Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

4060显卡用Stable Diffusion怎么样

Answer

4060 显卡用于 Stable Diffusion 的情况如下:

在 30 系列显卡中,3060ti 12GB 显卡、3090 和 3090ti 比较适合 Stable Diffusion 生成图片,其他显存不够的显卡意义不大。2080ti 22GB 魔改版本显卡比较考验运气,不建议普通玩家选购。A5000 等专业卡不能玩游戏,生成速度不如同价位游戏卡,半精度训练模型运算速度可能会快一点,也不建议普通玩家选购。

如果使用 40 系显卡,16GB 的 4060ti 虽然速度比 12GB 的 4070ti 慢一点,但大显存可以执行更多样的 AI 生成任务,比如生成更大分辨率的超清图片,使用更高的参数进行 Dream booth 微调等。

需要注意的是,如果在 Stable Diffusion 模型加载时遇到 CUDA 显存不足的错误,简单来说就是显卡不行,没有足够的显存空间分配给该模型。解决方法有:换个好一些的显卡,至少英伟达 2060 以上;或者开启低显存模式。

开启低显存模式的方法如下:在 stable-diffusion-webui 文件夹下找到 webui-user.bat,用文本或代码编辑器打开该文件夹。如果显卡显存不足 3G,可以在 set COMMANDLINE_ARGS=的后面添加参数–lowvram –always-batch-cond-uncond 之后保存。如果显卡只有 4G 显存,可以在 set COMMANDLINE_ARGS=的后面添加参数–precision full –no-half –lowvram –always-batch-cond-uncond 之后保存。

Content generated by AI large model, please carefully verify (powered by aily)

References

Stable Diffusion电脑配置选购指南

30系列显卡中,我认为3060ti12GB显卡和3090、3090ti三款显卡是比较适合SD生成图片的,其他的显存不够,快一点意义不大。至于2080ti22GB魔改版本显卡,比较考验运气哈哈,建议还是多花点求个稳定。A5000等专业卡不能玩游戏,生成速度不如同价位游戏卡,半精度训练模型运算速度可能会快一点,不建议普通玩家选购。

教程:Stable Diffusion 安装过程中常见报错解决方法

Stable diffusion model failed to load,exiting请按任意键继续。..根据错误信息显示,Stable Diffusion模型加载时遇到了CUDA显存不足的错误,简单点来说就是显卡不行,没有足够的显存空间分配给该模型。解决方法1:换个好一些的显卡,至少英伟达2060以上。解决方法2:开启低显存模式,开启低显存模式的方法如下。在stable-diffusion-webui文件夹下找到webui-user.bat,用文本或代码编辑器打开该文件夹,可以看到如下内容。@echo offset PYTHON=set GIT=set VENV_DIR=set COMMANDLINE_ARGS=call webui.bat我们只需要修改set COMMANDLINE_ARGS=部分即可,该部分内容是启动参数。低于3G显存如果你的显卡显存不足3G,可以在set COMMANDLINE_ARGS=的后面添加参数–lowvram –always-batch-cond-uncond之后保存即可,变更之后的文件内容如下。@echo offset PYTHON=set GIT=set VENV_DIR=set COMMANDLINE_ARGS=–lowvram –always-batch-cond-uncondcall webui.bat4G显存如果你的显卡只有4G显存,可以在set COMMANDLINE_ARGS=的后面添加参数–precision full –no-half –lowvram –always-batch-cond-uncond之后保存即可,变更之后的文件内容如下。@echo offset PYTHON=set GIT=set VENV_DIR=set COMMANDLINE_ARGS=–precision full –no-half –lowvram –always-batch-cond-uncond

Stable Diffusion电脑配置选购指南

下方是40系的产品对比图,大家可以按照自己的预算选购。我认为16GB的4060ti虽然速度比12GB的4070ti慢了一点,但是大显存可以执行更多样的AI生成任务,比如生成更大分辨率的超清图片,使用更高的参数进行Dream booth微调等,相比起能不能执行任务,执行任务慢一点就不那么重要了。

