Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

企业如何结合私域数据建立自己的AI

Answer

结合私域数据建立企业自己的AI系统需要多个步骤和考虑因素。以下是一个详细的指南,展示如何从数据收集到AI模型的部署:

1. 数据收集与整合

  • 数据来源: 收集企业内部的所有相关数据,包括客户行为数据、销售记录、客户服务记录、市场营销活动数据、网站访问数据等。
  • 数据存储: 使用数据仓库或数据湖存储数据,以确保数据的统一管理和便于访问。常见的解决方案包括Amazon Redshift、Google BigQuery、Azure Data Lake等。

2. 数据清洗与预处理

  • 数据清洗: 去除重复数据、修复缺失值和处理异常值。
  • 数据预处理: 数据归一化、特征提取和编码(如将分类变量转为数值变量)。

3. 数据分析与可视化

  • 数据分析: 使用统计分析和探索性数据分析(EDA)来理解数据的特征和模式。
  • 数据可视化: 使用工具如Tableau、Power BI或Python中的Matplotlib、Seaborn等来可视化数据。

4. 模型选择与训练

  • 模型选择: 根据业务需求选择合适的机器学习或深度学习模型。常见的模型包括回归模型、分类模型、聚类模型、推荐系统等。

    • 回归模型: 用于预测连续值(如销售预测)。
    • 分类模型: 用于分类任务(如客户流失预测)。
    • 聚类模型: 用于分群(如客户细分)。
    • 推荐系统: 用于推荐产品或服务(如个性化推荐)。
  • 模型训练: 使用机器学习框架如Scikit-learn、TensorFlow、PyTorch等进行模型训练。

    • 特征工程: 创建和选择有助于模型性能的特征。
    • 超参数调优: 通过交叉验证和网格搜索找到最佳模型参数。

5. 模型评估与验证

  • 模型评估: 使用指标如准确率、精确率、召回率、F1分数、ROC曲线等评估模型性能。
  • 模型验证: 使用交叉验证技术验证模型的泛化能力,避免过拟合。

6. 模型部署

  • 部署环境: 选择合适的部署环境(如云服务、边缘计算、企业内部服务器)。
  • 持续集成与持续部署(CI/CD): 设置自动化部署管道,使用工具如Jenkins、GitLab CI/CD、AWS CodePipeline等。
  • API服务: 将模型部署为API服务,使得企业应用可以方便地调用。可以使用Flask、FastAPI或部署平台如AWS SageMaker、Google AI Platform等。

7. 模型监控与维护

  • 模型监控: 监控模型在生产环境中的表现,使用监控工具如Prometheus、Grafana等。
  • 模型更新: 定期更新和重训练模型以适应数据和业务需求的变化。

实践示例

数据预处理示例代码(Python)

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

# 加载数据
data = pd.read_csv('customer_data.csv')

# 数据清洗
data.dropna(inplace=True)

# 特征选择与处理
features = data[['feature1', 'feature2', 'feature3']]
target = data['target']

# 数据分割
X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2, random_state=42)

# 数据归一化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

模型训练示例代码(Python)

from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report

# 模型训练
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)

# 模型预测
y_pred = model.predict(X_test)

# 模型评估
print(f'Accuracy: {accuracy_score(y_test, y_pred)}')
print(classification_report(y_test, y_pred))

推荐资源

  • 在线课程:

  • 书籍:

    • 《Python Machine Learning》 by Sebastian Raschka and Vahid Mirjalili
    • 《Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow》 by Aurélien Géron
  • 工具和平台:

    • 数据存储: Amazon Redshift, Google BigQuery, Azure Data Lake
    • 机器学习框架: Scikit-learn, TensorFlow, PyTorch
    • 部署平台: AWS SageMaker, Google AI Platform, Azure Machine Learning

通过以上步骤和资源,企业可以利用私域数据建立自己的AI系统,提升业务效率和竞争力。

Content generated by AI large model, please carefully verify (powered by aily)

