Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

自动生成测试用例

Answer

以下是关于自动生成测试用例的相关内容:

  1. 基于规则的测试生成:
    • 模式识别:
      • Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。
      • Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。
  2. 基于模型的测试生成:
    • 场景模拟:
      • Model-based Testing(MBT):基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。
      • Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。

此外,还有 Prompt 网站精选中的 Prompts Royale-prompt PK 相关内容: Prompts Royale 是一个应用程序,可以帮助用户轻松创建多个提示候选项,并让它们进行对决,以找出最佳的提示。它具有以下功能:

  1. 自动提示生成:允许用户根据描述和测试案例自动生成提示候选项,用户也可以自行输入提示。
  2. 自动测试案例生成:从描述中自动生成测试案例,以激发创造力。
  3. Monte Carlo 匹配和 ELO 评分:使用 Monte Carlo 方法进行匹配,以确保在尽可能少的对决中获取尽可能多的信息,并使用 ELO 评分根据胜利和对手的强弱对候选项进行适当排名。
  4. 可自定义设置:设置页面允许用户调整应用程序的每个参数。
  5. 本地和安全:所有数据都存储在本地,并且在浏览器上向 LLMs API 发出请求。用户可以在 promptsroyale.com 上使用它,或者克隆存储库并在本地运行。使用以下命令克隆:https://github.com/meistrari/prompts-royale
Content generated by AI large model, please carefully verify (powered by aily)

References

问:AI 做测试用例

Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。Infer:Facebook开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。

问:AI 做测试用例

Model-based Testing(MBT):基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。

Prompt网站精选

|站点名|网站介绍|地址|附件|<br>|-|-|-|-|<br>|Prompts Royale-prompt PK|Prompts Royale是一个应用程序,可以帮助用户轻松创建多个提示候选项,并让它们进行对决,以找出最佳的提示。它具有以下功能:1.自动提示生成:允许用户根据描述和测试案例自动生成提示候选项,用户也可以自行输入提示。2.自动测试案例生成:从描述中自动生成测试案例,以激发创造力。3.Monte Carlo匹配和ELO评分:使用Monte Carlo方法进行匹配,以确保在尽可能少的对决中获取尽可能多的信息,并使用ELO评分根据胜利和对手的强弱对候选项进行适当排名。4.可自定义设置:设置页面允许用户调整应用程序的每个参数。5.本地和安全:所有数据都存储在本地,并且在浏览器上向LLMs API发出请求。用户可以在[promptsroyale.com](http://promptsroyale.com)上使用它,或者克隆存储库并在本地运行。使用以下命令克隆|[https://github.com/meistrari/prompts-royale](https://github.com/meistrari/prompts-royale)||

