Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

把照片处理成动画风格

Answer

以下为您介绍一些将照片处理成动画风格的相关信息:

Magnific AI 推出了照片风格化功能,能够将任意照片转换成任意风格,并且可以控制样式数量和结构完整性,适用于多种用例。您可以通过以下链接了解更多:https://x.com/imxiaohu/status/1769710736132227434?s=20

SDXL Prompt Styler 是一款可以把图片转化成近百种风格的插件。比如将原始的手绘风格图像转化为其他风格时,需要注意一些因素。如包含 canny 控制和跳过 canny 控制会产生不同的风格转化效果。若想把图片转成漫画风格并较好保留人物外轮廓,加入 canny 控制能更好还原人物原本造型。有时直接使用插件内置预设的提示词组合可能无法达到理想效果,需要根据需求添加更多相关关键词。例如将图片转成印象派风格时,在预设关键词基础上添加 impressionism、monet、oil painting 等,能使结果更接近印象派风格。此外,该工作流结合 Vid2Vid Style Transfer with IPA & Hotshot XL 工作流,还可以较好地实现视频不同风格的稳定转绘。

Animagine XL 3.1 是动漫主题文本到图像模型的更新发布,扩展了对广泛动漫风格的理解,提高了生成图像的质量,解决了过曝问题,新增了美学标签,优化了结果准确性。您可以通过以下链接获取更多信息:https://cagliostrolab.net/posts/animagine-xl-v31-release 、https://huggingface.co/cagliostrolab/animagine-xl-3.1

Content generated by AI large model, please carefully verify (powered by aily)

References

XiaoHu.AI日报

?Xiaohu.AI日报「3月18日」 ✨✨✨✨✨✨✨✨1⃣️? Magnific AI推出照片风格化功能:任意照片转换成任意风格。控制样式数量和结构完整性,适用于多种用例。? https://x.com/imxiaohu/status/1769710736132227434?s=202⃣️?《滚石》报道Suno AI与ChatGPT合作创作的歌曲:Suno AI生成的音乐,ChatGPT提供歌词和标题。模仿独奏原声密西西比三角洲蓝调,讲述一个悲伤的AI故事。? https://rollingstone.com/music/music-features/suno-ai-chatgpt-for-music-1234982307/? https://soundcloud.com/rs-539916550/soul-of-the-machine? https://x.com/imxiaohu/status/1769702028425744427?s=203⃣️?️ Animagine XL 3.1,动漫主题文本到图像模型更新发布:扩展对广泛动漫风格的理解,提高生成图像质量。解决过曝问题,新增美学标签,优化结果准确性。? https://cagliostrolab.net/posts/animagine-xl-v31-release? https://huggingface.co/cagliostrolab/animagine-xl-3.1

XiaoHu.AI日报

?Xiaohu.AI日报「3月18日」 ✨✨✨✨✨✨✨✨1⃣️? Magnific AI推出照片风格化功能:任意照片转换成任意风格。控制样式数量和结构完整性,适用于多种用例。? https://x.com/imxiaohu/status/1769710736132227434?s=202⃣️?《滚石》报道Suno AI与ChatGPT合作创作的歌曲:Suno AI生成的音乐,ChatGPT提供歌词和标题。模仿独奏原声密西西比三角洲蓝调,讲述一个悲伤的AI故事。? https://rollingstone.com/music/music-features/suno-ai-chatgpt-for-music-1234982307/? https://soundcloud.com/rs-539916550/soul-of-the-machine? https://x.com/imxiaohu/status/1769702028425744427?s=203⃣️?️ Animagine XL 3.1,动漫主题文本到图像模型更新发布:扩展对广泛动漫风格的理解,提高生成图像质量。解决过曝问题,新增美学标签,优化结果准确性。? https://cagliostrolab.net/posts/animagine-xl-v31-release? https://huggingface.co/cagliostrolab/animagine-xl-3.1

工作流分享01 | ​SDXL Prompt Styler,可以把图片转化成近百种风格的插件

因为这张原始的图像是手绘风格,手绘线条和折纸风格,两种风格本身是互斥的。下面分别是包含canny控制和跳过canny控制的风格转化效果。可以看出canny(线稿边缘)的控制因素太强,结果就会和折纸风偏差较大。当然,如果你想把它转成漫画的风格,想比较好的保留人物的外轮廓。加入canny的控制,才能更好的还原人物原本的造型。另外,有时候直接用SDXL Prompt Styler插件内置预设的提示词组合不一定能达到想要的效果。例如开局的驴,直接style选择转成artstyle-impressionist(印象派)的风格,结果如下,还是非常写实:我们看一下插件内置对印象派风格预设的关键词,画红线的这些关键词,看起来还不太够表达印象派的风格。这个时候,需要在prompt中再加一些印象派风格的关键词比如impressionism,monet,oil painting,得到的结果就会更接近印象派的风格了。四、工作流拓展最后,这条工作流结合Vid2Vid Style Transfer with IPA & Hotshot XL工作流,可以比较好的实现视频不同风格的稳定转绘。效果如下:关闭观看更多更多退出全屏切换到横屏模式