References

企业构建和购买生成式 AI 方式的 16 个变化

然而,目前尚不清楚当更多面向企业的AI应用上市时,情况是否会发生变化。虽然一位企业领导者提到尽管他们正在内部开发许多应用,但他们乐观地认为“将会有新工具出现”,并且更愿意“使用市面上最好的工具”。其他人认为,GenAI越来越成为一种“战略工具”,允许企业将某些功能内部化,而不是像传统上依赖外部供应商。鉴于这些情况,我们相信那些能在“LLM + UI”公式之外进行创新,并显著重新思考企业的基本工作流程,或帮助企业更好地利用自己专有数据的应用,将在整个市场上表现特别出色。

金融服务业将比你想象得更快地接纳生成式 AI

在[现有企业与初创公司之间的竞争](https://a16z.com/2015/11/05/distribution-v-innovation/)中,由于拥有对专有金融数据的访问权限,现有企业在使用AI推出新产品和改进运营时将拥有初始优势,但他们最终将受到对准确性和隐私的高标准的限制。另一方面,新进入者最初可能需要使用公开的金融数据来训练他们的模型,但他们将迅速开始生成自己的数据,并逐渐使用AI作为新产品分销的突破口。让我们深入了解这五个目标,看看现有企业和初创公司如何利用生成式AI。

学习笔记:AI for everyone吴恩达

设置一种与AI良性循环相一致的公司策略,例如网络搜索,当出现一款更好的软件,就会有更多的用户使用,然后出现更多数据,反哺更好的软件,让产品不断更好,形成增长飞轮。一个农业公司使用照片,拍摄田地照片,在早期人工拍摄,后续形成一个小模型以后,说服几个农民使用。最后不断扩大影响,形成增长飞轮,几年以后,这家公司以3亿美元被一家更大的公司收购。考虑创建一个数据策略,优秀的公司擅长做战略数据采集,例如一些面向消费者的大型AI公司推出免费服务,像免费邮箱,免费相片共享服务等,以此搜集数据并提供更多的服务给你。与直接出售服务的模式大不相同。考虑建造统一的数据仓库,方便管理与工程师使用。创造网络效应与平台优势,在赢家通吃的行业,AI可以成为加速器。5,确保内部与外部的沟通一致与投资者,确保投资者看到AI优势以及相关地位政府密切交流,以公私合伙伙伴形式,确保AI方案保持效果,也同时可以保护消费者。消费者与AI人才的吸引招聘也极其重要,最后是内部的交流顺畅,正确引导公司内部对AI项目的评价。

