Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

提词工程

Answer

提示词工程是一门在 AI 领域中新兴且重要的学科,主要包括以下方面:

  • 实现原理:主要由提示词注入和工具结果回传两部分代码组成。提示词注入用于将工具信息及使用工具的提示词添加到系统提示中,包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。工具结果回传则是解析 tool calling 的输出,并将工具返回的内容再次嵌入 LLM。
    • 提示词注入阶段:INSTRUCTION 包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。TOOL_EAXMPLE 用于提示 LLM 理解和使用工具,编写时应注意用无关紧要的工具作示例避免混淆。tools_instructions 可通过输入不同工具动态调整,让 LLM 得知可用工具及使用方法。REUTRN_FORMAT 定义调用 API 的格式。
    • 工具结果回传阶段:利用正则表达式抓取输出中的“tool”和“parameters”参数,对于 interpreter 工具使用另一种正则表达式提取 LLM 输出的代码。通过识别 LLM 返回的调用工具的字典提取对应值,传入工具函数,将结果以 observation 或 user 角色返回给 LLM。
  • 是用户与模型沟通愿望的文本界面,涵盖简单问题到复杂任务,包括指令、问题、输入数据和示例等,以指导 AI 的响应。其核心在于制作出能实现特定目标的最佳提示词,需结合领域知识、对 AI 模型的理解及系统化方法为不同情境定制提示词,还可能包括创建可根据给定数据集或上下文进行程序化修改的模板,是一个迭代和探索的过程。
  • 在人工智能迅速发展的当下,已成为企业领导者必须掌握的关键技能,是设计和优化输入到 AI 系统指令(即提示词)的艺术和科学。但简单提示词存在局限性,无法满足复杂需求,推动了更先进提示技巧如思维链、思维树和思维图等的发展。
Content generated by AI large model, please carefully verify (powered by aily)

References

无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能

本文采用的提示词工程主要有两部分代码组成:提示词注入和工具结果回传。提示词注入用于将工具信息以及使用工具的提示词添加到系统提示中。工具结果回传则是解析tool calling的输出,并将工具返回的内容再次嵌入LLM。[heading2]1、提示词注入阶段[content]INSTRUCTION为最后注入到系统提示中的字符串,他又包含了TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT三个部分。TOOL_EAXMPLE用于提示LLM如何理解tool以及如何使用tool。在编写TOOL_EAXMPLE时,请注意用一些无关紧要的工具作为示例,例如本文使用的将数字加一和数字减一的工具,从而避免LLM混淆真正可以使用的工具与示例工具。tools_instructions是由目前通用的工具字典转换成LLM可读的工具列表。实际使用LLM时,可以通过输入不同的工具来动态调整tools_instructions,让LLM得知目前可用的工具有哪些以及如何使用。REUTRN_FORMAT定义了调用API的格式。[heading2]2、工具结果回传阶段[content]利用正则表达式抓取输出中的"tool"和"parameters"参数。对于interpreter工具,使用了另一种正则表达式来提取LLM输出的代码,提高LLM使用interpreter工具的成功率。本文使用代码如下:通过识别LLM返回的调用工具的字典,提取出对应的值,再传入相应的工具函数,最后将工具返回的结果以observation的角色返回给LLM。对于一些不接受observation、tool、function角色的LLM接口,可以改为回传给user角色,例如:通过以上提示词工程,可以避免微调,让完全没有tool calling能力的LLM获得稳定的tool calling能力。

小七姐:精读翻译《提示词设计和工程:入门与高级方法》

在生成式AI模型中,提示词工程是一门新兴的学科,它塑造了这些模型的交互和输出。提示词是用户与模型沟通愿望的文本界面,无论是在像DALLE-3或Midjourney这样的图像生成模型中描述图像,还是在像GPT-4和Gemini这样的LLM中提出复杂的问题。提示词可以是简单的问题到复杂的任务,包括指令、问题、输入数据和示例,以指导AI的响应。提示词工程的核心在于制作出能够实现特定目标的最佳提示词。这个过程不仅仅是指导模型,还涉及到对模型能力和局限性的深刻理解,以及它所处的上下文。例如,在图像生成模型中,提示词可能是对期望图像的详细描述,而在LLM中,它可能是一个包含各种类型数据的复杂查询。提示词工程不仅仅是构建提示词,它还需要结合领域知识、对AI模型的理解,以及一种系统化的方法来为不同情境定制提示词。这可能包括创建可以根据给定数据集或上下文进行程序化修改的模板。例如,基于用户数据生成个性化响应可能会使用一个动态填充相关信息的模板。此外,提示词工程是一个迭代和探索的过程,类似于传统软件工程实践,如版本控制和回归测试。这个领域的快速增长表明它有潜力彻底改变机器学习的某些方面,超越传统的特征或架构工程方法,尤其是在大型神经网络的背景下。另一方面,传统工程实践,如版本控制和回归测试,需要适应这个新范式,就像它们适应其他机器学习方法一样[1]。本文旨在深入探讨这个新兴领域,探索其基础方面和高级应用。我们将重点关注提示词工程在LLM中的应用。然而,大多数技术也可以应用于多模态生成式AI模型。

