Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

上下文窗口和 tokens限制

Answer

以下是关于上下文窗口和 tokens 限制的详细解释:

Token 方面:

  • Token 是大模型语言体系中的最小单元。人类语言发送给大模型时,会先被转换为大模型自己的语言,大模型推理生成答案后再翻译为人类能看懂的语言输出。
  • 不同厂商的大模型对中文的文本切分方法不同,通常 1Token 约等于 1 - 2 个汉字。
  • 大模型的收费计算方法以及对输入输出长度的限制,都是以 token 为单位计量的。

上下文方面:

  • 上下文指对话聊天内容前、后的内容信息,其长度和窗口都会影响大模型回答的质量。
  • 上下文长度限制了模型一次交互中能够处理的最大 token 数量,上下文窗口限制了模型在生成每个新 token 时实际参考的前面内容的范围。

目前常见模型的 token 限制:

  • Claude - 2 - 100k 模型的上下文上限是 100k Tokens,即 100000 个 token。
  • ChatGPT - 16k 模型的上下文上限是 16k Tokens,即 16000 个 token。
  • ChatGPT - 4 - 32k 模型的上下文上限是 32k Tokens,即 32000 个 token。

Token 限制的影响:

  • 对一次性输入和一次对话的总体上下文长度同时生效。
  • 当达到上限时,不是停止对话,而是遗忘最前面的对话,类似于鱼的短暂记忆。

查看 token 使用量:

  • 对于 GPT,可以打开https://platform.openai.com/tokenizer查看实时生成的 tokens 消耗和对应字符数量。
  • 需注意 GPT3 和 GPT3.5/4 的 token 计算方式不同,且英文的 Token 占用相对于中文较少,这也是很多中文长 Prompt 会被建议翻译成英文设定然后要求中文输出的原因。

Token 限制对 Prompt 编写的影响:理解前面的内容后,答案应在您的脑海中有雏形。

Content generated by AI large model, please carefully verify (powered by aily)

References

走入AI的世界

首先我们给出一些常见缩写和专业词汇的“人话”解释,它们十分基础,但理解他们至关重要。为了讨论更加聚焦,接下来的内容将主要围绕大语言模型为主进行展开(对于其他模态的大模型,我们暂且放放):LLM:Large language model的缩写,即大语言模型,前面百团大战中的各类大模型,说的都是大语言模型(极其应用)Prompt:中文译作提示词,就是我们输入给大模型的文本内容,可以理解为你和大模型说的话,下达的指令。提示词的质量好坏,会显著影响大模型回答的质量,很多时候如果你觉得大模型回答的太差了,AI味儿太浓了,很可能是你的提示词写的不够好,换言之,不是AI不行,而是你不行?Token:就像人类有着不同的语言,大模型也有着自己的语言体系,如图9,我们发送文本给大模型时,大模型会先把文本转换为他自己的语言,并推理生成答案,而后再翻译成我们看得懂的语言输出给我们。正如人类不同语言都有最小的字词单元(汉语的字/词,英语的字母/单词),大模型语言体系中的最小单元就称为Token。这种人类语言到大模型语言的翻译规则,也是人类定义的,以中文为例,由于不同厂商的大模型采用了不同的文本切分方法,因此一个Token对应的汉字数量也会有所不同,但在通常情况下,1Token≈1-2个汉字。请注意,大模型的收费计算方法,以及对输入输出长度的限制,都是以token为单位计量的。上下文:英文通常翻译为context,指对话聊天内容前、后的内容信息。使用时,上下文长度和上下文窗口都会影响AI大模型回答的质量。上下文长度限制了模型一次交互中能够处理的最大token数量,而上下文窗口限制了模型在生成每个新token时实际参考的前面内容的范围(关于这一点,你需要看完3.2中关于GPT的讨论,方能更好理解)

关于 token 你应该了解……

从官方文档可以看到我们目前使用的模型有哪些,以及每个模型的token限制。除此之外,最直观能感受到各类模型token限制的其实是poe:在这里我们看到的16K、32K、100K就是指token上限。Claude-2-100 k模型的上下文上限是100k Tokens,也就是100000个tokenChatGPT-16 k模型的上下文上限是16k Tokens,也就是16000个tokenChatGPT-4-32 k模型的上下文上限是32k Tokens,也就是32000个token但似乎很多小伙伴不理解这个限制具体影响在哪些方面。所以我替你们问了一下GPT(真不懂你们为什么不自己问/手动狗头)从回答可以看出,这个token限制是同时对下述两者生效的:1、一次性输入2、一次对话的总体上下文长度,值得注意的是这个长度不是达到上限就停止对话,而是遗忘最前面的对话,你可以理解为鱼的记忆只有7秒,第8秒的时候他会忘记第1秒的事,第9秒的时候……(某些同学是不是恍然大悟了)

