Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

怎么评估提示词的效果?

Answer

评估提示词的效果可以从以下几个方面进行:

  1. 模型的准确率:观察模型生成的回答与预期结果的匹配程度。
  2. 流畅度:检查生成的文本在语言表达上是否通顺、自然。
  3. 相关性:判断生成的内容与提示词所表达的意图和需求的关联程度。

提示词工程师在评估提示词效果时,通常会采取以下步骤和方法:

  1. 设计提示:根据用户需求和模型能力,精心考虑提示的长度、结构、措辞和信息量等因素,以清晰传达用户意图。
  2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式,不断改进提示。
  3. 实际测试:包括对基础提示词模板的测试,确保其能兼容国内外各种模型,并生成拟人化的提示词,然后将其应用于不同模型中评估实际应用效果和适应性。

此外,提示工程有几项核心原则:

  1. 编写清晰的指令。
  2. 将复杂任务分解为简单任务。
  3. 给模型一定的时间空间思考。
  4. 系统地测试性能变化。

要提高提示技巧,应多学习和实践。同时,可以参考大模型厂商的提示工程指南,以及 LangGPT 结构化提示词知识库中的相关资料,如:http://feishu.langgpt.ai/

Content generated by AI large model, please carefully verify (powered by aily)

References

问:什么是提示词工程师(Prompt Engineer)

[title]问:什么是提示词工程师(Prompt Engineer)提示词工程师(Prompt Engineer)是指在与人工智能模型进行交互时,负责设计和优化提示的专业人员。他们的目标是通过精心构造的提示,引导模型产生准确、有用和相关的回答。作为提示词工程师,他们需要具备一定的领域知识、理解人工智能模型的能力以及对用户需求的敏感性。提示词工程师的主要职责包括:设计提示:提示词工程师需要根据用户需求和模型能力设计有效的提示。他们需要考虑提示的长度、结构、措辞和信息量等因素,以确保提示能够清晰地传达用户意图并引导模型生成满意的结果。优化提示:提示词工程师需要不断优化提示,以提高模型的性能。他们可以通过收集用户反馈、分析模型结果和实验不同的提示策略等方式来优化提示。评估提示:提示词工程师需要评估提示的有效性。他们可以使用各种指标来评估提示,例如模型的准确率、流畅度和相关性等。提示词工程师需要具备以下技能和知识:领域知识:提示词工程师需要对他们所工作的领域有深入的了解,以便能够设计出有效的提示。自然语言处理(NLP):提示词工程师需要了解NLP的基本原理和技术,以便能够理解和生成自然语言文本。人工智能(AI):提示词工程师需要了解AI的基本原理和技术,以便能够理解和使用AI模型。沟通能力:提示词工程师需要具备良好的沟通能力,以便能够与用户、团队成员和其他利益相关者有效沟通。提示词工程师是一个新兴的职业,随着人工智能技术的不断发展,对提示词工程师的需求将会越来越大。以下是一些提示词工程师工作的实际案例:

提示词母体系列(2):再进阶,一分钟创建你的拟人化小助理

[title]提示词母体系列(2):再进阶,一分钟创建你的拟人化小助理[heading1]四、实际测试在全面理解了提示词的结构和内容后,我们自然要进行实际测试,看看这个模板在实际应用中的效果如何。我们的测试流程包括两个大部分。首先,我们对基础的提示词模板进行测试,以确保它能够兼容国内外的各种模型,并成功生成拟人化的提示词。之后,我们将这些拟人化提示词应用于不同的模型中,进一步评估它们的实际应用效果和适应性。