Others are asking
纯AI打造的儿童绘本动画剧集《森林童话会》即将上线
很抱歉,目前没有关于纯 AI 打造的儿童绘本动画剧集《森林童话会》的更多详细信息。
2025-04-15
用通俗易懂的动画描述人工智能工作原理
人工智能的工作原理可以通过以下动画来描述: 在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。 然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。 比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。 总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。
2025-04-14
comfyui动画片工作流怎么构建
构建 ComfyUI 动画片工作流的步骤如下: 1. 打开 Comfyui 界面后,右键点击界面,找到 Comfyui LLM party 的目录。您可以学习手动连接节点来实现最简单的 AI 女友工作流,也可以将工作流文件拖拽到 Comfyui 界面中一键复刻提示词工程实验。 2. 从 ollama 的 github 仓库找到对应版本并下载。启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。 3. 若 ollama 连接不上,很可能是代理服务器的问题,请将 127.0.0.1:11434 添加到不使用代理服务器的列表中。 此外,还有以下相关工作流搭建的信息供您参考: 1. 搭建艺术二维码工作流:打开 ComfyUI 导入相应工作流。工作流所用到的节点包括大模型节点(可选择如 AWPainting、primemixanything、xxmix9realistic v40 等,并提供了相应链接)、关键词节点、Lora 节点、ControlNet 节点(选用 qrcode_monster V2 版本,下载链接:https://huggingface.co/monsterlabs/control_v1p_sd15_qrcode_monster/tree/main/v2 )、采样器节点(Step 选择高步数,35 50 即可,采样器默认的 euler a/dpmpp 2m sde )。 2. 搭建 ComfyUI 基础工作流:从零开始搭建时,首先准备加载大模型的节点,在工作区鼠标右键点击,选择 Add Node > 选择 loaders > 选择 Load Checkpoint,并选择对应的模型。然后加载 Conditioning(条件),在工作区鼠标右键点击,选择 Add Node > 选择 Conditioning > 选择 CLIP TEXT Encode,输入正反向提示词。添加采样器时,部分参数设置与 WEB_UI 有所不同,如 seed 值只有固定、随机、每次增加、每次减少这四个选项,采样器和调度器是分开的。
2025-04-13
动画设计AI
以下是为您提供的有关动画设计 AI 的相关内容: 和 AI 一起做动画:作者介绍了几类工具与对应教程,制作了一个 AI 风格迁移视频,在短视频平台爆火。工具涉及 Runway Gen1、Stable Diffusion + EbSynth、Rerender、Warpfusion 等。作者为,原文发布时间 2023.07,入库时间 2023/10/18。 图片转动画|Ai 帮我 1 分钟做 32 个动画|AIGC:今天教大家用 Ai 把图片转动画的方法,用到的 Ai 工具是 ANIMATED DRAWINGS,作者为,入库时间 2023/10/26。 以下是一些相关的 AI 网站: ZMO.AI:只需单击一个按钮,即可从文本或图像生成令人惊叹的 AI 艺术、图像、动漫、逼真的照片。公司名为 ZMO,网站分类为图像设计,链接为,添加时间 2023/05/25。 稿定设计 AI:稿定 AI 是一款 AI 人工智能在线设计工具,简单易用。公司名为稿定,分类为图像设计、图像编辑、去除背景,链接为,添加时间 2023/05/25。
2025-04-11
coze怎么搭建矢量图动画