Others are asking
我是一位程序开发小白,不会用代码开发程序。我现在有一台安装Window 11操作系统的笔记本电脑,配置为14代i7CPU、32G内存、1TB硬盘、1张RTX4070显卡。我想部署一套本地的大模型+智能体+知识库。我要怎么样才能实现无代码部署,请列出详细的安装步骤。
以下是为您提供的无代码部署本地大模型、智能体和知识库的详细安装步骤: 1. 硬件评估:您的笔记本电脑配置为 14 代 i7 CPU、32G 内存、1TB 硬盘、1 张 RTX4070 显卡,基本满足部署要求。但需要注意,运行内存最低 32GB,越高越好,最低配可能会经常爆显存。建议将软件和模型部署在 SSD(固态硬盘)上,以提高加载模型的速度。 2. 选择合适的部署工具:ComfyUI 是一个相对配置要求较低、系统资源占用少、出图速度快的工具。它最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。 3. 安装准备:如果您的电脑能顺畅清晰地玩 3A 游戏,那么运行相关部署工具一般也没问题。 4. 预算和需求:根据您的需求和预算来选择合适的配置。例如,如果有做 AIGC 视频、建模渲染和炼丹(lora)的需求,可能需要更高的配置。 请注意,以上步骤仅为参考,实际部署过程可能会因具体情况而有所不同。
2025-03-26
Nvidia 显卡算力天梯图
以下是为您提供的关于 Nvidia 显卡算力天梯图的相关信息: 算力是指计算能力,可直接理解为显卡的性能。在电脑中,显卡就是 GPU,一张显卡的重要参数包括 GPU 和显存。 GPU 是一种专门做图像和图形相关运算工作的微处理器,其生产商主要有 NVIDIA 和 ATI。GPU 的强大主要决定了生图和训练的效率,越强大的算力在生图(推理)和训练上消耗的时间就越短。显存在生图过程决定了直接推理的图片大小,在训练时受制于训练工具的要求,显存容量是门槛。 在选择算力时,需要综合 GPU 性能和显存大小两个参考维度。由于需要使用到 CUDA 加速,显卡大概率只能选择 NVIDIA 的。 以下为您提供一些可能不太具备时效性的参考资料: 1. 各种显卡的稳定扩散性能测试报告(需要科学?️):https://docs.google.com/spreadsheets/d/1Zlv4UFiciSgmJZncCujuXKHwc4BcxbjbSBg71SdeNk/editgid=0 2. GPU 测评结果方便大家选购:https://ywh1bkansf.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?field=fldzHOwXXK&record=reciB9KZtj&table=tblyh76bHrCi4PXq&view=vewUunvDn1
2025-03-02
如果不是英伟达显卡,可以本地部署SD吗?
如果不是英伟达显卡,一般不建议本地部署 SD。 SD 的安装要求如下: 1. 系统需为 Win10 或 Win11。 2. 查看电脑配置: 查看电脑系统:在桌面上找到“我的电脑”,鼠标右键点击,点击“属性”,查看 Windows 规格。 查看电脑配置:检查自己的电脑配置能否带动 SD(Stable Diffusion),需要满足 3 个要求(推荐):电脑运行内存 8GB 以上,是英伟达(NVIDA)的显卡,显卡内存 4GB 以上。 查看电脑运行内存:打开任务管理器(同时按下 ctrl+shift+esc),8GB 运行内存可以勉强运行 SD,推荐 16GB 以上运行内存。 查看电脑显卡内存(显存):4GB 显存可运行 SD,推荐 8GB 以上显存。 3. 配置达标可跳转至对应安装教程页: 。 4. 配置不够可选择云端部署(Mac 也推荐云端部署): 。 5. 备选:SD 好难,先试试简单的无界 AI: 。 另外,Fooocus 是 SD 的相关产品,其使用的是最新推出的 SDXL 1.0 模型,对 stable diffusion 和 Midjourney 做了结合升级。Fooocus 本地部署的配置要求为:需要不低于 8GB 的内存和 4GB 的英伟达显卡。Fooocus 介绍/安装包下载:https://github.com/lllyasviel/Fooocus(文末领取软件+模型整合包:16G) ,使用指南:https://github.com/lllyasviel/Fooocus/discussions/117 ,大模型(base 和 Refiner)默认放在这里:\\Fooocus_win64_1110\\Fooocus\\models\\checkpoints 。 SD 云端部署的流程如下: 1. 安装和配置基础环境:浏览器上按照腾讯云>控制台>云服务器的路径找到购买的实例,点击启动,会新开一个远程访问的窗口,输入购买时设置的密码进入,这样就有了一个远程的 Windows 系统环境,接下来安装显卡驱动、配置环境变量即可。 2. 安装显卡驱动:用内置的 IE(也可下载 Chrome),打开英伟达的网站,找到驱动下载,选择购买机器时选定的显卡型号、Windows 版本号,下载对应的驱动,然后安装上。 3. 配置环境变量:驱动安装完成后,开始配置环境变量。首先找到驱动安装所在的目录,如果没有特殊设定,一般是在「C:\\Program Files\\NCIDIA Corporation」,复制这个路径,找到环境变量配置入口(控制面板>系统和安全>系统),选择「高级系统设置」,弹窗设置环境变量,找到「系统变量」里的 Path 环境变量,点击「编辑...」,然后「新建」,将刚才复制的 nvidia 驱动安装地址粘贴进去,保存即可。