3. 如何让 LLM 应用性能登峰造极

提示词是调用大模型能力的接口,精心设计的提示词可以大大提高模型的准确性和相关性。相比其他技术,通过提示工程优化LLM性能门槛更低、成本也更低。在优化LLM性能的过程中,提示工程往往是要做的第一件事情(若能始于提示工程,终于提示工程则最好啦hh)。基于提示工程快速建立应用原型,并且以此为性能参考基准,用于后续优化性能对比。使用提示工程构建好应用之后,要进一步提高性能则可以考虑添加外部辅助工具、添加参考内容等手段,这就涉及到RAG、Agents等相关技术。鉴于提示词对LLM的核心作用,在实际中,进行RAG、微调或其他高级技术之后也应该再次进行提示工程优化提示词,如前面所说,提示工程贯穿LLM性能优化过程的始终。提示工程的几项核心原则就是:编写清晰的指令将复杂任务分解为简单任务给LLM一定的时间空间思考系统的测试性能变化几项原则看着简单,实践却是不易,要提高提示技巧应多学多练。关于如何写好prompt网上的资料有很多了,推荐阅读几家大模型厂商的提示工程指南,LangGPT结构化提示词知识库中也有很多高质量资料和提示词,在此不再赘述。LangGPT结构化提示词知识库:[http://feishu.langgpt.ai/](http://feishu.langgpt.ai/)在提示工程进行过程中和后续进一步的性能优化过程中,如何知道性能是否变好呢?如何系统的测试性能变化?下面讲讲如何做好性能评估