以下是搭建矢量图动画的 coze 步骤: 1. 创建工作流: 点击工作流后面的“➕”来添加一个工作流。 点击创建工作流。 给工作流起名字和描述,名字只能用字母、数字和下划线,描述清晰避免误会。 2. 初始化的工作流: 左边有各种插件和搭建 Agent 的工具,可通过点击加号或直接拖拽使用。插件一般有参数说明,之后只介绍需要使用的插件,其他可自行尝试。 初始化后会生成开始模块和结束模块,默认生成且有且只有一个,只能以开始模块启动,结束模块终结工作流。 可观看工作流的视频教程: ,注意视频中有个小 bug,使用 text2image 时最后的 prompt 参数设置错了,可自行调整。 3. 需求分析:主要需求是国内可直接使用且能批量生产,选用扣子搭建工作流。 批量生成句子:不同于手动搭建,一次性生成的句子都进行生成图片处理,建议一次不要生成太多,设置为一次生成五句。 句子提取:把生成的句子一个一个提取出来,针对每个句子画图。 图片生成:根据生成的句子,结合特有画风等描述绘图。 图片和句子结合:扣子工作流本身支持 Python 代码,但环境缺少画图、图片处理的包,可替换成搞定设计的方式处理图片,会 PS 脚本效果也不错。 4. 扣子使用链接分享: 试用链接分享:豆包使用链接未发布,扣子使用链接:https://www.coze.cn/s/iMCq73wp/ 。 效果展示:可自行查看。 5. 批量生产图片:可观看视频演示: 及效果展示。 总结:第一次用录视频方式展示,怕截图说不清楚,文字处理及批量放入 excel 文件操作可用 ai 辅助,有问题可留言。
2025-04-08
动画方面的AI
以下是关于动画方面的 AI 相关信息: AI 漫画 Anifusion: 网址:https://anifusion.ai/ ,Twitter 账号:https://x.com/anifusion_ai 功能: AI 文本生成漫画:输入描述性提示生成漫画页面或图像。 直观的布局工具:提供预设模板,可自定义漫画布局。 强大的画布编辑器:在浏览器中优化和完善生成的作品。 多种 AI 模型支持:高级用户可访问多种 LoRA 模型实现不同风格和效果。 商业使用权:用户对创作作品拥有完整商业使用权。 使用案例: 独立漫画创作:帮助无绘画技能的艺术家实现故事创作。 快速原型设计:专业艺术家快速可视化故事概念和布局。 教育内容:为课程和演示创建视觉内容。 营销材料:制作动漫风格促销漫画或活动分镜脚本。 粉丝艺术和同人志:基于喜欢的作品创作衍生作品。 优点:非艺术家也能轻松创作漫画;基于浏览器,无需安装额外软件;快速迭代和原型设计能力;拥有创作的全部商业权利。 3 月 12 日 AI 资讯中的动画相关: 【AI 3D】 BlenderMCP:与 Claude AI 沟通,在 Blender 实现快速 3D 建模 MIDI:单幅图像到 3D 场景生成 Move AI:更新动作捕捉能力,提出 Gen 2 Spatial Motion 【AI 写作】 MMStoryAgent:AI 多模态故事生成系统 【AI 视频】 VACE:阿里推出一体化视频创作和编辑技术 VideoPainter:腾讯开源视频编辑技术 Wonder Dynamics:推出摄像机轨道(Camera Track)和清洁板(Clean Plate)功能 【其他】 OpenAI:为开发者推出一套 AI Agent 开发套件 R1Omni:阿里情感识别模型,通过视频识别情感 Luma AI:发布新的预训练范式 IMM,旨在突破算法瓶颈,提高生成预训练算法的性能 Manus:宣布与阿里通义千问团队达成战略合作 游戏中的生成式 AI 革命中的动画相关: 生成纹理:几个团队正在追求根据文本或图像提示轻松生成纹理的机会,包括 BariumAI(https://barium.ai/)、Ponzu(https://www.ponzu.gg/)和 ArmorLab(https://armorlab.org/)。 动画生成与处理:涉足从视频中捕捉动画及给现有动画应用滤镜的公司包括 Kinetix(https://www.kinetix.tech/)、DeepMotion(https://www.deepmotion.com/)、RADiCAL(https://getrad.co/)、Move Ai(https://www.move.ai/)和 Plask(https://plask.ai/)。
2025-03-21
旧照片修复
旧照片修复是 AI 绘画领域中的一项重要应用。以下是关于旧照片修复的一些相关信息: 以往解决旧照片修复问题往往需要搭建极为复杂的工作流,现在 GPT 4O 只需要一句话就可以实现。 图像放大修复是 AI 绘画领域必不可少的一部分,利用 AI 技术进行图像修复,可以让模糊的旧照片重现清晰,保留珍贵回忆。例如,以前手机拍摄的低分辨率图片,放到如今智能手机上观看会非常模糊,这时可用 AI 技术进行高清修复。 ComfyUI 结合特定工作流,只需十几个基础节点就能实现较好的老照片修复效果。 参数调节方面,一般先确认放大倍数,然后根据出来的图片调整 controlNet 的强度。 Flux.1dev ControlNet 是为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,采用合成复杂数据退化方案进行训练,目的是让模型学会处理各种真实世界中可能遇到的图像退化情况。 Flux Ultimator 能增加小细节,增强色彩,在 0.1 的强度设置下也有显著效果,能顺利集成到工作流程中,与其他 LORA 结合使用时强度需小于 0.5。 若图片质量细节不够,可选择 T5 Clip 的 fp16 版本。
