Navigate to WaytoAGI Wiki →
Home/All Questions
作为一个产品经理,我现在要设计一个企业内的销售培训智能体,我手里有产品知识、销售基础知识,我该怎么设计,是只做rag还是做多智能体协同?
以下是为您设计企业内销售培训智能体的一些建议: 首先,了解多智能体模式的设置。它包括全局设置和多个代理之间的编排协调两个核心部分。全局设置涵盖角色设定与回复逻辑、记忆管理以及对话体验等,其中人物设定与回复逻辑应侧重于角色塑造。在智能体的交互流程设计上,要形成完整的互动链条,当用户意图未满足跳转条件时,保持与当前智能体的沟通。设计多轮协作的智能体时,应将其交互设计为闭环结构,以确保用户能自由切换。 其次,动手实践制作智能体。对于 Chat GPT 版本,可按以下步骤:点击“浏览 GPTs”按钮,点击“Create”按钮创建,使用自然语言对话或手工设置进行具体配置,然后调试并发布。对于 Chat GLM 版本,点击“创建智能体”按钮,输入智能体描述,可粘贴准备好的提示词模板,其配置可自动生成,可根据需求调整并上传本地文件作为知识库。 然后,考虑多智能体协同的概念。在处理复杂任务时,单智能体可能面临提示词修改和逻辑不清晰的问题。多智能体协作如吴恩达所举例,每个智能体被赋予不同身份,互相合作对话,能模拟现实工作场景,成为复杂系统,但可能存在效率不高的情况。 最后,您可以根据实际情况选择是采用 RAG 还是多智能体协同。如果任务相对简单,RAG 可能足够;若任务复杂,涉及多个环节和角色的协作,多智能体协同可能更合适。您还可以通过具体的例子,如旅游场景中负责景点推荐、路线规划和食宿安排的三个智能体,来更好地理解和设计。
2025-03-16
我该如何设计智能体
设计智能体可以从以下几个方面考虑: 1. 功能方面: 目标拆解:将用户的目标拆解成具体的小目标和计划大纲。 周任务 LIST:根据计划大纲,为用户提供简单易做的周任务列表,循序渐进地提高难度。 FLAG 社区:允许用户查看别人的 FLAG 目标,并许下自己的 FLAG,形成一个互助的社区。 2. 设计思路: 整体架构:通过意图识别来区分用户的不同需求,并根据需求调用不同的模块,包括模块划分、数据流动和交互逻辑。 功能结构: 目标管理模块:负责帮助用户拆解和规划他们的目标。 任务生成模块:根据用户的目标,生成周任务列表。 内置互动模块:允许用户分享和查看他人的目标,以及提供支持和鼓励。 3. 应用领域: 自动驾驶:自动驾驶汽车中的智能体感知周围环境,做出驾驶决策。 家居自动化:智能家居设备(如智能恒温器、智能照明)根据环境和用户行为自动调节。 游戏 AI:游戏中的对手角色(NPC)和智能行为系统。 金融交易:金融市场中的智能交易算法,根据市场数据做出交易决策。 客服聊天机器人:通过自然语言处理与用户互动,提供自动化的客户支持。 机器人:各类机器人(如工业机器人、服务机器人)中集成的智能控制系统。 4. 设计与实现步骤: 定义目标:明确智能体需要实现的目标或任务。 感知系统:设计传感器系统,采集环境数据。 决策机制:定义智能体的决策算法,根据感知数据和目标做出决策。 行动系统:设计执行器或输出设备,执行智能体的决策。 学习与优化:如果是学习型智能体,设计学习算法,使智能体能够从经验中改进。 5. 多智能体模式: 包括全局设置和多个代理之间的编排和协调。 全局设置中要明确人物设定与回复逻辑、记忆管理以及对话体验等全局性因素。 设计智能体的交互流程时,要让节点形成完整的互动链条,采用闭环结构,确保用户在整个对话过程中能够自由地在不同智能体之间切换。 例如在旅游场景中,设计负责景点推荐、路线规划和食宿安排的智能体。
2025-03-16
如何实现公众号用智能体+工作流,每天自动发《头条新闻》
要实现公众号用智能体+工作流每天自动发《头条新闻》,可以参考以下步骤: 伊登:最新 Deepseek+coze 实现新闻播报自动化工作流 工作流程详解 第一步:内容获取 1. 只需输入新闻链接,系统就能自动提取核心内容。开始节点,入参包括新闻链接和视频合成插件 api_key。 2. 添加网页图片链接提取插件,承接开始节点的新闻链接。 3. 获取网页里的图片,以 1ai.net 的资讯为例,输入新闻后提取出很多链接,其中第一条链接通常是新闻主图,其他内容多为不重要的 icon。 4. 添加图片链接提取节点,若为节省写代码时间,可直接用大模型节点提取,只拿提取的链接集合的第一条,即可搞定新闻的主要图片。 5. 接着利用调整图片的节点,将 url 属性的图片内容转化为 image 属性的图片(因为 url 节点在画板中是 string 的格式,所以必须转为 img 格式)。 6. 对于文字部分,使用链接读取节点将文字内容提取出来。 7. 在提取链接后面接上一个大模型节点,用来重写新闻成为口播稿子,可使用最强的 DeepseekR1 模型生成有吸引力的口播内容。小 tips,如果想要加上自己的特征,可以在提示词里写:“开头加上‘这里是伊登 AI’之类的个性化台词防伪”。