Others are asking
AI应用于教育行业在评估和认证机制的改革方面的问题
AI 应用于教育行业在评估和认证机制的改革方面存在以下问题: 1. 教育体系具有惯性,课程设置、教师资格认证、学术评价体制等均有深厚传统根基,更新和调整需要时间,资源重新配置无法一蹴而就,大规模改革提案的决策流程涉及多方利益博弈,是长期议程。 2. 现有的教育体系追求稳定性和标准化,而非灵活性和快速响应,抵制变动,本质上较为保守,与 AI 引领的教育创新所需的快速试错和持续迭代能力脱节。 3. 教育政策更新滞后,政策制定者对新兴技术理解不足,无法充分预见技术对教育的长远影响,政策调整受预算限制、法规约束和政治周期影响,过程缓慢。 4. 技术与政策的脱节体现在教师的培训和招聘上,多数教师未接受相关培训,不仅要掌握工具操作,还需了解如何与教学目标结合,当前教师培训和专业发展项目在数量和质量上与需求存在差距。 5. 现有评估和认证机制侧重于传统学习方法和结果,学校和教师受其约束,创新的教育实践难以得到认可,甚至可能因偏离既定评价标准而遭质疑。
2025-02-10
AI可行性评估报告
以下是为您提供的关于 AI 可行性评估报告的相关内容: 一、关于 AI 责任和新技术的提案 1. 该提案建立在 4 年的分析和利益相关者(包括学者、企业、消费者协会、成员国和公民)的密切参与基础上。 2. 准备工作始于 2018 年,成立了责任和新技术专家组。专家组于 2019 年 11 月发布报告,评估了 AI 的某些特征对国家民事责任规则构成的挑战。 3. 专家组报告的输入得到了三项额外外部研究的补充: 基于欧洲侵权法对关键 AI 相关问题的比较法律研究。 关于责任制度有针对性调整对消费者决策(特别是他们对采用 AI 支持的产品和服务的信任和意愿)影响的行为经济学研究。 涵盖一系列问题的经济研究,包括 AI 应用的受害者与非 AI 设备的受害者在试图获得损失赔偿时面临的挑战;企业对当前责任规则在其涉及 AI 的业务中的应用是否不确定以及不确定程度;法律不确定性的影响是否会阻碍对 AI 的投资;国家责任法的进一步碎片化是否会降低 AI 应用和服务的内部市场的有效性,以及通过欧盟立法协调国家民事责任的某些方面是否会减少这些问题并促进欧盟公司对 AI 技术的总体采用。 二、AI 相关的其他内容 1. 让 Claude 3.5 摆脱循环的提示技巧:在模型陷入重复或逻辑僵局时,可使用“退后一步”提示词,让其先进行多步、多角度思考,输出十段左右分析,再转化为代码实现。优势是避免错误方向的持续生成,促使模型输出新的思考过程。但如果模型输出内容已过于冗杂,建议修改原始提示词。 2. AI 对程序员工作的影响分析:AI 可代替代码生成、补全、分析问题和数据提取、辅助架构设计文档等部分;无法代替需求分析、复杂项目拆分、线上问题排查、调试及安全性保障。专业程序员可通过 AI 提升效率,但非专业人士难以依赖 AI 完成复杂任务,需注重自身技能提升和架构设计能力。 3. AI 应用场景:可从“自相矛盾”“时间线”“常识性冲突”角度,分析访谈内容的内部一致性,并结合常识推测可能存在夸大或不实之处。适合验证新闻、访谈或声明的真实性,发现潜在问题。 三、关于 AI 的创新方法 1. 政府已通过发布相关内容支持工具的开发。 2. 提出关于非监管工具对组织嵌入可信 AI 的帮助。 3. 包括长期规划,如交付确保框架有效的核心功能的首次迭代、与关键监管机构合作、发布草案咨询、开发监管沙盒或试验台、发布监测和评估报告、更新 AI 监管路线图等。
2025-01-22
请写一份基于人工智能的智能家居安防系统建设方案,包括项目介绍、商业模式、、竞品分析、行业分析、经营规划、风险评估、融资规划等。
以下是为您生成的基于人工智能的智能家居安防系统建设方案: 项目介绍: 智能家居安防系统是利用人工智能技术,对家居环境进行实时监控和安全防护的系统。它融合了智能硬件、智能软件、智能网联和服务平台等技术,旨在提升家居安防的效率和可靠性。 商业模式: 可以采用设备销售与服务订阅相结合的模式。销售智能安防设备获取收入,同时提供定期的维护和升级服务,用户按需订阅。 竞品分析: 目前市场上的竞品主要包括传统安防企业的智能化产品和新兴科技公司的创新方案。传统企业可能在硬件制造和渠道方面有优势,新兴公司则在技术创新和用户体验上有所突破。 行业分析: 智能家居安防市场正处于快速发展阶段。随着人们对生活品质和安全的重视,需求不断增长。同时,技术的进步也为行业发展提供了有力支持。 经营规划: 1. 产品研发:不断优化智能安防设备的性能和功能。 2. 市场推广:通过线上线下多种渠道进行宣传和推广。 3. 客户服务:建立完善的售后服务体系,提高用户满意度。 风险评估: 1. 技术风险:如技术更新换代快,需要持续投入研发。 2. 市场风险:竞争激烈,市场份额可能受到挤压。 3. 法律风险:需符合相关法律法规和标准。 融资规划: 根据项目的发展阶段和资金需求,制定合理的融资计划。可以考虑天使投资、风险投资、银行贷款等多种融资渠道。 需要注意的是,以上方案仅为初步框架,具体内容还需要进一步深入调研和细化。