2025-04-14
如果改变照片中人物的表情
要改变照片中人物的表情,可以通过以下几种方式: 1. 在使用 SD 脸部修复插件 After Detailer 时,输入如“伤心、流泪”这样针对表情的正负提示词,人物的表情会进行相应改变。但输入“带着墨镜”可能没有效果。 2. 使用 Magic Brush 工具,选中人物的眉毛、眼睛、嘴唇等部位,通过调节轨迹的方向来实现合理的表情变化。 3. 在 Midjourney V6 中,若遇到无法改变角色脸部等问题,可按照以下步骤排除故障:首先确保写了强有力的提示以建议新的姿势、风格或细节;若角色抗拒被操纵,可能是 cref 图像支配了提示,可通过使用 cw进行处理,尝试将提示与较低的 cref 权重一起使用,如 cw 60,按照特定步骤操作,还可考虑使用 来恢复面部区域。
2025-04-14
老照片修复
老照片修复是一个具有一定复杂性但通过 AI 技术可以实现较好效果的领域。以下是一些相关信息: 在解决老照片修复问题上,以往 AI 往往需要搭建极为复杂的工作流,而现在 GPT 4O 只需要一句话就可以实现。 对于老照片上色,可启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能,在显存不够的情况下将图片放大到足够倍数。 对于复杂的老照片,如人物多、场景复杂、像素低的情况,可在 PS 里进行角度调整和照片裁切,然后上色。若直接上色效果不佳,可放弃人物服装颜色指定,只给场景方向,让 AI 自行决定。还可加入第二个 controlnet 来控制颜色,使用 t2ia_color 模型,给出简单关键词如“蓝天、绿树、灰石砖”。 ComfyUI 老照片修复结合 Flux Controlnet Upscale 工作流,以前的工作流较复杂,现在只要十几个基础节点就能实现同样甚至更好的效果。一般先确认放大倍数,再根据图片调整 controlNet 的强度。Flux.1dev ControlNet 是为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,采用特定训练方式处理各种真实世界中可能遇到的图像退化情况。Flux Ultimator 能增加小细节和放大色调丰富性、深度,在 0.1 强度设置下有显著增强效果,能顺利集成到工作流程中,与其他 LORA 结合使用时强度需小于 0.5。若图片质量细节不够,可选择 fp16 版本的 T5 Clip。
2025-04-14
老照片变高清
以下是使用 AI 将老照片变高清的步骤: 1. 给老照片上色:为做到颜色与内容统一,可启用 cutoff 插件,按顺序设置好颜色提示词。不了解该插件的可参考文章。 2. 使照片人脸变清晰:将照片放入后期处理,使用 GFPGAN 算法,可参考文章。但此步骤无法使头发、衣服等元素变清晰。 3. 放大照片:将图片发送到图生图中,打开 stableSR 脚本,放大两倍。此放大插件是所有插件中对原图还原最精准、重绘效果最好的,可参考文章。切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可不写以免干扰原图。 4. 显存不够时:启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能帮助放大图片。 5. 处理复杂照片:对于人物多、场景复杂、像素低的照片,可先在 ps 里调整角度和裁切,然后上色。若直接上色效果不佳,可放弃人物服装颜色指定,只给场景方向,让 AI 自行决定。还可加入第二个 controlnet 控制颜色,使用 t2ia_color 模型,给出简单关键词,如“蓝天、绿树、灰石砖”。最后进行脸部修复和放大。
2025-04-13
如何让老照片变清晰