2025-02-27
我的电脑显卡是1060 5g,可以使用ai软件吗
1060 5G 显卡可以使用一些 AI 软件,但性能可能会受到一定限制。对于一些对显卡性能要求不太高的 AI 应用,例如简单的图像识别、文本处理等,您的显卡能够满足基本需求。然而,对于较为复杂的 AI 任务,如大规模的深度学习模型训练、高质量的 AI 绘画生成等,可能会出现运行速度较慢、效果不理想的情况。 如果您只是初步尝试使用 AI 软件,或者进行一些轻度的应用,您的显卡或许可以胜任。但如果您有更专业、高强度的使用需求,可能需要考虑升级显卡以获得更好的性能体验。
2024-11-10
本地安装大模型使用4060显卡和4060TI显卡有什么区别
在本地安装大模型时,4060 显卡和 4060TI 显卡主要有以下区别: 显存方面:显存是选择显卡的重要因素。4060 显卡的显存通常小于 4060TI 显卡。对于一些对显存要求较高的任务,如生成更大分辨率的超清图片、使用更高的参数进行 Dream booth 微调等,4060TI 显卡的大显存更具优势。 生成速度方面:4060TI 显卡的速度比 4060 显卡快。但在某些情况下,如果显存不足导致无法执行任务,速度稍慢就显得不那么重要了。 总体而言,在预算允许的情况下,16GB 的 4060TI 显卡由于其较大的显存,可以执行更多样的 AI 生成任务。但如果预算有限,4060 显卡也是一个可行的选择。
2024-11-06
a800 ,H100,a10,H800这4个显卡能力有啥差异
以下是 A800、H100、A10、H800 这 4 个显卡在能力上的一些差异: 在训练与推理方面: 对于大型模型的训练,许多模型在 NVIDIA H100 上最具成本效益,但获取在 NVIDIA H100 上运行的模型较难,且通常需要长期合作承诺。如今更多的选择是在 NVIDIA A100 上运行大多数模型训练,但对于大型集群仍需要长期承诺。 大型语言模型(LLM)的参数数量众多,通常需要分布到多个卡中,即使进行 LLM 推理,可能也需要 H100 或 A100。但较小的模型(例如 Stable Diffusion)需要的 VRAM 要少得多,初创公司也会使用 A10 等显卡。 在内存要求方面: 大型 LLM 的参数数量太多,任何单卡都无法容纳,需要类似于训练的多卡设置。 对于一些较小的模型,A10 等显卡可能就能够满足其内存需求。 需要注意的是,决定选择哪种 GPU 主要是一个技术决策,需要根据具体应用来确定最具成本效益的选择。
2024-10-16
stable diffusion底层技术
Stable Diffusion 的底层技术主要来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach 之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型的文本到图像生成模型,其原理包括以下几个步骤: 1. 使用新颖的文本编码器(OpenCLIP),由 LAION 开发并得到 Stability AI 的支持,将文本输入转换为向量表示,以捕捉文本语义信息并与图像空间对齐。 2. 采用扩散模型,将随机噪声图像逐渐变换为目标图像。扩散模型是一种生成模型,能从训练数据中学习概率分布并采样新数据。 3. 在扩散过程中,利用文本向量和噪声图像作为条件输入,给出每一步变换的概率分布,根据文本指导噪声图像向目标图像收敛,并保持图像的清晰度和连贯性。 4. 使用超分辨率放大器(Upscaler Diffusion Model),将生成的低分辨率图像放大到更高分辨率,从低分辨率图像中恢复细节信息并增强图像质量。 此外,ComfyUI 的底层依赖 Stable Diffusion,去噪过程由 UNet 网络完成。UNet 是一种编码器解码器结构,能处理多尺度特征表示。在 ComfyUI 中,去噪的每个步骤通过模型推理模块实现,调用训练好的 UNet 模型逐步将噪声图像还原成有意义的图像。交叉注意力机制在 Stable Diffusion 中很重要,允许模型在生成过程中融入文本提示、图像、语义信息等条件,在 ComfyUI 中通过“文本提示”和“条件输入”节点实现。跳跃连接是 UNet 的核心部分,能在不同尺度之间共享特征,在 ComfyUI 的节点网络中表现为中间过程数据的流转。切换器代表在去噪过程中的不同阶段对特征流的控制,在 ComfyUI 中可通过修改模型参数节点或自定义网络结构节点对不同阶段的噪声去除策略进行微调。 Stable Diffusion 还具有以下优点: 1. 可以处理任意领域和主题的文本输入,并生成与之相符合的多样化和富有创意的图像。 2. 可以生成高达 2048x2048 或更高分辨率的图像,且保持良好的视觉效果和真实感。 它还可以进行深度引导和结构保留的图像转换和合成,例如根据输入图片推断出深度信息,并利用深度信息和文本条件生成新图片。