2024-12-11
AI 评估 GPU 大模型的性能指标,包括输入 token 和输出 token 能力的区分。
以下是关于 AI 评估 GPU 大模型性能指标中输入 token 和输出 token 能力区分的相关内容: 大模型是通过输入大量语料进行训练,从而获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。在大模型的训练和使用过程中: 1. 训练需要大量计算,GPU 更合适,只有具备大量 GPU 的才有资本训练大模型。 2. 大模型需要大量数据量,几千亿序列(Token)的输入基本是标配。 3. 要用合适的算法让大模型更好理解 Token 之间的关系。 4. 为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 完成上述步骤后,大模型就可以进行如翻译、问答等推导(infer)工作。 Token 是大模型语言体系中的最小单元,人类语言发送给大模型时,会先转换为其自身语言,推理生成答案后再翻译输出。不同厂商的大模型对中文的文本切分方法不同,通常 1Token 约等于 1 2 个汉字。大模型的收费计算方法以及对输入输出长度的限制,都是以 token 为单位计量的。 在评估 GPU 大模型性能时,显卡的常规指标很重要。大部分模型默认采用 FP16 的加载方式,因此显卡的性能指标主要关注 FP16 的算力和显存大小。算力影响推理速度,包括输入数据处理和持续吐出数据的速度,会体现在从提示词输入后到第一个输出的 token 的等待时间间隔,以及流式输出下每秒吐字的字数,通常每秒 10 token 以上能获得较好的用户体验。显存大小影响能否装载模型,可通过“参数大小乘 2”简化判断所需显存大小,但实际显存需求还会受其他因素影响。
2024-12-05
如何对rag进行评估
对 RAG 进行评估可以从以下几个方面入手: 1. 使用 RAG 三角形的评估方法: 在 LangChain 中创建 RAG 对象,使用 RAGPromptTemplate 作为提示模板,指定检索系统和知识库的参数。 在 TruLens 中创建 TruChain 对象,包装 RAG 对象,指定反馈函数和应用 ID。反馈函数可使用 TruLens 提供的 f_context_relevance、f_groundness、f_answer_relevance,也可自定义。 使用 with 语句运行 RAG 对象,记录反馈数据,包括输入问题、得到的回答以及检索出的文档。 查看和分析反馈数据,根据 RAG 三角形的评估指标评价 RAG 的表现。 2. 建立评估框架将检索性能与整个 LLM 应用程序隔离开来,从以下角度评估: 模型角度(generation): 回答真实性:模型结果的真实性高低(减少模型幻觉)。 回答相关度:结果和问题的相关程度,避免南辕北辙。 检索角度(retrieval): 召回率(recall):相关信息在返回的检索内容中的包含程度,越全越好。 准确率(precision):返回的检索内容中有用信息的占比,越多越好。 3. 考虑以下评估方法和指标: 生成质量评估:常用自动评估指标(如 BLEU、ROUGE 等)、人工评估和事实验证,衡量生成文本的流畅性、准确性和相关性。 检索效果评估:包括检索的准确性、召回率和效率,其好坏直接影响生成文本的质量。 用户满意度评估:通过用户调查、用户反馈和用户交互数据了解用户对 RAG 系统的满意度和体验。 多模态评估:对于生成多模态内容的 RAG 系统,评估不同模态之间的一致性和相关性,可通过多模态评估指标实现。 实时性评估:对于需要实时更新的 RAG 任务,考虑信息更新的及时性和效率。 基准测试集:使用基准测试集进行实验和比较不同的 RAG 系统,涵盖多样化的任务和查询,以适应不同的应用场景。 评估方法和指标的选择取决于具体的任务和应用场景,综合使用多种评估方法可更全面地了解 RAG 系统的性能和效果,评估结果能指导系统的改进和优化,满足用户需求。此外,RAGAS 是一个用于 RAG 评估的知名开源库,可参考使用: 。需要注意的是,RAG 适合打造专才,不适合打造通才,且存在一定局限性,如在提供通用领域知识方面表现不佳,可能影响模型的风格或结构输出、增加 token 消耗等,部分问题需使用微调技术解决。