以下是让老照片变清晰的方法: 1. 将照片放入后期处理中,使用 GFPGAN 算法使人脸变清晰。您可以参考文章。 2. 将图片发送到图生图中,打开 stableSR 脚本,放大两倍。此放大插件是所有插件中对原图还原最精准、重绘效果最好的。您可以参考文章。 3. 切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可以不写以免对原图产生干扰。 4. 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染的功能,能在显存不够的情况下将图片放大到足够的倍数。 5. 对于复杂的照片,可先在 ps 里面进行角度调整和照片裁切,然后使用上述步骤进行上色。若直接上色效果不佳,可放弃人物服装的颜色指定,只给场景方向,让 AI 自行决定。还可加入第二个 controlnet 来控制颜色,使用 t2ia_color 的模型,给出简单的关键词,如“蓝天、绿树、灰石砖”。 另外,进行超清无损放大修复需要准备以下文件和操作: 1. 使用 StabilityAI 官方的 Stable Diffusion V2.1 512 EMA 模型,放入 stablediffusionwebui/models/StableDiffusion/文件夹中。 2. 将 StableSR 模块(约 400M 大小)放入 stablediffusionwebui/extensions/sdwebuistablesr/models/文件夹中。 3. 将 VQVAE(约 750MB 大小)放在 stablediffusionwebui/models/VAE 中。
2025-04-13
老照片修复
老照片修复是一项具有一定复杂性的工作,但随着 AI 技术的发展,实现方式也在不断改进和优化。 以往,AI 在解决老照片修复问题时,往往需要搭建极为复杂的工作流。而现在,例如 GPT 4O 只需要一句话,就可以实现部分修复需求。 在具体的修复方法中,如使用 SD 进行老照片上色,可以启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染的功能,在显存不够的情况下将图片放大到足够的倍数。对于复杂的老照片,如人物多、场景复杂、像素低的情况,可以先在 ps 里面进行角度调整和照片裁切,然后进行上色。若直接上色效果不佳,可放弃人物服装的颜色指定,只给场景方向,让 AI 自行决定,还可加入第二个 controlnet 来控制颜色。 ComfyUI 老照片修复结合 Flux Controlnet Upscale 工作流,以前复杂的工作流现在只要十几个基础的节点就能实现同样的效果甚至更好。其中涉及参数的调节,一般先确认放大的倍数,然后根据出来的图片来调整 controlNet 的强度。Flux.1dev ControlNet 是为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,采用合成复杂数据退化方案进行训练。Flux Ultimator 能增加小细节和放大色调的丰富性和深度,在 0.1 的强度设置下也能有显著增强效果,能顺利集成到工作流程中。若图片质量细节不够,T5 Clip 选择 fp16 的版本。
2025-04-11
风格化mj提示词
以下是关于 Midjourney 风格化提示词的相关内容: 仿照 GPTs 里的 MJ prompt 改的提示词可用于 coze 或其他国内的 agent。MJ 对节点无要求,画插图可不切节点,不挑模型,提示词可让 agent 补全润色。例如:“一个巨大鲸鱼头部的特写,鲸鱼的眼睛显示疲惫的神情,一个小女孩站在鲸鱼的旁边抚摸鲸鱼的脸,小女孩占画面比例很小,体现鲸鱼的巨大,吉卜力工作室风格”的提示词为“A closeup of a huge whale's head with its tired eyes. A little girl in red dress stands beside the whale, gently touching its face. The girl takes up a small portion of the frame, emphasizing the whale's enormity. Created Using: soft colors, gentle lighting, wideangle lens, Ghibli Studio style ar 16:9 style raw niji 6”。 Midjourney V6 更新风格参考命令 2.0“sref”,常见问题如想要的新图像和 sref 图像差异大时,MJ 给出了三种办法: 修改提示:语义细节太多时,编写提示用可取细节替换不需要的;风格不够时,修改提示使其更符合追求的风格。 更改“sw”值:语义细节太多时,将“sw”从默认值 100 降低;风格不够时,将“sw”从默认值 100 提高。 使用小权重强调或弱化不需要的画布元素。 参数总览与举例: “No 否定提示”:在提示词末尾加上“no”可让画面中不出现某些内容,如“no plants”表示图像中不出现植物。 “Quality 生成质量”:在提示词后加上“quality”或“q”参数可更改生成图像花费时间和质量,高质量需更长处理时间和更多 GPU 分钟数。 “Seeds 种子值”:MJ 依靠噪点团起点“Seed”创建视觉噪音场生成初始图像,每个图像种子值随机生成,可指定,v4 模型中相同种子值和提示词产生相同图像结果,可用于生成连贯一致的人物形象或场景。 “Stylize 风格化”:使用 stylize 参数可让 Midjourney 生成更具艺术色彩、构图和形式的图像,低风格化值生成的图像与提示密切相关但艺术性较差,高风格化值产生的图像艺术性强但与提示关联性少,AI 自由发挥空间大。