Others are asking
我是做私域培训的,我想知道ai对我的帮助有哪些,我准备出去创业,想要解决获客的问题,但是我没有做流量的经验,只有销售经验
以下是 AI 对您从事私域培训及创业解决获客问题可能提供的帮助: 1. 生成爆款内容:借助 AI 分析能力挖掘同品类爆款,利用 AI 工具生成电商商品图、小红书图文内容、种草短视频等,吸引潜在客户。 2. 公域阵地场景:依托视频号、抖音、小红书、公众号等平台,通过矩阵号和 IP 号的搭建,以及短视频、直播等方式获取 leads,背后涉及矩阵号工具、内容抓取分析、脚本创作、AI 剪辑、自动回复评论、无人直播工具等。 3. 私域阵地场景:在朋友圈、小红书、社群、个人 IP 方面,利用销售企微 SCRM 工具、企业智能体进行 AI 内容抓取和自动回复,实现获客转化。 此外,为您提供一些相关的近期安排和团队信息: 1. 近期安排: 商会公开课:时间暂定 2.22 日,线上直播(小鹅通/腾讯会议),主题为《AI 获客》。 重庆区域公开课:时间暂定 2.9 日,线上直播(小鹅通/腾讯会议),主题为《Deepseek 引发的商业思考》。 民营经济大讲堂:时间与讲师团商量调整,线下付费方式。 省商会公开课:时间待定,线上直播(小鹅通/腾讯会议),主题为《AI 获客》。 SaaS 平台企业公开课:时间待定,线上直播(小鹅通/腾讯会议),主题待定。 杭州市城投线下培训:时间 2 月底,针对城投内部线下培训。 2. 北京分队介绍: wb:运营一个私域资源(包括 AI)的讨论群,关注 AI 前沿动态。 祖海:在杭州,有 400 位编导和操盘手资源,做个人 IP 咨询和陪跑,以及 Ai 数字人获客。 宇竹:在多个赛道有丰富的 IP 操盘经验。 U:业余配音演员、业余歌手,擅长音频剪辑,也可简单视频剪辑。 萝卜:生图生视频剪辑均可,剪辑方面有从业经验。 李先森:星动 AI 联合创始人,致力于 AI 教育培训和 AI 商业应用。
2025-03-06
AI私域运营
以下是为您整理的关于您所提到的“AI 私域运营”的相关内容: 摊位信息: 豆包虚拟男友/女友(长期记忆工作流)制作,拟人化提示词优化,摊位区域 D,摊位编号 36,摊位类型为数字人制作服务。 主题为“AI 赋能青少年领导力训练营”,内容为为 10~18 岁青少年提供 AI 创作+沟通和领导力技能的体验式培训,摊位区域 D,摊位编号 37,摊位类型为教育。 AI 信息流订阅,摊位区域 D,摊位编号 38,摊位类型为自媒体订阅。 文创图片、AI 占卜,摊位区域 D,摊位编号 39,摊位类型为玄学。 AI 私域营销解决方案,利用 AI 模仿销冠,自动进行对话,摊位区域 D,摊位编号 4,摊位类型为产品展示。 1、AI 好运头像定制+打印:盲盒风格、宫崎骏风格的个人头像定制,通过 AI 算命选择适合客户的五行颜色生成,可选择增值服务打印+实体相框变成卡通照片摆台。2、AI 玄学:命理师结合 AI 辅助,用紫微斗数、星盘、梅花易数等形式,占测个人运势以及心中想知道的答案。3、人工摄影:针对没有照片的客户,现场拍摄+简单修图,现场打卡照,摊位区域 D,摊位编号 40,摊位类型为照片/玄学。 2025AI 春晚: 纯私域社群:预计直接触达优质 AI 内容创作者 500+,AI KOL 200+,AI 爱好者 1000+,总计私域粉丝+用户量超过 10w 人,即活动起盘曝光超过 10w 人次。 平台合作曝光:去年 AI 春晚在 0 成本 0 预热 0 粉丝的情况下,达到 18w 直播在线的效果。目前洽谈中的合作平台预计可给到价值 3000w 的资源位,约等于 6~8e 的纯流量。结合春节+AI 的热点话题,可达到 1.5E 曝光与百万级场观,预计效果可更上一层楼。 招商合作:WAIC 美好奇妙世界大赛,初次即收获数十万商业合作费用,明年预计基本盘 500w+;AI 春晚有已经落地的案例,又有明确的创作主题,粗略预估招商规模可达 500~1000w。 A proinnovation approach: 关于 AI 相关危害的可争议性或补救途径:AI 系统应具有一定程度的可解释性。在某些情况下,AI 会对人们的生活产生重大影响,包括保险报价、信用评分和招聘结果等。具有高影响力结果的 AI 决策不应是任意的,应是合理的。监管机构应能够描述和说明其部门和领域内的公平含义,并与其他监管机构协商。 责任和治理原则:应建立治理措施以确保对 AI 系统的供应和使用进行有效监督,并在整个 AI 生命周期中建立明确的责任线。AI 生命周期参与者应采取措施考虑、纳入并遵守这些原则,并引入在 AI 生命周期的所有阶段有效实施这些原则所需的措施。监管机构需要寻找方法,确保对 AI 供应链中的适当参与者提出明确的监管合规和良好实践期望。