2024-11-13
帮我找知识库里和「评估」相关的内容或文章
以下是知识库里与“评估”相关的内容: 提示工程: 评估程序在优化系统设计时很有用。好的评估程序需要具备以下特点: 具有代表性:能够代表真实世界的使用场景,或者至少包含多样化的测试用例。 样本量充足:拥有足够的测试用例,以保证统计结果的可靠性。 易于自动化:可以自动运行或重复执行。 评估工作可以由计算机、人类或两者协作完成。计算机可以使用客观标准以及一些主观或模糊标准自动执行评估,其中模型输出由其他模型查询评估。是一个开源软件框架,提供了创建自动评估程序的工具。 基于模型的评估在评估具有多种可能答案的问题时非常有用,模型可以根据预定义的标准对不同的答案进行评分,帮助我们选择最佳答案。可以用模型进行评估和需要人工评估之间的界限是模糊的,并且随着模型变得越来越强大而不断变化。 OpenAI 官方指南: 评估程序(或称为“Evals”)对于优化系统设计非常有用。良好的评估: 代表现实世界的使用(或至少是多样化的)。 包含许多测试用例以获得更大的统计能力。 易于自动化或重复。 输出的评估可以由计算机、人类或混合来完成。计算机可以使用客观标准以及一些主观或模糊标准来自动评估,其中模型输出由其他模型查询评估。是一个开源软件框架,提供用于创建自动评估的工具。 当存在一系列可能被认为质量相同的输出时,基于模型的评估可能很有用。使用基于模型的评估可以实际评估的内容与需要人工评估的内容之间的界限是模糊的,并且随着模型变得更强大而不断变化。 Gemini 报告: 为了评估 Gemini 模型在政策领域和其他在影响评估中确定的关键风险领域中的表现,在模型开发的整个生命周期中开展了一系列评估。 在训练和优化 Gemini 模型过程中,会进行开发评估以进行“hillclimbing”。这些评估是由 Gemini 团队设计的,或者是针对外部学术基准的评估。评估考虑诸如有用性(指令遵循和创造力)、安全性和事实性等问题。 保证评估是为了治理和审查而进行的,通常在关键里程碑或培训运行结束时由模型开发团队之外的团队进行。保证评估按照模态进行标准化,数据集严格保密。只有高层次的见解被反馈到训练过程中,以协助缓解工作。保证评估包括对 Gemini 政策的测试,并包括对潜在生物危害、说服力和网络安全等危险能力的持续测试。 外部评估由谷歌之外的合作伙伴进行,以发现盲点。外部团体对模型进行了一系列问题的压力测试,包括白宫承诺书中列出的领域,测试通过结构化评估和非结构化的红队测试进行。这些评估的设计是独立的,并且结果定期报告给 Google DeepMind 团队。
2024-09-30
生成提示词的提示词
以下是关于生成提示词的相关内容: 生成提示词的思路和方法: 可以根据效果好的图片中的高频提示词去反推效果,结合不同字体效果的描述,打包到一组提示词中。提示词给到 AI 后,AI 会根据给定文字的文义,判断适合的情绪风格,然后给出适合情绪的字体和风格描述、情感氛围等,加上一些质量/品质词,形成输出提示词结构。为了让 AI 更能描述清晰风格,可以先给定多种参照举例。 具体操作步骤: 打开 AI 工具的对话框,将相关提示词完整复制粘贴到对话框。推荐使用 ChatGPT 4o。 当 AI 回复后,发送您想要设计的文字。可以仅发送想要的文字,也可以发送图片(适合有多模态的 AI)让 AI 识别和反推。 将 AI 回复的提示词部分的内容复制到即梦 AI。 对生成提示词的一些观点: 提示词生成提示词并非必要,不一定能生成最好的 Prompt 框架,修改过程可能耗时且不一定能修改好,不如花钱找人写。 一句话生成完整符合需求的 Prompt 非常困难,只能大概给出框架和构思,需要更低成本地调整需求和修改 Prompt。 不同生图工具生成提示词的特点: 即使是简短的描述,生成的提示词也非常细节、专业。 会解析需求,找出核心要点和潜在的诠释点,并给出不同的提示词方案。 提示词构建更多在于增强,而不是发散,生成的内容更符合期望。 同时生成中、英双版本,国内外工具通用无压力。 14 款 AI 生图工具实测对比: 本次实测用到的工具包括国内版的即梦 3.0(https://jimeng.jianying.com/aitool/home)、WHEE(https://www.whee.com)、豆包(https://www.doubao.com/chat)、可灵(https://app.klingai.com/cn/texttoimage/new)、通义万相(https://tongyi.aliyun.com/wanxiang/creation)、星流(https://www.xingliu.art)、LibiblibAI(https://www.liblib.art),以及国外版的相关工具。