PS:这里的 deepseekR1 基础版本是限额使用,我们可以在专业版手动接入 DeepseekR1 手动接入推理模型。 第二步:画面生成 思路是做成一帧一帧的主图+台词,配合语音合成,保证音屏同步。 1. 用批量化节点,做成一帧一帧的画面,用画板节点完成。批量处理节点输入的是格式变化后的 json 格式的文案。 2. 画面生成的重点是:在批处理中,先把一些固定内容在画板节点安排好,比如背景图片。然后引入变量元素,比如新闻图片(已经提取并转换为 img 属性)、新闻标题(来自链接读取)、口播台词(已经提取并二创)。小 tips:想要找好看的背景图推荐去可画,挑选一个好看的视频模板然后,保存为【图片】格式,然后放在画板节点,当作底图。 第三步:语音合成 使用声音合成的官方插件,引用批处理的一句一句的新闻文案内容,可调节语速和语气,多种播音风格可选。在画板和语音合成的节点后面加入图片音频合成插件。PS:这个插件需要收费,登录 https://ts.fyshark.com//userInfo,【钱包】充值获取 token,【个人中心】获取 token,放入这个节点中,不过充值 10 元可以做好久了,这个插件适合小白同学,也有不收费的插件,但是比较吃操作,如果感兴趣也可以关注后续出相关教程。这个插件的 img_audio_video 的功能是把图片+视频合成,这样就实现了一段一段的口播新闻内容。 【拔刀刘】自动总结公众号内容,定时推送到微信(附完整实操教程) 三、搭建工作流 13、循环将推送内容插入数据库 将本轮推送给用户的内容,写入数据库,下次从 rss 列表中如果再抓取到相同内容,直接跳过,避免重复推送。使用「循环」节点,输入项为第 8 步代码输出的 content_urls,这里有完整的文章内容信息。循环体设置:使用「数据库」节点,输入项为本循环节点 item 中的 url 和 suid,SQL 也是用 AI 生成的。设置循环节点的输出项:output,参数随便选,后边也用不到了。 14、结束节点 选择第 11 步输出的内容,可以在 bot 中也查看到推送的内容。 15、试运行 工作流终于搭建完了,点击右上角的试运行,选择绑定的 bot,输入数据测试。Key:输入你的 server 酱的 sendkey。rss_list:如果你没有现成的数据,可以白嫖我这个,复制下方这两条数据测试使用。试运行结果:如果工作流设置的没有问题,你会在工作流中看到这样的结果。同时,微信上也会收到这条推送,可以查看总结内容,点击链接可以查看公众号原文。点击右上角发布。
2025-03-16
文本生成视频最长时间的工具是什么
目前,能够进行文本生成视频且生成时间较长的工具包括以下几种: 1. Pika:出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:如果熟悉 Stable Diffusion,可以安装此最新插件,在图片基础上直接生成视频,这是由 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要收费,其视频生成时长上限为 30 秒。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 更多的文生视频的网站可以查看这里:https://www.waytoagi.com/category/38 。 需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2025-03-16
做ppt的工具
以下是关于做 PPT 的工具的相关信息: 目前市面上大多数 AI 生成 PPT 通常按照以下思路来完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 一些好用的 AI PPT 工具包括: 1. Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频,增强演示文稿吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等,还可能包括互动元素和动画效果。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理领域技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 过去自己动手做 PPT 的流程包括: 1. 确定主题 2. 拟定大纲目录 3. 补充内容 4. 美化页面 现在用 ChatGPT 制作 PPT 高效,需先确定主题,还可让其用 Markdown 语法展示内容,再借用 MindShow 工具将 Markdown 内容转换为精美的 PPT。 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》 相似问题: 1. 有没有生成 PPT 的应用推荐,不用翻墙的 2. 免费生成 PPT 的网站有哪些 3. 推荐一款文字生成 ppt 的工具 4. 免费 ai 制作 ppt 软件 5. 推荐 3 款好用的 AI 制作 ppt 工具 内容由 AI 大模型生成,请仔细甄别。