【全方位解析】企业如何通过提示词工程优化AI输出,提升市场竞争力

然而,随着企业面临的挑战日益复杂,简单的提示词往往无法满足需求。例如,当我们要求AI “分析我们的市场状况”时,可能得到的只是一些浅显的观察。这种简单提示无法充分利用AI的潜力,也无法应对复杂的商业问题。正是这种局限性推动了更先进提示技巧的发展,如思维链(Chain of Thought,CoT)、思维树(Tree of Thoughts,ToT)和思维图(Graph of Thoughts,GoT)等。这些高级技巧能够引导AI进行更深入的分析、探索多种可能性,并处理复杂的推理任务。在接下来的内容中,我们将深入探讨这些先进的提示词工程技巧,了解它们如何应用于企业决策、创新和战略规划等关键领域。通过掌握这些技巧,企业领导者将能够更有效地利用AI技术,在竞争激烈的商业环境中保持领先地位。我们和AI交互的时候,缺乏背景的了解,为了更好把前因后果告诉它,让它好好干活,就有了提示词的关键要素,有了很多框架。比如去年新加坡提示词工程比赛冠军用到的一个框架。

Others are asking
视频提词
以下是关于视频提词的相关内容: Pikadditions 功能: 1. 上传基础视频: 点击页面下方的【Pikaddition】按钮。 拖拽或点击上传本地视频。 若自己没有视频,可在“templates”板块使用官方示例视频做测试。 2. 添加主角图片:点击【Upload Image】上传角色图片文件。 3. 编写视频提示词: 若需要参考角色在视频里的相关互动,需在输入框用英文描述期望效果(支持 Emoji 辅助),然后点击生成按钮。 Pika 会提供一段默认 prompt,若无特殊想法,可直接使用。 建议在自己的提示词尾部加入官方提供的默认提示词,效果会更好。 该功能提示词公式参考: 事件驱动句式:As... 空间锁定技巧:使用场景物体作坐标轴:on the.../behind the.../from the... 动态呼应原则:角色动作与视频元素联动:swaying with.../reacting to.../matching... Sora 相关: 1. Specify Visual Details:包括颜色、灯光、相机角度和风格等任何视觉元素的描述。提供的细节越多,输出就越接近您的愿景。 2. Mention Desired Length and Format:如果您对特定长度(以秒或分钟为单位)或格式(宽高比、分辨率)有想法,请提及。这对于 AI 生成符合您要求的内容至关重要。 3. Outline Audio Preferences:如果您的视频需要特定的音频元素,如背景音乐、旁白或音效,请详细描述。指定您是希望 AI 生成这些元素还是您自己提供。 4. Consider Ethical and Copyright Guidelines:确保您的提示符合道德标准和版权法。避免请求侵犯版权或涉及没有适当背景的敏感主题。 5. 提供了一个视频 AI 提示的模板和 Sora 的示例提示,您可以根据具体需求和使用的视频 AI 工具的能力进行调整。 Vidu Prompt 关键词: 基础提示词:A melancholic teddy bear,dressed in rugged attire with a widebrimmed hat and a bandolier,gazes at the camera,its lips trembling slightly as it exhales a puff of smoke.The warm glow of its cigarette illuminates its face,casting shadows that emphasize its somber mood.Its paws rest on the porch railing in a relaxed pose,but its button eyes betray a deeper sadness.As it slowly turns its head to the left,its gaze shifts to the distant horizon,lost in thought.The lighting is low,with cool blue tones contrasting the warm light from the cigarette,enhancing the mood of quiet reflection.The setting,a porch with wooden panels and a window behind it,completes the Western ambiance,capturing a moment of introspective solitude amidst the vast,open landscape.