2025-04-20
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
调教ai的利器,提示词工程
提示词工程是调教 AI 的重要手段,以下是关于提示词工程的相关知识: 作用:避免 AI 掉入“幻觉”陷阱,引导 AI 生成更可靠的内容。 原理:AI 对提示词的理解能力与幻觉的产生密切相关,清晰、具体的提示词能帮助其更好地理解意图,减少错误。 技巧: 明确要求 AI 引用可靠来源,如在询问历史事件时要求引用权威文献,询问科学事实时要求引用科研论文,询问法律条款时要求引用官方文件。 要求 AI 提供详细的推理过程,如询问数学公式时展示推导过程,询问代码功能时逐行解释含义。 明确限制 AI 的生成范围,如询问名人名言时指定名人姓名和相关主题,询问新闻事件时指定时间范围和关键词。 通过这些清晰、具体、有针对性的提示词技巧,可以引导 AI 生成更准确和可靠的内容。但提示词工程只是辅助手段,从根本上解决 AI 幻觉问题还需从数据、模型、训练方法等多方面努力。 提示词工程就像与博学但有点固执的老教授交流,精心设计输入文本能引导 AI 更好地理解需求并给出更准确有用的回答。比如,问“请用简单的语言,为一个 10 岁的小朋友解释什么是人工智能,并举一个生活中的例子”,AI 更可能给出通俗易懂的解释。 在使用 AI 工具的过程中,可能会出现答非所问、回答格式不标准等问题,为让 AI 更好地服务,需要学习提示词工程。当用户的需求接近 AI 真实范围时,可通过写提示词甚至创建 BOT 来优化使用效果。
2025-04-15
提示词
提示词是让 AI 听懂您的需求并生成想要画面的关键。 基础公式(新手必学):景别+运镜+主体+动作+风格。示例:特写镜头|镜头旋转|发光水晶球悬浮|星尘特效|赛博朋克风格。 进阶公式(提升质感):景别+运镜+主体(细节)+动作(速率)+场景(层次)+氛围+光影。示例:全景俯拍|无人机跟拍|雪山湖泊(镜面倒影)|慢动作|冷色调光线|自然纪录片风格。 在星流一站式 AI 设计工具中,prompt 输入框可输入提示词,使用图生图功能辅助创作。 提示词用于描绘您想生成的画面,支持中英文输入。不同模型对输入语言有不同要求,如通用大模型与基础模型 F.1、基础模型 XL 使用自然语言,基础模型 1.5 使用单个词组。 写好提示词要做到: 1. 内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 2. 调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。 3. 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可对已有的提示词权重进行编辑。 4. 借助辅助功能,如翻译功能可一键将提示词翻译成英文,还有删除所有提示词、会员加速等功能。 如果您接触过大量提示工程相关的示例和应用,会注意到提示词由一些要素组成,包括指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息,引导语言模型更好地响应)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。但提示词所需的格式取决于想要语言模型完成的任务类型,并非所有要素都是必须的。
2025-04-15
如何成为提示词工程师
提示词工程师是在与人工智能模型交互时,负责设计和优化提示的专业人员,旨在通过精心构造的提示引导模型产生准确、有用和相关的回答。 其主要职责包括: 1. 设计提示:根据用户需求和模型能力设计有效的提示,考虑提示的长度、结构、措辞和信息量等因素,以清晰传达用户意图并引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式不断优化提示,提高模型性能。 3. 评估提示:使用各种指标如模型的准确率、流畅度和相关性等来评估提示的有效性。 提示词工程师需要具备以下技能和知识: 1. 领域知识:对所工作的领域有深入了解,以便设计出有效的提示。 2. 自然语言处理(NLP):了解 NLP 的基本原理和技术,能够理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 的基本原理和技术,以便理解和使用 AI 模型。 4. 沟通能力:具备良好的沟通能力,与用户、团队成员和其他利益相关者有效沟通。 以下是一些提示词工程师工作的实际案例,比如在市场营销类和商业类中,有自动优化 Prompt 的案例,如 JackeyLiu 熟悉的转化步骤包括: 1. 角色和能力:基于问题思考 chatGPT 最适合扮演的角色,应是该领域最资深的专家,适合解决问题。 2. 上下文说明:思考提出问题的原因、背景和上下文。 3. 任务陈述:基于问题进行陈述。 提示词工程师是一个新兴职业,随着人工智能技术的不断发展,对其需求将会越来越大。