2025-03-16
知识库
以下是关于知识库的相关内容: 智能体创建: 手动清洗数据:本次创建知识库使用手动清洗数据,上节课程是自动清洗数据,自动清洗数据可能出现数据不准的情况,手动清洗可提高数据准确性。参考课程:。 在线知识库:点击创建知识库,创建画小二课程的 FAQ 知识库。飞书在线文档中每个问题和答案以分割,可选择飞书文档、自定义的自定义,输入后可区分内容,还可编辑修改和删除,添加 Bot 后可在调试区测试效果。 本地文档:对于本地 word 文件,注意拆分内容以提高训练数据准确度。例如画小二 80 节课程分为 11 个章节,不能一股脑全部放入训练,应先放入大章节名称内容,章节内详细内容按固定方式人工标注和处理,然后选择创建知识库自定义清洗数据。 发布应用:点击发布,确保在 Bot 商店中能搜到,否则无法获取 API。 概述: 扣子提供了几种存储和记忆外部数据的方式,以便 Bot 精准回复用户。知识库是大量知识分片,通过语义匹配为模型补充知识,以车型数据为例,每个知识库分段保存一种车型基础数据。同时还介绍了数据库、AI 便签、单词本等。 智能体“竖起耳朵听”: 扣子的知识库功能强大,可上传和存储外部知识内容,提供多种查找知识的方法,解决大模型有时出现的幻觉或专业领域知识不足的问题。在该智能体中使用了自己的知识库,收集了很多地道口语表达的短句,知识库可包含多种格式文件,此例中只用了文本格式,智能体回答用户时会先检索知识库内容。还可添加开场白提升体验。
2025-03-16
我需要搭建一个每个人都能使用的知识库
要搭建一个每个人都能使用的知识库,可以考虑使用 GPT 并借助 embeddings 技术。以下是相关步骤和原理: 1. 文本处理:将大文本拆分成若干小文本块(chunk)。 2. 向量转换:通过 embeddings API 将小文本块转换成与语义相关的 embeddings 向量,并在向量储存库中保存这些向量和文本块,作为问答的知识库。 3. 问题处理:当用户提出问题时,先将问题通过 embeddings API 转换成问题向量,然后与向量储存库中的所有文本块向量进行比对,查找距离最小的几个向量,提取对应的文本块,并与原有问题组合成新的 prompt 发送给 GPT API。 4. 容量限制:GPT3.5 一次交互支持的 Token 数量有限,embedding API 是解决处理大量领域知识的方案。 5. 理解 embeddings:embeddings 是浮点数字的向量,向量之间的距离衡量关联性,小距离表示高关联度。例如,“猫”和“狗”距离近,与“汽车”距离远。 例如,对于一篇万字长文,拆分成的 chunks 包含:文本块 1:本文作者:越山。xxxx。文本块 2:公众号越山集的介绍:传播效率方法,分享 AI 应用,陪伴彼此在成长路上,共同前行。文本块 3:《反脆弱》作者塔勒布xxxx。文本块 4:“科技爱好者周刊”主编阮一峰会记录每周值得分享的科技内容,周五发布。如果提问是“此文作者是谁?”,通过比较 embeddings 向量,可以直观地看出文本块 1 跟这个问题的关联度最高,文本块 3 次之。最后发送给 GPT API 的问题会类似于“此文作者是谁?从以下信息中获取答案:本文作者:越山。xxxx。《反脆弱》作者塔勒布xxxx。”这样大语言模型大概率能回答上这个问题。
2025-03-16
我想建立一个知识库,自动生成解决方案
以下是关于建立知识库并自动生成解决方案的相关信息: smartBot 的应用场景: 1. 辅助使用者对某个行业/领域/问题进行深度解读和分析,并建立系统性的认知过程。 2. 根据预设流程,自动化形成对某个专业方向/领域/行业的系统化知识图谱。 基于知识图谱的问答系统: 1. 结合知识图谱中的丰富信息,能够提供精确且富有洞察力的答案,无论问题是关于具体事实还是复杂关系。 2. 以 Bilibili 知识区为核心,将分散的知识点整合成语义网络,涵盖广泛主题领域,揭示不同概念间潜在关系。 3. 对 Bilibili 知识区重点视频字幕进行数据清洗和分词处理,确保数据准确性和一致性。 4. 利用 NLP 技术解析和优化用户查询,自动补充或纠正模糊查询词,提高查询准确性和覆盖面。 5. 采用先进深度学习技术,对用户查询进行深入语义理解和上下文分析,提供更精准搜索结果。 知识库构建与业务完整性: 1. 从文档切片、向量化到数据入库,构建完整的知识库。 2. 结合检索模块和生成模块,提供从检索到生成的完整解决方案。 用 Coze 免费打造微信 AI 机器人的步骤: 1. 设计方面:确定功能范围。 2. 搭建步骤: 开始节点和结束节点由 coze 自动生成。 开始节点配置:输入变量名写“Question”,描述写“用户输入的问题”,变量类型选“String”。 知识库配置:将开始节点和知识库左侧节点连接,引用开始节点的变量“Question”,添加创建好的知识库,并将知识库右侧节点与结束节点左侧连接。 结束节点配置:用于输出 AI 机器人的最终结果,回答格式设置为“您的问题:{{question}} 问题的答案:{{answer}}”,定义“question”引用“开始节点的 Question”,“answer”引用“知识库节点的输出 output”,选择使用设定内容直接回答。 试运行测试:点击右上角“试运行”,输入问题后点击“运行”,查看工作流每一步的详细输入和输出。