Others are asking
基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。这个应该怎样使用呢
很抱歉,目前没有关于 Randoop 工具使用方法的相关内容。您可以通过以下途径获取更详细的信息: 1. 官方文档:访问 Randoop 的官方网站,查找其提供的详细使用说明和教程。 2. 技术论坛:在相关的技术论坛上搜索关于 Randoop 使用的讨论和经验分享。 3. 开源社区:参与开源社区中关于 Randoop 的交流,向其他开发者请教。
2025-04-08
如何自动编写测试用例
AI 自动编写测试用例可以通过以下几种方式实现: 1. 基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别: Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: 深度学习模型: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习: RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成: Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成: 状态模型: GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟: Modelbased Testing :基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 实践中的应用示例: 1. Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 2. 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 3. 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 总结:AI 在生成测试用例方面具有显著的优势,可以自动化和智能化生成高覆盖率的测试用例,减少人工编写测试用例的时间和成本。通过合理应用 AI 工具,前端开发工程师可以提高测试效率、增强测试覆盖率和发现潜在问题,从而提升软件质量和用户体验。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-01
如何使用AI创建测试用例
AI 生成测试用例可以通过以下多种方法实现: 1. 基于规则的测试生成: 测试用例生成工具:如 Randoop(适用于 Java 应用程序)、Pex(适用于.NET 应用)。 模式识别:如 Clang Static Analyzer 利用静态分析技术识别代码模式和潜在缺陷生成相应测试用例,Infer 自动生成测试用例帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: 深度学习模型:如 DeepTest 生成自动驾驶系统的测试用例,DiffTest 基于对抗生成网络(GAN)生成测试用例。 强化学习:如 RLTest 通过与环境交互学习最优测试策略,A3C 通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成:如 Testim 通过分析文档和用户故事自动生成测试用例,Test.ai 从需求文档中提取测试用例。 自动化测试脚本生成:如 Selenium IDE 结合 NLP 技术扩展从自然语言描述中生成自动化测试脚本,Cucumber 使用 Gherkin 语言编写的行为驱动开发(BDD)框架通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成: 状态模型:如 GraphWalker 基于状态模型生成测试用例,Spec Explorer 微软开发的模型驱动测试工具通过探索状态模型生成测试用例。 场景模拟:如 Modelbased Testing 基于系统模型自动生成测试用例覆盖各种可能的操作场景和状态转换,Tosca Testsuite 基于模型的测试工具自动生成和执行测试用例适用于复杂应用的端到端测试。 5. 实践中的应用示例: Web 应用测试:使用 Testim 分析用户行为和日志数据自动生成高覆盖率的测试用例检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例确保覆盖关键功能和用户路径提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例确保覆盖所有可能的状态和操作场景检测系统的边界情况和异常处理能力。 此外,让 AI 写出您想要的代码,可以通过创建优质的.cursorrules 来实现,具体包括: 1. 先说清楚您是谁,让 AI 按照专家的水准来思考和编码。 2. 告诉 AI 您要干什么,使其围绕目标写代码。 3. 定好项目的“规矩”,强调团队的代码规范。 4. 明确文件放置位置,便于后期查找。 5. 指定使用的“工具”,保证项目的整洁和统一。 6. 告诉 AI 怎么做测试,使其生成的代码考虑可测试性并主动写测试用例。 7. 推荐参考资料,让 AI 基于最佳实践写代码。 8. 若项目涉及页面开发,补充 UI 的要求。