2025-04-15
我想要通过建筑草图生成效果图,有什么工具和流程可以使用
以下是使用悠船工具将建筑草图生成效果图的流程和相关介绍: 1. 基础使用: 提示词:在右侧填写提示词,右上可下载对应图片。 参数调整:参数详解参考下方「参数详解」。注意任何点击都会重新生成图片,免费用户可能会提示超出套餐,所以别乱点。最右侧是所有生成图片的略缩图。 2. 图片调整: 变化:分为细微和强烈,细微改变幅度小,强烈改变幅度大。 高清:有“直接”和“创意”两种模式,“直接”表示啥都不变直接出高清,“创意”表示在图片基础上进行微小的优化调整。 风格变化:基于生成的图片作为上传图片(垫图)再创作。 拓展:可上下左右拓展图片。 缩放:指的是镜头,比如 2x 就是镜头拉远 2 倍。 局部重绘:选择区域要大一些,太小的无法进行修改。 3. 图像参考: 在悠船中可以利用垫图和提示词配合生成符合要求的建筑、风景、文物等。只需将图片复制到悠船的提示词框里面,并填写对应的提示词描述。
2025-04-14
将照片改成卡通效果用什么ai会比较简单易操作
以下几种 AI 工具可以将照片改成卡通效果,操作相对简单易操作: 1. ChatGPT 4o:支持上传照片后直接生成“吉卜力卡通风格”图像,提示词只需简单写“吉卜力风格化”即可,后续会话中只需上传图片,无需重复输入提示词。参考链接:
2025-04-08
视频生成 效果对比
以下是为您整理的关于视频生成的相关内容: 百度“秒哒”: 特点:无代码编程、多智能体协作、多工具调用,一句话生成应用、网站、小游戏。 优势:更适合普通用户,直接输出结果,看不到写代码过程。智能体协作矩阵支持灵活组建虚拟开发团队,工具集成强大,完成即部署。 试玩链接(临时有效): 相关链接: 电商视频生成神器 Product Anyshoot: 功能:商品图秒变视频展示,模特自动拿着、穿戴、摆放商品。 特点:支持所有电商品类,5000+模板可自定义修改。 优势:商品还原度高,视频真实流畅,对比效果优于 Pika 和阿里通义 Wanx。 在线体验: 相关链接: Meta 发布的 Meta Movie Gen 文生视频模型: 组成:由视频生成和音频生成两个模型组成。 Movie Gen Video:30B 参数 Transformer 模型,可从单个文本提示生成 16 秒、16 帧每秒的高清视频,相当于 73K 个视频 tokens。能执行精确视频编辑,如添加、删除或替换元素,或背景替换、样式更改等全局修改。在个性化视频方面,在保持角色身份一致性和运动自然性方面取得 SOTA 性能。 Movie Gen Audio:13B 参数 Transformer 模型,可接受视频输入以及可选的文本提示,生成与视频同步的高保真音频。 训练方式:通过预训练微调范式完成,在骨干网络架构上沿用了 Transformer,特别是 Llama3 的许多设计。预训练阶段在海量的视频文本和图像文本数据集上进行联合训练,学习对视觉世界的理解。微调阶段精心挑选一小部分高质量视频进行有监督微调,以进一步提升生成视频的运动流畅度和美学品质。 为提高效果,引入流匹配(Flow Matching)作为训练目标,使得视频生成的效果在精度和细节表现上优于扩散模型。扩散模型通过从数据分布逐渐加入噪声,然后在推理时通过逆过程去除噪声来生成样本,用大量的迭代步数逐步逼近目标分布。流匹配则是通过直接学习样本从噪声向目标数据分布转化的速度,模型只需通过估计如何在每个时间步中演化样本,即可生成高质量的结果。
2025-03-30
目前文字转视频,效果比较理想的工具有哪些?
目前文字转视频效果比较理想的工具包括: 1. Pika:是一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:若熟悉 Stable Diffusion,可安装此最新插件,能在图片基础上直接生成视频,由 Stability AI 开源。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需收费。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 更多的文生视频的网站可以查看这里: 此外,Sora v2 即将发布,支持 1 分钟视频生成,提供文本转视频、文本+参考图片转视频以及文本+视频转视频功能。Runway 还有 Act One 角色参考视频功能,能实现视频表演和声音的角色转移,支持通过拍摄视频驱动另一个视频,保持表情和口型同步。
