能】模块添加需要的技能,在【预览与调试】模块输入问题与机器人对话。 发布“AI 前线”Bot 机器人:测试 OK 后,点击右上角“发布”按钮可将其发布到微信、飞书等渠道。若要发布到微信公众号,选择微信公众号渠道,点击右侧“配置”按钮,在微信公众号平台找到自己的 App ID 填入确定即可。
2025-03-17
我想要学习关于coze的内容课程
以下是一些关于 Coze 的学习资源和教程: 基础教程: 工作流相关: 大雨:coze 工作流节点大全 引言:介绍 Coze 平台及其在 AI 应用开发中的作用,强调工作流是核心概念,可用于组合各种功能模块实现复杂业务流程编排,适用场景广泛。 Coze 工作流概述:解释工作流是一系列有序任务或操作,适用多步骤任务、插件调用、数据处理等场景。 创建工作流:一般建议直接在 bot 里面新建工作流,若工作流不见,可在首页工作空间资源库工作流中查找。 历史活动教程: 5 月 7 号():大聪明分享|主题:Agent 的前世今生,每个分享人分享最初是怎么接触 Coze 的,以及现在用 Coze 做什么。 5 月 8 号():大圣分享|主题:我眼中的 AI Agent 以及通过搭建知识库实例入门 Coze。 5 月 9 号():艾木分享|主题:Agent 系统的核心构成:Workflow 和 Multiagent Flow(以“Dr.Know”和“卧底”为例,线上答疑。 5 月 10 号():罗文分享|主题:一个方法解锁 COEZ 所有插件的用法+如何自动化解锁每天抓取 X 内容+改写+发布到飞书。 5 月 11 号():Itao 分享|主题:和 AI 成为搭子,线上答疑。
2025-03-17
生成组织架构图的AI工具
以下是一些可以生成组织架构图的 AI 工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建 ArchiMate 模型。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费在线图表软件,允许创建各种类型图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 转换工具,可通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 需要注意的是,虽然这些工具可以辅助创建架构视图,但它们不都是基于 AI 的。AI 在绘图工具中的应用通常涉及智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,应考虑您的具体需求,比如是否需要支持特定的建模语言、是否需要与特定的开发工具集成、是否偏好在线工具或桌面应用程序等。
2025-03-17
AGI 是什么英语单词缩写
AGI 是通用人工智能(Artificial General Intelligence)的缩写。通常来说,它指一种能够在许多领域内以人类水平应对日益复杂的问题的系统,能够像人类一样思考、学习和执行多种任务。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级,分别为: 1. 聊天机器人(Chatbots):具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平,能够解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务,但目前许多产品在执行任务后仍需人类参与。 4. 创新者(Innovators):能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。
2025-03-17
什么是AGI
AGI 即人工通用智能,通常指能够完成任何聪明人类所能完成的智力任务的人工智能,其能力不局限于特定领域。例如,能够在许多领域内以人类水平应对日益复杂的问题。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步。当 AGI 真正实现并可能迅速发展为超人工智能(ASI)时,人类社会将在随后的二十年里经历深刻变革,如社会结构、价值观、权力格局、人类角色等方面。OpenAI 曾有关于 AGI 的相关计划,如原计划在 2026 年发布的 GPT7 因埃隆·马斯克的诉讼而暂停,计划在 2027 年发布的 Q2025(GPT8)将实现完全的 AGI。Sam Altman 认为确保 AGI 造福全人类是使命,且 AGI 是人类进步脚手架上的另一个工具。
2025-03-17
trad 如何添加Claude Sonnet 3.7 模型
要在 Trae 中添加 Claude Sonnet 3.7 模型,您可以按照以下步骤操作: 1. 下载 Trae:链接为 https://sourl.co/2DCmmW 。 2. 安装 Trae 后,自动进入 Trae 的客户端。 3. 查看对话框右下角,可以看到三种大模型的选择,其中包括 Claude3.5Sonnet、Claude3.7Sonnet、GPT4o 。 Claude 3.7 Sonnet 是一个混合推理模型,与市面上其他推理模型有所不同。它分为普通模式和扩展(推理)模式,可通过下拉菜单切换。普通模式是升级版的 Claude 3.5 Sonnet,回答迅速流畅;扩展模式适用于数学、物理、编程、复杂分析等场景,会进行思维链展开和推理。但需要注意的是,在 Trae 中切换模式是通过新窗口实现的。
2025-03-17
comfy ui 九宫格生图保持人物一致性的原理