2025-03-22
利用 AI,基于需求文档生成 测试用例
以下是关于利用 AI 基于需求文档生成测试用例的相关内容: 基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别: Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 基于机器学习的测试生成: 深度学习模型: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习: RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成: Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 基于模型的测试生成: 状态模型: GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟: Modelbased Testing:基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 实践中的应用示例: Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 相关工具和平台: Testim:AI 驱动的自动化测试平台,生成和管理测试用例。 Test.ai:基于 NLP 技术的测试用例生成工具,适用于移动应用和 Web 应用。 DeepTest:利用深度学习生成自动驾驶系统测试用例。 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试。 此外,在编程中,用户故事也很重要。其目的在于确保开发团队能够理解用户需求,并从用户角度设计和开发功能。常规模板为:“作为。”在卡密系统中,写用户故事有三点作用:让执行者了解想要做什么样的应用,从而更准确地搭建代码框架;中途作为关键的上下文信息,确保方向不偏移;可以让 Cursor 依据用户故事生成对应的测试用例,保持功能的完整和准确。可以在 Cursor 里生成 MVP 的用户故事(用其他 AI 功能生成也可以),如点击 Cursor 后,选择提前创建的一个文件夹,创建需求文档,输入简短的需求描述,让 AI 帮助生成用户故事,然后按照实际情况接受并修改。
2025-03-05
利用 AI 生成 测试用例 的内容
AI 生成测试用例具有诸多优势,以下为您详细介绍: 1. 基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别: Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: 深度学习模型: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习: RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成: Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成: 状态模型: GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟: Modelbased Testing :基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 5. 实践中的应用示例: Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 总结:AI 在生成测试用例方面能够自动化和智能化地生成高覆盖率的测试用例,减少人工编写的时间和成本。合理应用 AI 工具,前端开发工程师可以提高测试效率、增强测试覆盖率和发现潜在问题,从而提升软件质量和用户体验。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-05
利用 AI 生成测试用例,提示词如何编写