2025-03-30
当前效果比较好的对口型,换脸,配音AI应用
以下是一些效果较好的对口型、换脸、配音的 AI 应用: Runway:网址为 https://runwayml.com ,有网页和 app 方便使用。工具教程: 即梦:网址为 https://dreamina.jianying.com/ ,是剪映旗下产品,生成 3 秒,动作幅度有很大升级,有最新 S 模型和 P 模型。工具教程: Minimax 海螺 AI:网址为 https://hailuoai.video/ ,非常听话,语义理解能力非常强。视频模型: Kling:网址为 kling.kuaishou.com ,支持运动笔刷,1.5 模型可以直出 1080P30 帧视频。视频模型: Vidu:网址为 https://www.vidu.studio/ haiper:网址为 https://app.haiper.ai/ Pika:网址为 https://pika.art/ ,可控性强,可以对嘴型,可配音。工具教程: 智谱清影:网址为 https://chatglm.cn/video ,开源了,可以自己部署 cogvideo。工具教程: PixVerse:网址为 https://pixverse.ai/ ,人少不怎么排队,还有换脸功能。工具教程: 通义万相:网址为 https://tongyi.aliyun.com/wanxiang/ ,大幅度运动很强。 luma:网址为 https://lumalabs.ai/ 即梦 AI 对口型的相关教程: 功能介绍:「对口型」是即梦 AI「视频生成」中的二次编辑功能,现支持中文、英文配音。目前主要针对写实/偏真实风格化人物的口型及配音生成,为用户的创作提供更多视听信息传达的能力。可上传包含完整人物面容的图片,进行视频生成,待视频生成完成后,点击预览视频下的「对口型」按钮,输入台词并选择音色,或上传配音文件进行对口型效果生成。目前支持语言:中文(全部音色),英文(推荐「超拟真」内的音色) 技巧:上传写实/近写实的人物单人图片,目前不支持多人物图片对口型;输入 prompt,选择参数,点击生成视频,尽量确保人物无形变等扭曲效果;确保人物生成的情绪与希望匹配的口型内容匹配;在生成的视频下方,点击【对口型】;输入或上传需要配音的内容,注意视频生成时长和配音试听时长尽量对齐,点击生成。先对口型,再超分补帧 关于 AI 短片的相关信息: AI 图片与视频生成的新能力与应用: 图片编辑功能:Midjourney 新增本地图片上传编辑入口,可进行局部重绘、扩图和风格转换等操作。 视频生成模型:解梦新出 p 模型和 s 模型,p 模型支持人物多动作和变焦,易改变画风;s 模型生成速度快、积分消耗少,能保持原始画风但语义理解有限。 特效玩法:皮卡和 Pixforce 有特效玩法,如人物爆炸、漂浮等,可用于优化视频效果。 视频转会:Runway 的 GN3 模型支持上传视频并转换风格,可用于实现多元宇宙等风格穿梭的片子,也能将简单场景转换为难以拍摄的场景。 视频生成中的角色生视频技术: 角色生视频突破关键帧限制:当前视频生成多依赖关键帧,而角色生视频不再是关键帧输入,而是直接传入角色本身,可更灵活生成视频,如让小男孩从左跑到右。 多角色参考生成创意视频:支持上传多张图,最多三张,可将人物、衣服、背景等元素融合生成视频,如小男孩穿裙子在宇宙飞。 角色对口型技术:如吉梦的对口型技术,支持文本朗诵和本地配音,能根据输入生成人物开口讲话的视频,但有上传人物长相等限制。 不同工具的角色生视频效果:对比了吉梦、Runway 等工具的角色生视频效果,如 Runway 的 x one 在身体、头部、眼神动态上表现更好。 角色生视频的应用场景:可用于规避机器人念台词的尴尬瞬间,让机器人有更丰富的表情和神态。 角色生视频的未来发展:未来视频生成将摆脱纯关键帧方式,采用多模态信息输入,如定义角色和场景的三视图等。
2025-03-25
有哪些效果好的开源OCR模型值得推荐
以下是一些效果较好的开源 OCR 模型推荐: 1. Mistral OCR:当前最强的 OCR 模型,具有多语言支持,超越 Gemini 2.0 Flash,可在 Le Chat 及 API 调用。ElevenLabs 赠送 $25 Mistral API 额度,免费领取!领取地址: 2. Gemini 2.0 Flash:也是一款 OCR 模型。
2025-03-24