2024-12-02
私域运营需要的AI工具有哪些?具体的应用场景和方法是什么?
以下是一些私域运营可能用到的 AI 工具、应用场景及方法: 工具:Flair、Booth、Bloom 应用场景:帮助品牌创建引人注目的产品照片,如将挂在衣架上的连衣裙静态照片变成女人穿着裙子在花园里行走的形象,还可预期实现极度个性化,如展示沙发在用户公寓中的照片。 方法:直接使用相关工具进行产品照片的创作和优化。 工具:AdCreative、Pencil 应用场景:制作用于电子邮件或社交媒体的营销材料。 方法:根据需求输入相关信息,利用工具生成营销材料。 工具:Frase、Writesonic 应用场景:编写经过 SEO 优化的产品描述。 方法:输入产品相关信息和优化要求,获取生成的产品描述。 工具:Synthesia 应用场景:创建由 AI 生成的高质量视频,包括数字人视频,可用于制作营销视频、产品演示等。 方法:选择定价计划,按照操作指引生成视频。 工具:HeyGen 应用场景:从云平台生成数字人视频,适合制作营销视频和虚拟主持人等。 方法:从头像库选择,输入文本生成视频。 工具:Jasper AI 应用场景:生成营销文案、博客内容、电子邮件等。 方法:选择语气和风格,输入主题生成内容。 工具:Copy.ai 应用场景:快速生成广告文案、社交媒体帖子、电子邮件等营销内容。 方法:选择计划,输入需求生成文案。 工具:Writesonic 应用场景:专注于营销内容创作,如博客文章、产品描述、视频脚本等。 方法:选择语气和行业定制选项,输入相关信息生成内容。 此外,还有一些案例可供参考: 营销:蓝色光标 X 京东,探索出 AIGC 精细化作业模式,革新传统代言人 TVC 制作流程。 营销:定制营销报告,涵盖汇报对象身份、销售数据、财务报告、市场分析、客户反馈、营销效果评估等方面。 办公:高效做 PPT,用 ChatGPT 生成 Markdown 语法内容,再借助 MindShow 转换为精美 PPT。 更多的营销产品可以查看 WaytoAGI 网站:https://www.waytoagi.com/sites?tag=8 。需要注意的是,这些内容由 AI 大模型生成,请仔细甄别。用户可根据实际需求选择合适的工具。
2024-12-02
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
ai可以和哪些领域结合,让普通的人的生活得到帮助
AI 可以与以下领域结合,为普通人的生活提供帮助: 1. 教育培训: 借助大型语言模型,人工智能生成的角色可以作为数字教师,如让牛顿亲自授课《牛顿运动定律》,让白居易为您讲述《长恨歌》背后的故事。 数字教师可以实现一对一辅导,根据学生的学习情况、兴趣和偏好提供定制化的学习计划和资源,缓解教育资源不平等的问题。 人工智能生成的虚拟角色也可以是数字陪伴,促进儿童成长。 2. 娱乐和休闲: 在影视行业,AGI 时代每个人都可以让 AI 根据自己喜好“量身定制”电影或剧集,甚至互动式地发展剧情。 在游戏领域,AGI 可以创造出高度逼真的虚拟角色,与玩家互动,使游戏世界更加生动。 在音乐、美术创作方面,AGI 能与人类艺术家协作或作为创作者助理,普通人也可以通过简短描述让 AGI 生成作品。 3. 日常生活: AGI 可以读取用户日程和邮件,自动为用户安排最优路线、预订餐厅、购买日用品等。 在购物时,AI 可以根据用户的尺寸和喜好筛选商品清单,甚至替用户做决定。 但在享受这些便利的同时,也需要警惕过度依赖带来的问题,如人类判断力和独立思考能力的退化。
2025-04-14
请问DeepSeek如何与生产型企业进行结合创造效益 ?