以下是关于利用 AI 生成测试用例时编写提示词的一些方法和要点: 1. 明确任务:清晰地定义生成测试用例的任务,例如明确测试的对象、范围和目标。 2. 提供上下文:若任务需要特定知识背景,在提示词中提供充足信息。 3. 语言清晰:使用简单、明确的语言,避免模糊或有歧义的词汇。 4. 给出具体要求:如对测试用例的格式、覆盖范围等有特定要求,应在提示词中指明。 5. 使用示例:提供期望的测试用例示例,帮助 AI 理解需求。 6. 保持简洁:提示词简洁明了,避免过多复杂信息导致 AI 困惑。 7. 运用关键词和标签:有助于 AI 更好理解任务主题和类型。 8. 测试和调整:生成结果后仔细检查,根据情况多次迭代调整提示词,直至满意。 例如,在生成符合要求的单词卡内容并填入 Excel 文件的测试用例时,首先给出基本示例作为核心依托,然后根据不同生成内容限定规则,包括对自然语言描述附加更多限制,以确保按要求输出 Excel 文档。在批量产出时,注意上传压缩文件并完成套版等操作。 另外,在 GPTs 实战中制作迷宫卡片时,也涉及到分步实现需求,如 GPT 生成主题相关绘图提示词、Dalle3 根据生成图片绘制底图、Python 随机绘制迷宫等步骤,其中都需要精心编写提示词,并根据效果进行调整和优化。
2025-03-05
生成提示词的提示词
以下是关于生成提示词的相关内容: 生成提示词的思路和方法: 可以根据效果好的图片中的高频提示词去反推效果,结合不同字体效果的描述,打包到一组提示词中。提示词给到 AI 后,AI 会根据给定文字的文义,判断适合的情绪风格,然后给出适合情绪的字体和风格描述、情感氛围等,加上一些质量/品质词,形成输出提示词结构。为了让 AI 更能描述清晰风格,可以先给定多种参照举例。 具体操作步骤: 打开 AI 工具的对话框,将相关提示词完整复制粘贴到对话框。推荐使用 ChatGPT 4o。 当 AI 回复后,发送您想要设计的文字。可以仅发送想要的文字,也可以发送图片(适合有多模态的 AI)让 AI 识别和反推。 将 AI 回复的提示词部分的内容复制到即梦 AI。 对生成提示词的一些观点: 提示词生成提示词并非必要,不一定能生成最好的 Prompt 框架,修改过程可能耗时且不一定能修改好,不如花钱找人写。 一句话生成完整符合需求的 Prompt 非常困难,只能大概给出框架和构思,需要更低成本地调整需求和修改 Prompt。 不同生图工具生成提示词的特点: 即使是简短的描述,生成的提示词也非常细节、专业。 会解析需求,找出核心要点和潜在的诠释点,并给出不同的提示词方案。 提示词构建更多在于增强,而不是发散,生成的内容更符合期望。 同时生成中、英双版本,国内外工具通用无压力。 14 款 AI 生图工具实测对比: 本次实测用到的工具包括国内版的即梦 3.0(https://jimeng.jianying.com/aitool/home)、WHEE(https://www.whee.com)、豆包(https://www.doubao.com/chat)、可灵(https://app.klingai.com/cn/texttoimage/new)、通义万相(https://tongyi.aliyun.com/wanxiang/creation)、星流(https://www.xingliu.art)、LibiblibAI(https://www.liblib.art),以及国外版的相关工具。
2025-04-20
有没有能根据描述,生成对应的word模板的ai
目前有一些可以根据描述生成特定内容的 AI 应用和方法。例如: 在法律领域,您可以提供【案情描述】,按照给定的法律意见书模板生成法律意见书。例如针对商业贿赂等刑事案件,模拟不同辩护策略下的量刑结果,对比并推荐最佳辩护策略,或者为商业合同纠纷案件设计诉讼策略等。 在 AI 视频生成方面,有结构化的提示词模板,包括镜头语言(景别、运动、节奏等)、主体强化(动态描述、反常组合等)、细节层次(近景、中景、远景等)、背景氛围(超现实天气、空间异常等),以及增强电影感的技巧(加入时间变化、强调物理规则、设计视觉焦点转移等)。 一泽 Eze 提出的样例驱动的渐进式引导法,可利用 AI 高效设计提示词生成预期内容。先评估样例,与 AI 对话让其理解需求,提炼初始模板,通过多轮反馈直至达到预期,再用例测试看 AI 是否真正理解。 但需要注意的是,不同的场景和需求可能需要对提示词和模板进行针对性的调整和优化,以获得更符合期望的 word 模板。
2025-04-18
如何自动生成文案