Comfy UI 九宫格生图保持人物一致性的原理主要基于 PuLID 技术,具体如下: PuLID 是一种用于在文本生成图像时自定义图像中人物或物体身份(ID)的新技术,它结合了两个不同的模型分支(Lightning T2I 分支和标准扩散模型),引入了两种损失(对比对齐损失和精确 ID 损失)。 Lightning T2I 分支是一个快速、高效的文本到图像生成模型。 标准扩散模型是常见的、生成高质量图像的模型。 对比对齐损失帮助模型学习将输入的文本和生成的图像内容对齐,使生成的图像更符合文本描述。 精确 ID 损失确保生成的图像中的特定身份特征(比如人物的脸部特征)与目标 ID 一致。 此外,在保持人物一致性方面,还有一些操作步骤: 生成图像(提示词加入分割描述,让一张图生成多张同空间小图)。 通过目标图像不断的重复生成,获取更多一致性的角色图像,下载分类(按照视角不同分类)。 上传图像,调用 prefer option set 命令,先写命令名称(一个视角操作一次),再放入该视角的照片(4 5 张)。 放开角色限制生成图像,在确认好的图像上进行局部重绘,框选头部,在原来的命令下加入—快捷命令名称,确认生成即可。 同时,Eva CLIP 也是相关的技术: Eva CLIP 是一种基于对比学习的视觉文本模型,将文本描述和图像内容映射到一个共享的嵌入空间。 对比学习架构:使用对比学习方法,将图像和文本嵌入到一个共享的空间,通过最大化匹配图像和文本对的相似度,同时最小化不匹配对的相似度,学习到图像和文本之间的关联。 强大的特征提取能力:编码器擅长提取图像中的细节特征,并将其转换为有意义的嵌入向量,用于下游任务。 多模态应用:能够处理图像和文本两种模态,广泛应用于多模态任务中,如生成、检索、标注等。 其应用场景包括图像生成、图像检索、图像标注等。Eva CLIP 编码器通常与深度神经网络结合使用,如卷积神经网络(CNN)用于图像特征提取,Transformer 网络用于处理文本描述。 项目地址:https://github.com/ToTheBeginning/PuLID 相关资源: instant ID 脸部特征抓取得比 pulid 好,放在最后一步重绘,先 pulid,再 instantID https://pan.baidu.com/s/1Tro9oQM85BEH7IQ8gVXKsg?pwd=cycy 工作流与模型地址:https://pan.quark.cn/s/2a4cd9bb3a6b 说明文档:https://xiaobot.net/post/6544b1e8 1d90 4373 94cf 0249d14c73c8 测试案例:
2025-03-17
comfy UI 如何保持人物一致性
要在 ComfyUI 中保持人物一致性,可以通过以下方式实现: 1. PuLID 技术: PuLID 是一种用于在文本生成图像时自定义图像中人物或物体身份(ID)的新技术,无需复杂调整。 它结合了 Lightning T2I 分支和标准扩散模型两个不同的模型分支,并引入了对比对齐损失和精确 ID 损失两种损失,以确保在保持原始模型效果的同时,高精度地自定义 ID。 Lightning T2I 分支是快速、高效的文本到图像生成模型,标准扩散模型是常见的生成高质量图像的模型。 PuLID 可以让您在生成图像时更精确地定制人物或物体的身份,将特定 ID(例如人脸)嵌入到预训练的文本到图像模型中,而不会破坏模型的原始能力。 项目地址:https://github.com/ToTheBeginning/PuLID 相关资源: 百度网盘:https://pan.baidu.com/s/1Tro9oQM85BEH7IQ8gVXKsg?pwd=cycy 工作流与模型地址:https://pan.quark.cn/s/2a4cd9bb3a6b 说明文档:https://xiaobot.net/post/6544b1e81d90437394cf0249d14c73c8 instant ID 脸部特征抓取得比 PuLID 好,可放在最后一步重绘,先 PuLID,再 instantID。 2. 节点设置: 节点插件 PuLID ComfyUI:https://github.com/cubiq/PuLID_ComfyUI model:使用预训练的基础文本到图像扩散模型,如 Stable Diffusion。 pulid:加载的 PuLID 模型权重,定义 ID 信息如何插入基础模型。 eva_clip:用于从 ID 参考图像中编码面部特征的 EvaCLIP 模型。 face_analysis:使用 InsightFace 模型识别和裁剪 ID 参考图像中的面部。 image:提供的参考图像用于插入特定 ID。 method:选择 ID 插入方法,如“fidelity”(优先保真度)、“style”(保留生成风格)和“neutral”(平衡两者)。 weight:控制 ID 插入强度,范围为 0 到 5。 start_at 和 end_at:控制在去噪步骤的哪个阶段开始和停止应用 PuLID ID 插入。 attn_mask:此选项用于提供灰度掩码图像,以控制 ID 自定义的应用位置,但并不是必需输入,而是可选输入。 Advanced Node:提供了高级节点,可以通过调整 fidelity 滑块和 projection 选项进行更精细的生成调优。比如,ortho_v2 和 fidelity:8 等价于标准节点的 fidelity 方法,而 projection ortho 和 fidelity:16 等价于 style 方法。 此外,在 8 月 13 日的 ComfyUI 共学中也提到控制人物一致性有很多方法,课程后期会介绍。
2025-03-17