DeepSeek 与生产型企业的结合可以从以下几个方面创造效益: 1. 模型优化与性能提升:英伟达基于 FP4 优化的 DeepSeekR1 检查点现已在 Hugging Face 上开源。这种优化将模型Transformer 模块内的线性算子的权重和激活量化到了 FP4,适用于 TensorRTLLM 推理。每个参数从 8 位减少到 4 位,使磁盘空间和 GPU 显存的需求减少约 1.6 倍。使用 TensorRTLLM 部署时,需要支持 TensorRTLLM 的英伟达 GPU(如 B200),并且需要 8 个 GPU 来实现 tensor_parallel_size=8 的张量并行。代码利用 FP4 量化、TensorRT 引擎和并行计算,实现高效、低成本的推理,适合生产环境或高吞吐量应用。 2. 部署指南:社区伙伴 Hua 投稿的《在 Azure AI Foundry 部署 DeepSeek 大模型全指南》,手把手指导在微软 Azure AI Foundry 平台上完成 DeepSeek R1(671B)模型的完整部署流程,包含环境准备、资源管理、模型测试及 API 调用说明。 3. 为企业带来实质提升:DeepSeek 的强化学习和联网搜索能力改变了信息获取方式,从“检索—阅读—摘要”转变为“提问—获得答案”,大幅提升工作效率。其开源策略打破了技术垄断,让国内大模型能力迅速提升。在企业级部署方面,通过行业知识蒸馏和领域自适应训练,实现对企业非结构化数据的深度解析能力。特别是在实时决策支持、多模态交互及复杂知识图谱构建方面,为企业打造具备持续进化能力的数字神经中枢。这种“AI 即服务”的部署模式,重构了传统工作流效率,并通过预测性分析和认知自动化开启企业智能化的第二增长曲线。同时,还可以考虑垂直场景强化学习机制的增加,如在智能制造场景中嵌入设备故障模式自发现的奖惩机制;以及可信计算架构的升级,针对金融、医疗等高合规需求场景。
2025-04-10
CRM那些功能适合和ai结合
AIGC 在 CRM 中的应用主要包括以下几个方面: 1. 个性化营销内容创作:根据客户个人信息、购买历史、偏好等数据生成个性化且富有创意的营销文案、视觉内容等,提高营销效率和转化率。 2. 客户服务对话系统:基于 AIGC 的对话模型开发智能客服系统,通过自然语言交互解答客户咨询、投诉等,缓解人工客服压力。 3. 产品推荐引擎:借助 AIGC 生成丰富的产品描述、视觉展示等内容,结合推荐算法为客户推荐更贴合需求的产品,提升销售业绩。 4. CRM 数据分析报告生成:AIGC 可以自动生成数据分析报告,包括文字、图表、视频演示等形式,加快报告生产流程。 5. 智能翻译和本地化:提供高质量的多语种翻译及本地化服务,帮助企业打造全球化营销内容。 6. 虚拟数字人和营销视频内容生成:快速生成虚拟数字人形象、场景背景和营销视频内容,降低视频制作成本。 7. 客户反馈分析:高效分析海量客户反馈文本和多媒体信息,挖掘客户需求和潜在痛点。 以下是一些与 AI 结合的 CRM 相关产品推荐: 1. Clay:一款 AI 驱动的联系人应用软件,自动整理联系人信息,帮助管理个人和职业人脉。 2. Promptden:提示词交流和交易社区,可探索、发现和分享从 ChatGPT 和 Bard 文本提示到 MidJourney、Stable Diffusion 等 AI 生成的图像。 3. Parthean AI:财务教练,将 AI 工具与个人财务信息集成,提供定制答案,帮助用户制定预算并规划财务目标。 4. TinyStudio:免费的 Mac 应用程序,利用 M1/M2 芯片为视频和音频文件生成字幕。 5. Pagegpt:提供个性化网页设计,生成文案和图片,帮助吸引和转化顾客。 此外,工具使用或函数调用通常被视为从 RAG 到主动行为的第一个半步,为现代人工智能栈增加新的层。一些流行的原语如网页浏览(Browserbase、Tiny Fish)、代码解释(E2B)和授权+认证(Anon)已经出现,它们使 LLMs 能够导航网络、与外部软件(如 CRM、ERP)交互并运行自定义代码。例如,Omni 的计算 AI 功能利用 LLM 直接输出适当的 Excel 函数到电子表格中,然后执行计算并自动生成复杂查询供用户使用。
2025-04-09
扣子AI在中小学数学教学中可以怎么结合使用
扣子 AI 在中小学数学教学中的结合使用可以参考以下方面: 1. 自适应学习系统:例如使用像 Khan Academy 这样的平台,结合 AI 技术为学生提供个性化的数学学习路径和练习题,根据学生的能力和需求进行精准推荐。 2. 智能题库和作业辅助:利用像 Photomath 这样的工具,通过图像识别和数学推理技术为学生提供数学问题的解答和解题步骤。 3. 虚拟教学助手:使用如 Socratic 这样的应用,借助 AI 技术为学生解答数学问题、提供教学视频和答疑服务,帮助学生理解和掌握数学知识。 4. 交互式学习平台:参与像 Wolfram Alpha 这样的交互式学习平台的数学学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 此外,为小学数学课设计教育游戏时,可以考虑以下几个方面: 1. 游戏机制:选择适合小学生的游戏机制,如跳跃、追逐、搜寻等,增加游戏趣味性和参与度。 2. 游戏元素:选择数学相关的元素,如数字、运算符号、图形等,将它们融入游戏中,使学生通过游戏了解或巩固相应的数学知识。