以下是几种自动生成文案的方法: 1. 基于其它博主开源的视频生成工作流进行优化: 功能:通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。 涉及工具:Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程)。 大体路径:通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频;发布 coze 智能体到飞书多维表格;在多维表格中使用字段捷径,引用该智能体;在多维表格中创建自动化流程,推送消息给指定飞书用户。 2. 生成有趣的《图文短句》: 实现原理: 先看工作流:包括第一个大模型生成标题、通过“代码节点”从多个标题中获取其中一个(可略过)、通过选出的标题生成简介、通过简介生成和标题生成文案、将文案进行归纳总结、将归纳总结后的文案描述传递给图像流。 再看图像流:包括提示词优化、典型的文生图。 最终的 Bot 制作以及预览和调试。 3. 腾讯运营使用 ChatGPT 生成文案: 步骤:通过 ChatGPT 生成文案,将这些文案复制到支持 AI 文字转视频的工具内,从而实现短视频的自动生成。市面上一些手机剪辑软件也支持文字转视频,系统匹配的素材不符合要求时可以手动替换。例如腾讯智影的数字人播报功能、手机版剪映的图文成片功能。这类 AI 视频制作工具让普罗大众生产视频变得更轻松上手。
2025-04-15
如何通过输入一些观点,生成精彩的口播文案
以下是通过输入观点生成精彩口播文案的方法: 1. 基于其它博主开源的视频生成工作流进行功能优化,实现视频全自动创建。 效果展示:可查看。 功能:通过表单输入主题观点,提交后自动创建文案短视频,并将创建完成的视频链接推送至飞书消息。 涉及工具:Coze平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程)。 大体路径: 通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频。 发布 coze 智能体到飞书多维表格。 在多维表格中使用字段捷径,引用该智能体。 在多维表格中创建自动化流程,推送消息给指定飞书用户。 2. 智能体发布到飞书多维表格: 工作流调试完成后,加入到智能体中,可以选择工作流绑定卡片数据,智能体则通过卡片回复。 选择发布渠道,重点是飞书多维表格,填写上架信息(为快速审核,选择仅自己可用),等待审核通过后即可在多维表格中使用。 3. 多维表格的字段捷径使用: 创建飞书多维表格,添加相关字段,配置后使用字段捷径功能,使用自己创建的 Coze 智能体。 表单分享,实现填写表单自动创建文案短视频的效果。 4. 自动化推送:点击多维表格右上角的“自动化”,创建所需的自动化流程。 另外,伊登的最新 Deepseek+coze 实现新闻播报自动化工作流如下: 第一步是内容获取,只需输入新闻链接,系统自动提取核心内容。开始节点入参包括新闻链接和视频合成插件 api_key,添加网页图片链接提取插件,获取网页里的图片,以 1ai.net 的资讯为例,添加图片链接提取节点,提取新闻主图,调整图片格式,利用链接读取节点提取文字内容,使用大模型节点重写新闻成为口播稿子,可使用 Deepseek R1 模型生成有吸引力的口播内容,若想加上自己的特征,可在提示词里添加个性化台词。
2025-04-15
小红书图文批量生成
以下是关于小红书图文批量生成的详细内容: 流量密码!小红书万赞英语视频用扣子一键批量生产,这是一个保姆级教程,小白都能看得懂。 原理分析: 决定搞之后,思考生成这种视频的底层逻辑,进行逆推。这种视频由多张带文字图片和音频合成,带文字图片由文字和图片生成,文字和图片都可由 AI 生成,音频由文字生成,文字来源于图片,也就是说,关键是把图片和文字搞出来。 逻辑理清后,先找好看的模版,未找到好看的视频模版,最后看到一个卡片模版,先把图片搞出来,才有资格继续思考如何把图片变成视频,搞不出来的话,大不了不发视频,先发图片,反正图片在小红书也很火。 拆模版: 要抄这种图片,搞过扣子的第一反应可能是用画板节点 1:1 去撸一个,但扣子的画板节点很难用,Pass 掉。用 PS 不行,太死板不灵活,html 网页代码可以,非常灵活。经过 2 个多小时和 AI 的 battle,用 html 代码把图片搞出来了。这里不讲代码怎么写,直接抄就行。要抄,首先要学会拆,不管用什么方式批量生成这样的图片,都必须搞清楚里面有哪些是可以变化的参数,也就是【变量】,如主题、主题英文、阶段、单词数、图片、正文、翻译、普通单词、重点单词等。 想方法: 大概知道批量生成这样的图片需要搞清楚哪些参数,图片用 html 代码搞出来了。但问题是视频怎么搞,这种视频由多张不同的【带文字的图片】生成,比如读到哪句,哪句就高亮起来,图片也可以随着读到的句子变更。最后,视频就是用这样的图片一张张拼起来的。
2025-04-14
ai如何什么生成表格
AI 生成表格通常可以通过以下技术实现: 1. 利用变分自编码器(VAEs)和序列到序列模型(Seq2Seq)等技术生成表格文件、表格公式,并清理、创建、转换和分析表格中的文本数据,例如表格结构设计、数据分析表、表格自动化等。 2. 借助一些办公软件中的 AI 插件,如飞书中的相关插件,先通过 AI 理解图片中的内容并填充到表格列中,然后利用自带插件总结生成相关指令。 此外,在多模态数据生成中,结构化数据生成包括表格生成,多模态合成数据从大类来看有非结构化数据(图片、视频、语音等)和结构化数据(表格等)两大类。非结构化数据生成包括文本生成、图像生成、音频和语音生成、视频生成、3D 生成、合成数据生成等。