2025-04-11
有没有那种可以模仿抖音百万博主爆款文案的写作风格以及写作模板的AI
以下是一些关于模仿抖音百万博主爆款文案写作风格和模板的 AI 相关内容: 1. 画小二:Coze 工作流提供了一系列针对抖音热门视频转小红书图文的配置,包括整体结构图、各模块参数配置(如开始模块、Get_Video 模块、LinkReaderPlugin 模块、标题大模型、内容大模型、图片 Prompt 大模型、文生图 ImageToolPro 模块等)的详细说明。同时,在小红书标题和正文写作方面,具备多种技能,如采用二极管标题法创作吸引人的标题,产出口语化、简短且含适当 emoji 表情和 tag 标签的 200 字左右正文。 2. 夙愿:介绍了使用 GPT 模仿创作内容的万能思路,特别是在 Prompt 编写中的数据清洗部分。指出对标博主的文案模板化,数据清洗有人工和自动两种方法,推荐使用 GPT4 的数据分析器进行自动清洗。 3. AIIP 共学模版自媒体全域运营:包含对标笔记的详细信息,如标题、作者、详情、账号、主页、封面、视频、文案等。以“Deepseek+即梦,包装设计步骤来啦”为例,介绍了利用 Deepseek 和即梦进行设计的步骤,并表示希望对用户有帮助。
2025-04-11
文章风格提取
以下是关于文章风格提取的相关内容: 该提示词用于抽取不同风格文章的核心要素,抽取到的字段可作为 prompt,结合指定主题进行风格迁移。整体创作思路见文末 PDF。 具体使用方法为:拷贝文章风格提取提示词,输入给任意大模型,随后提供要抽取的文本。 已抽取的一些风格参考包括万维钢风格、史铁生《我与地坛》文风、李娟《我的阿勒泰》文风、许倬云《说中国》文风、鲁迅《狂人日记》文风、王小波《万寿寺》文风、飞书多维表格工作流自动化抽取等。 使用 DeepSeek V3 进行实验时,智能体地址为 https://www.coze.cn/s/VM9pUn9HdmA/ 。初级使用方法是输入公众号文章标题或内容,智能体会自动提取相关信息,默认风格是“炫彩”。高级使用方法需按照要求输入几个要素,如标题、副标题、分享封面、标签、风格等。
2025-04-11
你是否可以通过照片生成乐高风格人像
可以通过照片生成乐高风格人像。例如,可以使用相关的工具和技术,像在一些图像生成软件中,通过输入照片并设置相关的风格参数,如选择乐高风格,来实现生成。同时,在生成过程中可以像指挥设计师一样,与工具进行反复交流,对不满意的地方进行修改调整。广义上的像素艺术还包括立体像素艺术(类似乐高那种),相关的咒语关键词如“Pixel art”,生成思路可以是一家像素艺术风格的餐厅等。但需要注意的是,某些工具可能无法创建真正的纯净矢量图像的像素艺术,只是将图像“像素化”的像素艺术。
2025-04-11
扣子如何改变回复的语言风格
要改变回复的语言风格,可以参考以下方法: 1. 对于风格类的 Bot,提示词中的 Fewshot 对输出风格影响较大,可先找预期相关人的风格示例并修改。 2. 在 Examples 里使用特定开头的词,如“Fword”,开头字符会显著影响输出内容。 3. 加星号的部分代表加粗,根据自注意力机制可提升提示词中的关键词效果。 4. 能力方面可使用自带的 Bing 搜索和图片识别,根据需求选择,如避免 Webpilot 以免语气变温和。 5. 可根据需求决定是否加入绘画功能。 6. 防护词可参考,但没有完美的防御提示词。 7. 回复风格可来自自己的群聊机器人的风格嫁接。 8. 最后加入一些小 Tips 进一步提升个性化效果。 在场景方面,可以问 Bot 对内容的看法,或让其帮忙分析事情以获得更接地气的表述。 另外,编写提示时: 简单任务场景: 设定人物,描述 Bot 所扮演的角色或职责、回复风格。 描述功能和工作流程,约定 Bot 在不同场景下的回答方式,强调调用工具以保证回复准确性,也可为 Bot 提供回复格式示例。 指示 Bot 在指定范围内回答。 复杂任务场景:推荐使用结构化格式编写提示,扣子支持将 Bot 的提示自动优化成结构化内容,可直接使用或修改。
2025-04-09
吉卜力风格的生成是哪个ai