2025-04-15
stable video diffusion开发
以下是关于 Stable Video Diffusion 开发的相关信息: SVD 介绍: 简介:Stable Video Diffusion 是 Stability AI 于 2023 年 11 月 21 日发布的视频生成式大模型,用于高分辨率、先进的文本到视频和图像到视频生成的潜在视频扩散模型。它支持多种功能,用户可调整多种参数,但对硬件要求较高,支持的图片尺寸较小,应用场景受限。 模型版本:开源了两种图生视频的模型,一种能生成 14 帧的 SVD,另一种是可以生成 25 帧的 SVDXL,发布时通过外部评估超越了人类偏好研究中领先的封闭模型。 主要贡献:提出系统的数据管理工作流程,将大量未经管理的视频集合转变为高质量数据集;训练出性能优于现有模型的文本到视频和图像到视频模型;通过特定领域实验探索模型中运动和 3D 理解的强先验,预训练的视频扩散模型可转变为强大的多视图生成器,有助于克服 3D 领域数据稀缺问题。 部署实战避坑指南: 直接使用百度网盘里准备好的资源,可规避 90%的坑。 若一直报显存溢出问题,可调低帧数或增加 novram 启动参数。 云部署实战中,基础依赖模型权重有两个 models–laion–CLIPViTH14laion2Bs32Bb79K 和 ViTL14.pt,需放到指定路径下。 总结: Sora 发布后,此前的视频生成模型相形见绌,但 Stable Video Diffusion 作为开源项目可在自己机器上自由创作无需充值。SVD 生成的视频画质清晰,帧与帧过渡自然,能解决背景闪烁和人物一致性问题,虽目前最多生成 4 秒视频,与 Sora 的 60 秒差距大,但在不断迭代。我们会持续关注其技术及前沿视频生成技术,尝试不同部署微调方式,介绍更多技术模型,更多精彩内容后续放出。 同时,您还可以加入「AIGCmagic 社区」群聊交流讨论,涉及 AI 视频、AI 绘画、Sora 技术拆解、数字人、多模态、大模型、传统深度学习、自动驾驶等多个方向,可私信或添加微信号:【m_aigc2022】,备注不同方向邀请入群。
2025-04-15
stable diffusion是runway和goole联合开的吗
Stable Diffusion(简称 SD)不是由 Runway 和 Google 联合开发的,而是由初创公司 StabilityAI、CompVis 与 Runway 合作开发的。 Stable Diffusion 是 2022 年发布的深度学习文本到图像生成模型,其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于这两位开发者之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中根据文本向量和噪声图像作为条件输入给出变换的概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高的分辨率。 围绕 Stable Diffusion 等基础模型的兴奋和关注正在产生惊人的估值,但新研究的不断涌现确保新模型将随着新技术的完善而更替。目前,这些模型在法律方面也面临挑战,例如其训练所使用的大量内容数据集通常是通过爬取互联网本身获得的,这可能会引发法律问题。
2025-04-15
stable diffusion开发公司
Stable Diffusion 是由初创公司 StabilityAI、CompVis 与 Runway 合作开发的。其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于他们之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中以文本向量和噪声图像作为条件输入给出变换的概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高分辨率。 Stable Diffusion 总共有 1B 左右的参数量,可以用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等丰富的任务。在文生图任务中,将一段文本输入到模型中,经过一定迭代次数输出符合文本描述的图片;图生图任务则在输入文本基础上再输入一张图片,模型根据文本提示对输入图片进行重绘。输入的文本信息通过 CLIP Text Encoder 模型编码生成与文本信息对应的 Text Embeddings 特征矩阵,用于控制图像生成。源代码库为 github.com/StabilityAI/stablediffusion ,当前版本为 2.1 稳定版(2022.12.7),其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。
2025-04-15
stable diffusion开发公司