2025-04-01
ai和office软件结合的插件有哪些
以下是一些 AI 和 Office 软件结合的插件: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可用于数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件,能通过聊天形式完成用户需求,如数据分析和格式创建。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,能进行公式生成、生成相关文本内容、执行情感分析、语言翻译等任务。 随着技术发展,未来可能会有更多 AI 功能集成到 Office 软件中,进一步提高工作效率和智能化水平。内容由 AI 大模型生成,请仔细甄别。
2025-04-01
AI与autocad ,blender结合应用
以下是关于 AI 与 AutoCAD、Blender 结合应用的相关信息: 与 Blender 结合应用: 通过联网搜索向 AI 提供最新信息,常见的 AI 助手采用此方式获取实时信息。 可通过 API 向 AI 提供自有系统数据,解决行业内部或自有系统信息接入问题。 MCP 协议为 AI 大模型与数据源集成提供统一标准,实现更可持续的架构。 可以通过一句话提示,让 Claude 自动化打开 Blender 将 2D 图片转为 3D 建模,还能基于此搭建互动网页。 有网友展示“Rodin AI”在 Blender 中通过 Blender MCP 进行自动 3D 建模的过程。 幻之境开发小组联合开发了基于 STABLE DIFFUSION ComfyUI 核心的 Blender AI 插件“无限圣杯”。 Blender 是免费开源的三维制作软件,与 ComfyUI 在工作流程上天然适配。 目前提供的内容中未涉及 AI 与 AutoCAD 结合应用的相关信息。
2025-04-01
python数据分析
以下是关于 Python 数据分析的相关内容: BORE 框架与数据分析: 自动驾驶产品经理的工作中会涉及大量数据分析,数据分析是一门独立完整的学科,包括数据清洗、预处理等。从工具和规模上,写 Excel 公式、用 Hadoop 写 Spark 算大数据等都属于数据分析;从方法上,算平均数、用机器学习方法做回归分类等也属于数据分析。 用 ChatGPT 做数据分析的工具: 1. Excel:是最熟悉和简单的工具,写公式、Excel 宏等都属于进阶用法,能满足产品的大部分需求。ChatGPT 可轻松写出可用的 Excel 宏。 2. Python:有很多强大的数据分析库,如 pandas、numpy 用于数据分析,seaborn、plotly、matplotlib 用于画图,产品日常工作学点 pandas 和绘图库就够用。一般数据分析的代码可用 Jupyter Notebook 运行,用 Anaconda 管理安装的各种包。 3. R 语言:专门用于搞统计,但 Python 通常已够用。 实践:用 Kaggle 的天气数据集绘制气温趋势折线图与月降雨天数柱状组合图: 1. 项目要求:绘制气温趋势折线图+月降雨天数柱状组合图,即双 y 轴的图形。 2. 打开数据集,分析数据:发现关键表头与数据可视化目的的关联。 3. 新建 Python 文件,开始编程:包括调用库、读取数据、数据处理、创建图表、添加标题与图例、保存并显示图形等步骤。 4. 试运行与 Debug:发现左纵坐标数据有误,重新分析数据集并修改代码,最终实现可视化目的。 关于 ChatGPT 的预设 prompt: 在特定的设置下,当发送包含 Python 代码的消息给 Python 时,它将在有状态的 Jupyter 笔记本环境中执行,有 60 秒的超时限制,'/mnt/data'驱动器可用于保存和持久化用户文件,本次会话禁用互联网访问,不能进行外部网络请求或 API 调用。
2025-04-14
数据集去哪下载