以下 AI 工具可以生成吉卜力风格的图像: Midjourney:仿照 GPTs 里的 MJ prompt 改了一版提示词,可以用在 coze 或者其他国内的 agent 里。不是很挑模型,基本上都可以用。方便的地方在于如果提示词懒得写全,可以让 agent 直接帮助补全润色,黏贴就可以。例如生成一个巨大鲸鱼头部的特写,鲸鱼的眼睛显示疲惫的神情,一个小女孩站在鲸鱼的旁边抚摸鲸鱼的脸,小女孩占画面比例很小,体现鲸鱼的巨大,吉卜力工作室风格的提示词为:A closeup of a huge whale's head with its tired eyes. A little girl in red dress stands beside the whale, gently touching its face. The girl takes up a small portion of the frame, emphasizing the whale's enormity. Created Using: soft colors, gentle lighting, wideangle lens, Ghibli Studio style ar 16:9 style raw niji 6(画面需要改成了 niji) Sora:生成过左半部分为超现实主义风格,细腻刻画皮肤纹理与光影变化,右半部分为吉卜力动画风格,柔和笔触呈现幻想世界魅力的震撼图像。
2025-04-08
处理 excel 表格 的 AI 工具
以下是一些可用于处理 Excel 表格的 AI 工具: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的整合了 Word、Excel、PowerPoint 等办公软件的 AI 工具,通过聊天形式,用户告知需求后,Copilot 会自动完成任务,如数据分析或格式创建。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 5. Ajelix:可处理 Excel 和 Google Sheets 表格的 AI 工具,链接为。 6. FormX.ai:能够自动从表格和文档中提取数据的 AI 工具,链接为。 随着技术的不断发展,未来可能会有更多 AI 功能被集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。内容由 AI 大模型生成,请仔细甄别。
2025-04-11
LLM模型响应时间较长,如何处理超时时间问题
处理 LLM 模型响应时间过长导致的超时问题,可以考虑以下方法: 1. 参数有效调整:这是一种新颖的微调方法,通过仅训练一部分参数来减轻微调 LLM 的挑战。这些参数可能是现有模型参数的子集,或者是一组全新的参数,例如向模型添加一些额外的层或额外的嵌入到提示中。 2. 优化提示设计:采用合适的提示方法,如零样本提示、一次性提示、Fewshot prompting 等。零样本提示是只给出描述任务的提示;一次性提示是让 LLM 执行任务的单个示例;Fewshot prompting 是让 LLM 执行任务的少量示例。同时,可以使用结构化模式设计提示,包含上下文、问题示例及相应答案等组件,以指示模型应如何响应。 3. 避免频繁调整某些参数:尤其是 Top K 和 Top P,不需要经常对其进行调整。 4. 关注模型响应质量:即使有良好的提示设计,模型输出仍可能不稳定,需要持续关注和优化。 5. 考虑成本和时间:微调大型模型可能耗时且成本高,为大模型提供服务也可能涉及额外麻烦和成本,需要综合评估和优化。
2025-04-11
cursor 长文档处理长文档
以下是关于 Cursor 长文档处理的相关信息: UI 用户界面: 当 Cursor 仅添加其他文本时,补全将显示为灰色文本。如果建议修改了现有代码,它将在当前行的右侧显示为 diff 弹出窗口。 您可以通过按 Tab 键接受建议,也可以通过按 Esc 键拒绝建议。要逐字部分接受建议,请按 Ctrl/⌘→。要拒绝建议,只需继续输入,或使用 Escape 取消/隐藏建议。 每次击键或光标移动时,Cursor 都会尝试根据您最近的更改提出建议。但是,Cursor 不会始终显示建议;有时,模型预测不会做出任何更改。 Cursor 可以从当前行上方的一行更改为当前行下方的两行。 切换: 要打开或关闭该功能,请将鼠标悬停在应用程序右下角状态栏上的“光标选项卡”图标上。 @Docs: Cursor 附带一组第三方文档,这些文档已爬取、索引并准备好用作上下文。您可以使用@Docs 符号访问它们。 如果要对尚未提供的自定义文档进行爬网和索引,可以通过@Docs>Add new doc 来实现。粘贴所需文档的 URL 后,将显示相应模式。然后 Cursor 将索引并学习文档,您将能够像任何其他文档一样将其用作上下文。 在 Cursor Settings>Features>Docs 下,您可以管理已添加的文档,包括编辑、删除或添加新文档。 @Files: 在 AI 输入框中(如 Cursor Chat 和 Cmd K),可以使用@Files 引用整个文件。如果继续在@后键入,将在策略之后看到文件搜索结果。 为确保引用的文件正确,Cursor 会显示文件路径的预览,这在不同文件夹中有多个同名文件时尤其有用。 在 Cursor 的聊天中,如果文件内容太长,Cursor 会将文件分块为较小的块,并根据与查询的相关性对它们进行重新排序。