2025-04-14
需要做一个自动化出视频的工作流
以下是一个关于自动化出视频工作流的详细介绍: 优势: 全自动化处理,解放双手。 40 秒快速出片,效率提升。 成本低廉,每条仅需 0.0x 元。 输出质量稳定专业。 DeepseekR1 保证文案质量。 还能改进,例如可以加入配套 BGM,让视频更有感染力;增加更丰富的画面内容和转场效果;使用免费节点替代付费插件,进一步降低成本;优化模板样式,支持更多展示形式;增加自动化程度,支持批量处理。 工作流程: 1. 可以在扣子商店体验,建议自己搭建。 2. 工作流调试完成后,加入到智能体中,可以选择工作流绑定卡片数据,智能体则通过卡片回复。 3. 选择发布渠道,重点如飞书多维表格,填写上架信息(为了快速审核,选择仅自己可用),确认发布等待审核,审核通过后即可在多维表格中使用。 4. 创建飞书多维表格,添加相关字段,配置选择“自动更新”,输入相关字段后,“文案视频自动化”字段捷径会自动调用工作流,生成视频。 5. 表单分享,实现“填写表单,自动创建文案短视频”的效果。 6. 全自动视频合成使用多视频融合插件,一键导出成品。但需注意节点产生的视频是异步生成,可能无法马上展现,需耐心等待几秒。 如果您还有其他疑问或需要进一步的帮助,请随时联系。
2025-04-14
运用ai,生成每日自动推送到飞书消息的 公司文化日报,包含日历 天气 新闻 内部规划 事项
要运用 AI 生成每日自动推送到飞书消息的公司文化日报,包含日历、天气、新闻、内部规划和事项,您可以考虑以下步骤: 首先,需要确定获取日历、天气、新闻、内部规划和事项等信息的数据源。对于日历,可以使用在线日历服务的 API 来获取相关数据;天气信息可以从专业的气象数据提供商获取;新闻可以通过新闻聚合 API 或者与特定的新闻机构合作获取;内部规划和事项则需要从公司内部的管理系统或数据库中提取。 然后,选择适合的 AI 技术和工具。例如,可以使用自然语言处理技术来对获取到的数据进行处理和整合,生成易于阅读和理解的文本内容。 在生成日报的过程中,要注意格式的规范和统一,使其具有良好的可读性。同时,可以根据公司的文化特点和需求,对内容进行个性化的定制和优化。 另外,为了确保推送的准确性和及时性,需要建立有效的监控和反馈机制,及时发现并解决可能出现的问题。 希望以上建议对您有所帮助。
2025-04-14
自动生成字幕
以下是关于自动生成字幕的相关信息: 苹果发布的 Final Cut Pro 11 具有自动生成字幕的功能,其特点是能够将语音转换为字幕,提高效率。 虽然 ChatGPT 本身无法直接总结 YouTube 视频,但有些免费服务可以帮助转录或下载视频的自动生成字幕。将得到的文字保存并上传,可让 ChatGPT 帮忙将 YouTube 视频的字幕转化为简洁的要点。
2025-04-14
Deepseek自动生成网站前端页面
以下是关于 DeepSeek 自动生成网站前端页面的相关内容: DeepSeek v3 能力更新后虽能生成炫目的前端页面,但多为静态且实用性有限。可结合飞书多维表格将生成的漂亮前端变为真实的系统,如【智能作业分发系统】。 该系统整体包括用户登陆(可加飞书调查表二维码实现注册)、作业类型、作业详情(含连连看游戏、AI 智能问答、考试系统)。其实现逻辑为用户登陆系统后进入页面看到老师分配的作业分类,选择分类进入作业详情页面,详情页有学习单词发音及三个模块。 对于小白,可用飞书作数据源,通过飞书 API 接口获取内容,用 DeepSeek v3 制作前端+后端(用 Trae 更方便)。获取请求参数时,测试成功后的示例代码中有完整的请求参数和请求体可直接复制使用。创建前后端时,若用 DeepSeek 官网搭建需按代码目录结构创建对应文件(用 Trae 可省略),首次运行可能遇到飞书 API 未正确配置 CORS 导致浏览器拦截请求的问题,V3 会给出修改意见。 此外,Same dev 能像素级复制任意 UI 界面并生成前端代码,支持多种文件格式和技术栈代码,但免费额度消耗快,网站被谷歌标记。360 智脑复现了 DeepSeek 强化学习效果并发布开源模型 LightR114BDS。 AI 时代生存法则:会提需求比会写代码更重要,会开脑洞比会复制粘贴更值钱,真正的大佬都是让 AI 当乙方!
2025-04-13
如何通过提交的pdf文件自动生成流程图。
目前在 AI 领域,直接通过提交的 PDF 文件自动生成流程图还存在一定的技术挑战。通常情况下,需要先将 PDF 文件中的内容进行解析和提取,然后利用专门的流程设计工具或软件来手动创建流程图。但随着技术的不断发展,未来可能会有更便捷和高效的方法来实现这一功能。
2025-04-13