以下是一些数据集的下载途径: 对于微调 Llama3 的数据集,获取及原理可参考文档:。 鸢尾花数据集下载请点击链接:https://scikitlearn.org/stable/modules/generated/sklearn.datasets.load_iris.html 。 天气数据集下载请点击链接:https://www.kaggle.com/datasets/muthuj7/weatherdataset 。建议创建一个文件夹,将下载下来的数据集放入文件夹中。
2025-04-14
基于多维评价数据,使用大模型生成个性化的家庭教育方案的可靠性高吗?
基于多维评价数据使用大模型生成个性化的家庭教育方案具有一定的可靠性,但也存在一些限制。 一方面,大模型在教育领域展现出了强大的能力。例如,能够为教师提供源源不断的真题库和错题练习库,模仿各类考试题型有模有样。在作文批改评分方面,如 GLM 模型,具备好词好句识别评测、作文综合评价评分等功能,能够综合考虑文章的多个维度给出评价,提供个性化反馈,保证评分的一致性等。 另一方面,也存在一些挑战。对于高学段理科等复杂领域,大模型的表现可能有限。在解读学生作文中的深层次含义,如隐喻、双关等修辞技巧,以及涉及特定文化背景和历史知识的内容时,仍存在一定难度。 然而,只要提示词到位、示例清晰,大模型在生成个性化家庭教育方案方面具有很大的潜力,可以为家长和孩子提供有价值的参考和帮助。但不能完全依赖大模型,还需要结合人工的判断和调整。
2025-04-13
如何利用 AI 赋能【数据分析在企业自媒体营销中的应用综述(以抖音、小红书平台为例)】
利用 AI 赋能【数据分析在企业自媒体营销中的应用综述(以抖音、小红书平台为例)】可以参考以下方法: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,处理大量数据以快速识别关键信息,如受欢迎的产品、价格区间和销量等。 2. 关键词优化:借助 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:使用 AI 设计工具根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:利用 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:通过 AI 图像识别技术选择或生成高质量的产品图片,更好地展示产品特点。 6. 价格策略:依靠 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:利用 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:借助 AI 根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。 9. 聊天机器人:采用 AI 驱动的聊天机器人提供 24/7 的客户服务,解答疑问,提高客户满意度。 10. 营销活动分析:使用 AI 分析不同营销活动的效果,了解哪些活动更能吸引顾客并产生销售。 11. 库存管理:依靠 AI 预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:利用 AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:借助 AI 在社交媒体上找到目标客户群体,通过精准营销提高品牌知名度。 14. 直播和视频营销:利用 AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 此外,还可以参考以下具体案例: 赛博发型师:基于 AI 技术为用户提供个性化的发型设计服务,通过分析用户面部特征、个人风格和偏好,自动生成发型设计方案,用户可上传照片,系统分析后生成详细报告和效果图,报告可存档至飞书文档供专业发型师复核评估。 营销文案创作专家深度版:专为企业营销团队等设计,提供从文案框架创作到生成的一站式服务,通过分析产品信息等挖掘痛点和卖点,生成营销文案,并提供营销数据分析服务以优化策略和提高协作效率。 抖音商家客服(C 端用户)/抖音带货知识库工具(B 端商家):作为 AI 客服系统建设助手,帮助企业实现一站式 AI 客服解决方案。 在实际操作中,还可以参考以下经验: 飞书、多维表格、扣子相关应用优化及自媒体账号分析演示分享:包括直播课程相关内容,优化社区文档问题,介绍技术栈选择,强调扣子、多维表格及 AI 字段捷径结合做数据分析的优势,现场演示账号分析效果,展示同步数据的自动化流程。 高效数据分析应用搭建实操讲解:先介绍数据在多维表格执行无二次请求的优势,接着进行技术实操,从新建“数据 AI 高效数据分析”应用开始,讲解抓数据、同步数据前设置变量等步骤,包括搭建界面、做工作流、保存变量等操作,可在市场选插件。 高雁讲解数据处理及多维表格操作过程:进行操作演示与讲解,包括将用户信息发送到多维表格、调整界面显示、处理按钮点击事件等操作,还讲解了批处理、代码节点等内容。