2025-04-10
关于处理法律事务的提示词
以下是关于处理法律事务的提示词相关内容: 1. 陶力文律师观点:不能期待设计一个完美的提示词让 AI 百分百给出完美答案,应将提示词视为相对完善的“谈话方案”,成果在对话中产生。对于尝试 AI 的朋友,建议多给 AI 几轮对话修正的余地,不要期望一次输入提示词就得到想要的东西。陶律师习惯用的大模型是 KIMI,也可使用 GPT、文心一言、豆包等。其个人 Prompt 库取名为【元始洞玄灵宝枢机 AI 符法集成道藏】,库里每篇灵机符箓命名为【敕令 XXXX】。【箓】描述符箓整体所属、版本,【符】关键,涉及具体操作步骤和方法,开头赋予 AI 身份划定边界。 2. 潘帅观点:律师常用 Prompt 场景包括案例检索和类案检索。案例检索最好使用法律行业垂类的 AI 产品,通用型 AI 可能存在问题。案例检索的 Prompt 指令词结构为【案例领域或类型+明确需要查找的重点内容+查找案例的目的+其他希望 AI 做的事情】,并列举了多个具体例子,如商标侵权案件中“混淆可能性”标准的判例检索等。
2025-04-03
目前的大模型ai工具中 你觉得文本处理 写作这方面那个工具最强 最像人
目前在大模型 AI 工具中,对于文本处理和写作方面,以下是一些相关信息: 生成式人工智能的工作原理:在整体的人工智能领域,监督学习用于标记事物,一直占据很大比例。现在生成式 AI 快速崛起,强化学习与无监督学习也是重要工具。生成式 AI 由监督学习技术搭建,大语言模型使用监督学习不断预测下一个词语来生成文本,这需要大量数据。 大语言模型的应用:运用大语言模型写故事、修改文本很有用,但它可能编造故事产生错误信息,需要鉴别信息准确。网络搜索与大语言模型的区别在于网络搜索可追寻信息来源,大语言模型能提供建议与策略。 写作方面:使用大模型工具如 LLM 来写作,集思广益、头脑风暴非常有用。网页版聊天时提供更多信息,翻译也可使用 LLM,但其效果受网络文本量影响。 推荐的大模型工具:chatGPT 4.0、kimichat、智谱清言 4 等。一些国产模型如智谱和文心可以文生图。 相关工具:除了 Snapbox 外,还有 OpenCAT 等类似工具可供选择。有多种文本处理与总结工具,如 kimi 网页总结助手、ChatHub 等,以及翻译插件与 AI 对话插件、沉浸式翻译插件等。Memo Al 可以对音频视频进行转文字、字幕翻译、语音合成等,并由多种 AI 模型提炼内容精华总结、生成思维导图。 综合来看,不同的大模型工具在文本处理和写作方面各有特点,难以简单地确定哪一个最强、最像人,具体取决于您的需求和使用场景。
2025-04-01
长文本处理
以下是关于长文本处理的相关信息: 通义千问发布了一个模型并开源了两个模型,其中一个在长文本处理方面有显著提升。 开源的 Qwen2.51M 大模型推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT4omini,同时开源推理框架,在处理百万级别长文本输入时可实现近 7 倍的提速,首次将开源 Qwen 模型的上下文扩展到 1M 长度。在上下文长度为 100 万 Tokens 的大海捞针任务中,Qwen2.51M 能够准确地从 1M 长度的文档中检索出隐藏信息,仅有 7B 模型出现少量错误。对于更复杂的长上下文理解任务,通义官方选择了等测试集。 Qwen2.51M 系列模型在大多数长上下文任务中显著优于之前的 128K 版本,特别是在处理超过 64K 长度的任务时表现出色。Qwen2.514BInstruct1M 模型不仅击败了 Qwen2.5Turbo,还在多个数据集上稳定超越 GPT4omini,可作为现有长上下文模型的优秀开源替代。 此外,还有关于利用 Langchain+Ollama+RSSHub 实现本地部署资讯问答机器人的内容,包括导入依赖库、从订阅源获取内容、为文档内容生成向量等步骤。其中使用了 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型,文本向量模型 bgem3 具有支持多语言、长文本输入、集成多种检索能力等特点。
2025-03-31