2025-04-09
调教ai的利器,提示词工程
提示词工程是调教 AI 的重要手段,以下是关于提示词工程的相关知识: 作用:避免 AI 掉入“幻觉”陷阱,引导 AI 生成更可靠的内容。 原理:AI 对提示词的理解能力与幻觉的产生密切相关,清晰、具体的提示词能帮助其更好地理解意图,减少错误。 技巧: 明确要求 AI 引用可靠来源,如在询问历史事件时要求引用权威文献,询问科学事实时要求引用科研论文,询问法律条款时要求引用官方文件。 要求 AI 提供详细的推理过程,如询问数学公式时展示推导过程,询问代码功能时逐行解释含义。 明确限制 AI 的生成范围,如询问名人名言时指定名人姓名和相关主题,询问新闻事件时指定时间范围和关键词。 通过这些清晰、具体、有针对性的提示词技巧,可以引导 AI 生成更准确和可靠的内容。但提示词工程只是辅助手段,从根本上解决 AI 幻觉问题还需从数据、模型、训练方法等多方面努力。 提示词工程就像与博学但有点固执的老教授交流,精心设计输入文本能引导 AI 更好地理解需求并给出更准确有用的回答。比如,问“请用简单的语言,为一个 10 岁的小朋友解释什么是人工智能,并举一个生活中的例子”,AI 更可能给出通俗易懂的解释。 在使用 AI 工具的过程中,可能会出现答非所问、回答格式不标准等问题,为让 AI 更好地服务,需要学习提示词工程。当用户的需求接近 AI 真实范围时,可通过写提示词甚至创建 BOT 来优化使用效果。
2025-04-15
如何成为提示词工程师
提示词工程师是在与人工智能模型交互时,负责设计和优化提示的专业人员,旨在通过精心构造的提示引导模型产生准确、有用和相关的回答。 其主要职责包括: 1. 设计提示:根据用户需求和模型能力设计有效的提示,考虑提示的长度、结构、措辞和信息量等因素,以清晰传达用户意图并引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式不断优化提示,提高模型性能。 3. 评估提示:使用各种指标如模型的准确率、流畅度和相关性等来评估提示的有效性。 提示词工程师需要具备以下技能和知识: 1. 领域知识:对所工作的领域有深入了解,以便设计出有效的提示。 2. 自然语言处理(NLP):了解 NLP 的基本原理和技术,能够理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 的基本原理和技术,以便理解和使用 AI 模型。 4. 沟通能力:具备良好的沟通能力,与用户、团队成员和其他利益相关者有效沟通。 以下是一些提示词工程师工作的实际案例,比如在市场营销类和商业类中,有自动优化 Prompt 的案例,如 JackeyLiu 熟悉的转化步骤包括: 1. 角色和能力:基于问题思考 chatGPT 最适合扮演的角色,应是该领域最资深的专家,适合解决问题。 2. 上下文说明:思考提出问题的原因、背景和上下文。 3. 任务陈述:基于问题进行陈述。 提示词工程师是一个新兴职业,随着人工智能技术的不断发展,对其需求将会越来越大。
2025-04-15
我想学提示词工程
提示词工程是指在与人工智能模型进行交互时,负责设计和优化提示的专业领域。 提示词工程师的职责包括: 1. 设计提示:根据用户需求和模型能力,考虑提示的长度、结构、措辞和信息量等因素,设计有效的提示,清晰传达用户意图,引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同策略等方式,不断优化提示,提高模型性能。 3. 评估提示:使用准确率、流畅度和相关性等指标评估提示的有效性。 提示词工程师需要具备以下技能和知识: 1. 领域知识:对工作领域有深入了解,以便设计有效提示。 2. 自然语言处理(NLP):了解 NLP 基本原理和技术,能够理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 基本原理和技术,能够理解和使用 AI 模型。 4. 沟通能力:与用户、团队成员和其他利益相关者有效沟通。 提示工程是在人工智能领域,特别是自然语言处理和大型语言模型的背景下,一个相对较新的概念。它涉及设计和优化输入提示,以引导 AI 模型生成特定输出或执行特定任务。其关键点包括精确性、创造性、迭代和上下文理解。提示词通常指直接输入到 AI 模型中的问题、请求或指示,是提示工程的一部分。提示工程不仅包括创建提示词,还涉及理解模型行为、优化提示以获得更好性能、探索模型潜在应用等。 目前提示词工程发展火热,出现了各种流派和框架,但结构化虽降低沟通难度、提高结果准确度,却也限制了更多可能性,且大部分框架不太适合解决过于主观、个人情绪或过于简单的问题,一个框架往往难以完全满足需求。