2025-03-16
提示词工程
提示词工程师(Prompt Engineer)是在与人工智能模型交互时,负责设计和优化提示的专业人员,旨在引导模型产生准确、有用和相关的回答。 其主要职责包括: 1. 设计提示:根据用户需求和模型能力,考虑提示的长度、结构、措辞和信息量等因素,设计有效的提示以清晰传达用户意图并引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式不断优化提示,提高模型性能。 3. 评估提示:使用模型的准确率、流畅度和相关性等指标评估提示的有效性。 提示词工程师需要具备以下技能和知识: 1. 领域知识:对所工作的领域有深入了解,以便设计出有效的提示。 2. 自然语言处理(NLP):了解 NLP 的基本原理和技术,能够理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 的基本原理和技术,能够理解和使用 AI 模型。 4. 沟通能力:具备良好的沟通能力,与用户、团队成员和其他利益相关者有效沟通。 以下是一些提示词工程师工作的实际案例:无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能。其实现原理主要有两部分代码组成:提示词注入和工具结果回传。提示词注入用于将工具信息以及使用工具的提示词添加到系统提示中。工具结果回传则是解析 tool calling 的输出,并将工具返回的内容再次嵌入 LLM。 在基本概念方面,通过简单的提示词(Prompts)可获得大量结果,结果质量与提供的信息数量和完善度有关。一个提示词可包含指令、问题等信息,也可包含上下文、输入或示例等详细信息。当使用 OpenAI 的 gpt4 或者 gpt3.5turbo 等聊天模型时,可使用三个不同的角色来构建 prompt:system、user 和 assistant。提示工程(Prompt Engineering)就是探讨如何设计出最佳提示词,用于指导语言模型帮助高效完成某项任务。上述示例基本说明了现阶段的大语言模型能够发挥的功能作用,可用于执行各种高级任务,如文本概括、数学推理、代码生成等。
2025-03-16
提示词
提示词相关知识如下: 1. 什么是提示词: 用于描绘您想生成的画面。 输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。 启用提示词优化后,能帮您扩展提示词,更生动地描述画面内容。 2. 如何写好提示词: 可以点击提示词上方官方预设词组进行生图。 提示词内容要准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可以帮助 AI 理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印。 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先,也可对已有的提示词权重进行编辑。 辅助功能包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 3. 提示词要素: 提示词可以包含指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息,引导语言模型更好地响应)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。 4. 提示工程与提示词的区别: 提示工程是人工智能领域中,特别是在自然语言处理和大型语言模型的上下文中一个相对较新的概念,涉及设计和优化输入提示,以引导 AI 模型生成特定类型的输出或执行特定的任务。其关键点包括精确性、创造性、迭代、上下文理解。 提示词通常指的是直接输入到 AI 模型中的问题、请求或指示,是提示工程的一部分。提示工程是一个更广泛的概念,不仅包括创建提示词,还涉及理解模型的行为、优化提示以获得更好的性能、以及创造性地探索模型的潜在应用。提示工程的目标是最大化 AI 模型的效用和性能,提示词是实现这一目标的手段之一。在实际应用中,提示工程可能包括对 AI 模型的深入分析、用户研究、以及对特定任务的定制化提示设计。
2025-03-16