2025-04-13
现在做数据分析比较厉害的ai是什么
目前在数据分析方面表现较为出色的 AI 工具包括智谱清言、Open Interpreter 等。 AI 在数据分析中具有以下优势: 1. 降低入门门槛:过去学习数据分析需要掌握编程语言和专业知识,现在通过 AI 工具,门槛大大降低。 2. 规范的分析流程:对于初学者来说,AI 直接做的数据分析比他们自己第一次做的更好,其规范化流程更严谨,结果更可靠。 3. 自动化处理:会自动进行模型选择以匹配数据,还能根据 log 检查错误并改正源代码。 4. 减少重复性工作:重复性劳动可先交给 AI 做,人类用户只需做验证和检查结果。 实际应用的工具方面,GPT4 可以帮助建立和评估机器学习模型,Claude 等大语言模型可以进行数据分析和可视化,Open Interpreter 等工具可以辅助编程和数据处理。 使用时的建议包括:对 AI 结果要进行严格验证,不要完全依赖 AI,要保持独立思考,对 AI 的能力边界有清晰认识,合理使用以提高工作效率。同时,AI 应被视为辅助工具而非完全替代品,人类在整个过程中仍起主导作用和具有判断力。
2025-04-11
用AI做数据分析
以下是关于用 AI 做数据分析的相关内容: 流程: 逻辑流程图如下:上面说的两种方式对应流程图的上下两个步骤,红色部分是重点。 1. SQL 分析:用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验是 SELECT 类型的 SQL,其他操作如 UPDATE/DELETE 绝不能通过!!校验通过后执行 SQL 返回结果数据。再将数据传给 GPT(附带上下文),让 AI 学习并分析数据,最后输出分析结论和建议,和结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。 2. 个性化分析:用户上传文件,如有需要可以简单描述这是什么数据、字段意义或作用辅助分析。前端解析用户上传的文件,再传给 GPT 分析数据,后续步骤与上面一致。 工具和成功案例: 大概思路是这样: 1. 提供大模型可以访问的数据源或者上传数据表格。 2. 通过提示词说清楚需要以哪些维度分析数据,分析完成的结果要以什么格式输出。 3. 观察生成结果,迭代和优化提示词,最终满意后导出结果。 相关问题和技巧: 1. 关于“大模型幻觉”,目前没有办法消除,这本身就是大模型特性。可以通过其他第三方信息源和知识来检验生成是不是在胡说八道。 2. 结构化思维提高对话能力,在 AGI 搜索结构化三个字,有相关文章。上下文 token 长度如果指的是大模型的记忆窗口的话,没法延长,是设定好的。 案例分析: 以“用 ai 做数据分析,和爆款卖点分析”为例,这一创意将 AI 技术与商业洞察深度融合,展现了数据驱动决策的前瞻性。通过 AI 对海量用户行为、评论、竞品数据的挖掘,不仅能快速定位爆款产品的共性特征(如高频关键词、用户情感倾向),还能发现传统方法难以捕捉的潜在需求(例如隐藏的消费场景或未被满足的功能痛点)。尤其是结合时序分析预测市场趋势,为企业提供了动态调整产品策略的敏捷性,真正实现了从“经验决策”到“智能决策”的跨越。若想进一步突破,可考虑以下优化方向: 1. 多模态数据融合:除文本数据外,整合图片/视频的视觉分析(如通过 CV 技术识别爆款产品的外观设计共性),或结合语音数据(如直播带货中的实时用户反馈),构建更立体的卖点模型。 2. 因果推理增强:当前 AI 多聚焦相关性分析,可引入因果发现算法(如 DoWhy 框架),区分“真实卖点”与“伴随现象”。例如某款手机壳销量高是因为颜色,还是因与热门手机型号捆绑销售? 3. 个性化适配引擎:根据企业自身资源禀赋(供应链能力、品牌定位)对 AI 建议进行权重优化。例如小型厂商可优先推荐“低改造成本的高需求卖点”,避免直接对标头部品牌的资源密集型方案。 4. 对抗性验证机制:构建虚拟消费者模拟环境,对 AI 提出的卖点进行 A/B 压力测试,提前评估市场风险,避免出现“数据过拟合导致的伪创新”。
2025-04-11