2025-03-31
提示词工程
提示词工程师(Prompt Engineer)是在与人工智能模型交互时,负责设计和优化提示的专业人员。他们的目标是通过精心构造的提示,引导模型产生准确、有用和相关的回答。 其主要职责包括: 1. 设计提示:根据用户需求和模型能力设计有效的提示,考虑提示的长度、结构、措辞和信息量等因素,确保清晰传达用户意图并引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式不断优化提示,以提高模型性能。 3. 评估提示:使用各种指标如模型的准确率、流畅度和相关性等来评估提示的有效性。 提示词工程师需要具备以下技能和知识: 1. 领域知识:对所工作的领域有深入了解,以便设计出有效的提示。 2. 自然语言处理(NLP):了解 NLP 的基本原理和技术,能够理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 的基本原理和技术,能够理解和使用 AI 模型。 4. 沟通能力:具备良好的沟通能力,与用户、团队成员和其他利益相关者有效沟通。 以下是一些提示词工程师工作的实际案例: 无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能。其主要有两部分代码组成:提示词注入和工具结果回传。提示词注入用于将工具信息以及使用工具的提示词添加到系统提示中。工具结果回传则是解析 tool calling 的输出,并将工具返回的内容再次嵌入 LLM。 在生成式 AI 模型中,提示词工程是一门新兴的学科。提示词是用户与模型沟通愿望的文本界面,可从简单问题到复杂任务。提示词工程的核心在于制作出能实现特定目标的最佳提示词,这不仅要指导模型,还涉及对模型能力和局限性的深刻理解及所处的上下文。提示词工程还需要结合领域知识、对 AI 模型的理解及系统化方法为不同情境定制提示词,是一个迭代和探索的过程。本文旨在深入探讨这个新兴领域,重点关注其在 LLM 中的应用,且大多数技术也可应用于多模态生成式 AI 模型。 随着人工智能技术的不断发展,对提示词工程师的需求将会越来越大。
2025-03-27
提示词工程入门
提示词工程入门: 基本概念: 简单的提示词能获得结果,但结果质量与提供信息的数量和完善度有关。提示词可包含指令、问题、上下文、输入、示例等元素,以更好地指导模型获得更好结果。 如使用 OpenAI 的聊天模型,有 system、user 和 assistant 三种角色,system 非必需但有助于设定 assistant 行为。本指南示例通常仅用 user 消息作 prompt。 语言模型能基于给出的上下文续写,可通过改进提示词获得更好结果。提示工程探讨如何设计最佳提示词以高效完成任务,可用于多种高级任务。 相关精读: 在生成式 AI 模型中,提示词工程是新兴学科,塑造模型交互和输出。提示词是用户与模型沟通的文本界面,涵盖简单问题到复杂任务。 提示词工程核心是制作实现特定目标的最佳提示词,涉及对模型能力和局限性的理解及所处上下文。 提示词工程不仅构建提示词,还需结合领域知识、对 AI 模型理解和系统化方法定制提示词,是迭代和探索过程。 关于提示词工程师: 是负责设计和优化提示的专业人员,目标是引导模型产生准确、有用和相关回答。 主要职责包括设计、优化、评估提示,需具备领域知识、自然语言处理、人工智能、沟通能力等。 是新兴职业,随着人工智能发展需求将增大,有实际工作案例。
2025-03-27
我是一个没有技术背景且对AI感兴趣的互联网产品经理,目标是希望理解AI的实现原理并且能够跟开发算法工程师沟通交流,请给我举出AI模型或者机器学习的分类吧。
以下是 AI 模型和机器学习的分类: 1. AI(人工智能):是一个广泛的概念,旨在使计算机系统能够模拟人类智能。 2. 机器学习:是人工智能的一个子领域,让计算机通过数据学习来提高性能。包括以下几种类型: 监督学习:使用有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:是机器学习的一个子领域,模拟人脑创建人工神经网络处理数据,包含多个处理层,在图像识别、语音识别和自然语言处理等任务中表现出色。 4. 大语言模型:是深度学习在自然语言处理领域的应用,目标是理解和生成人类语言,如 ChatGPT、文心一言等。同时具有生成式 AI 的特点,能够生成文本、图像、音频和视频等内容。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。生成式 AI 生成的内容称为 AIGC。
2025-03-26