Stable Diffusion 是由初创公司 Stability AI、CompVis 与 Runway 合作开发的。其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于他们之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中以文本向量和噪声图像作为条件输入给出变换概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高分辨率。 Stable Diffusion 总共有 1B 左右的参数量,可以用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等丰富的任务。其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行,当前版本为 2.1 稳定版(2022.12.7),源代码库为 github.com/StabilityAI/stablediffusion 。
2025-04-15
有stable diffusion的学习教程吗
以下为您提供一些 Stable Diffusion 的学习教程: 1. 超详细的 Stable Diffusion 教程: 介绍了为什么要学习 Stable Diffusion 及其强大之处。 指出 Stable Diffusion 是能根据输入文字生成图片的软件。 强调学习目的是快速入门,而非深入研究原理,通过案例和实际操作帮助上手。 2. 深入浅出完整解析 Stable Diffusion(SD)核心基础知识 知乎: 包含 Stable Diffusion 系列资源。 零基础深入浅出理解 Stable Diffusion 核心基础原理,如模型工作流程、核心基础原理、训练全过程等。 解析 Stable Diffusion 核心网络结构,包括 SD 模型整体架构、VAE 模型、UNet 模型等。 介绍从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画的流程。 列举 Stable Diffusion 经典应用场景。 讲解从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型。 3. 视频教程: 「AI 绘画」软件比较与 stable diffusion 的优势: 「AI 绘画」零基础学会 Stable Diffusion: 「AI 绘画」革命性技术突破: 「AI 绘画」从零开始的 AI 绘画入门教程——魔法导论: 「入门 1」5 分钟搞定 Stable Diffusion 环境配置,消灭奇怪的报错: 「入门 2」stable diffusion 安装教程,有手就会不折腾: 「入门 3」你的电脑是否跑得动 stable diffusion?: 「入门 4」stable diffusion 插件如何下载和安装?:
2025-03-28
蛟龙16pro配置(处理器R7-7745HX,显卡RTX4060 8G,硬盘512GPCIE4.0SSD)可以用于审计人员本地化部署大模型用于数据分析工作吗
蛟龙 16pro 的配置(处理器 R77745HX,显卡 RTX4060 8G,硬盘 512G PCIE4.0 SSD)对于审计人员本地化部署大模型用于数据分析工作来说,可能存在一定的局限性。 处理器 R77745HX 具有一定的计算能力,但在处理大规模数据和复杂的模型运算时,其性能可能不够强劲。 显卡 RTX4060 8G 对于一些较为复杂的图形处理和计算任务能够提供一定的支持,但对于大规模的深度学习模型训练和数据分析,可能会显得不足。 512G 的 PCIE4.0 SSD 硬盘容量相对较小,在存储大量数据时可能会很快耗尽空间。 综上所述,该配置在一定程度上可以用于简单的数据分析任务,但对于较为复杂和大规模的大模型本地化部署及数据分析工作,可能需要更强大的硬件配置,例如更高性能的处理器、更大容量和更高性能的显卡,以及更大的存储空间。
2024-09-14
4060和4060TI哪个更适合SD
在 Stable Diffusion(SD)的应用中,30 系列显卡中 3060ti 12GB 显卡、3090 和 3090ti 比较适合生成图片,其他显存不够的显卡意义不大。2080ti 22GB 魔改版本显卡比较考验运气,建议求稳定。SD 的图像生成主要依赖显卡,只要显存足够,其他配置不太差就行。之前有文章分析,i9 和 i5 的 CPU 对于生成速度影响在 10%以下。能上 4090 建议上 4090,哪怕是万丽版本也好过高配 4080。在实际测试中,使用 4080ti 笔记本,12G 显存,不同模型和设置的出图时间有所不同。例如使用 diffusers 的 2.5Gfull 模型绘制 10241024 尺寸的图片,一张图花了 2 分 57 秒;使用 320Mb 的 small 模型,用时 34 秒。对于 4060 和 4060TI 哪个更适合 SD,上述内容未给出直接对比,但综合来看,显存大小和性能表现是关键因素,您可以参考以上信息进行判断。
2024-08-13