小七姐:Prompt 喂饭级系列教程小白学习指南(三)

Claude-2-100 k模型的上下文上限是100k Token s,也就是100000个TokenChatGPT-16 k模型的上下文上限是16k Token s,也就是16000个TokenChatGPT-4-32 k模型的上下文上限是32k Token s,也就是32000个Token但似乎很多小伙伴不理解这个限制具体影响在哪些方面。所以我替你们问了一下GPT从回答可以看出,这个Token限制是同时对下述两者生效的:一次性输入一次对话的总体上下文长度,值得注意的是这个长度不是达到上限就停止对话,而是遗忘最前面的对话,你可以理解为鱼的记忆只有7秒,第8秒的时候他会忘记第1秒的事,第9秒的时候……(某些同学是不是恍然大悟了)三、怎么看我使用了多少Token如果我们想要直观的查看GPT是如何切分token的话,我们可以打开:[https://platform.openai.com/tokenizer](https://platform.openai.com/tokenizer)在下图可以看到实时生成的tokens消耗和对应字符数量请注意,GPT3和GPT3.5/4的token计算方式是不一样的。(GPT3用的编码是p50k/r50k,GPT3.5是cl100K_base)在这里值得注意的是,英文的Token占用相对于中文是少很多的,这也是为什么很多中文长Prompt会被建议翻译成英文设定,然后要求中文输出的原因。四、Token限制对Prompt编写有什么影响当你理解了前面的一、二、三之后,这个问题的答案应该已经在你脑子里有雏形了:

Others are asking
飞书多维表格中使用deepseek有100万tokens总量的限制?
飞书多维表格中使用 DeepSeek 有一定的 token 总量限制。DeepSeekR1、V3 模型分别提供了 50 万免费额度和 API 半价活动(算下来 5 元有 100 万)。即日起至北京时间 20250218 23:59:59,所有用户均可在方舟享受 DeepSeek 模型服务的价格优惠。 不同模型的 token 限制有所不同,例如 Claude2100 k 模型的上下文上限是 100k Tokens,即 100000 个 token;ChatGPT16 k 模型的上下文上限是 16k Tokens,即 16000 个 token;ChatGPT432 k 模型的上下文上限是 32k Tokens,即 32000 个 token。 Token 限制同时对一次性输入和一次对话的总体上下文长度生效,不是达到上限就停止对话,而是会遗忘最前面的对话。 如果想直观查看 GPT 如何切分 token,可以打开,在其中可以看到实时生成的 tokens 消耗和对应字符数量。需要注意的是,英文的 Token 占用相对于中文较少,这也是很多中文长 Prompt 会被建议翻译成英文设定然后要求中文输出的原因。
2025-03-07
什么是tokens
在大语言模型领域,Token 通常用来表示文本数据中的一个单元。在不同的语境下,一个 Token 可能代表一个字、一个词,或者是一个句子。在英文中,一个 Token 通常是一个词或者是标点符号。在一些汉语处理系统中,一个 Token 可能是一个字,也可能是一个词。Token 是处理和理解文本数据的基本单元。 在深度学习的语言模型中,如 Transformer,输入的文本首先被切分成一系列的 Tokens。这些 Tokens 被转换成向量,然后被输入到神经网络中进行处理。因此,在这种情况下,Token 可以被理解为语言模型接收和处理的最小的信息单元。在训练过程中,每个 Token 会关联一个预测,这个预测可以是下一个 Token 的预测,也可以是该 Token 的属性预测,如词性、情感等。 训练 Token 的数量会影响模型的性能和准确性。更多的训练 Token 通常意味着更多的训练数据,这可能会提升模型的准确性和泛化能力。然而,处理更多的 Token 也会增加计算的复杂性和计算资源的需求。 很多同学把 Token 理解为中文语义里的“字节”,这种理解有一定的类比相似性,因为“字节”是计算机存储和处理数据的基本单元,而“Token”是语言模型处理文本信息的基本单元。但这种理解不够准确,“Token”在语言模型中的作用比“字节”在计算机中的作用更加复杂和多元。在大语言模型中,“Token”不仅代表文本数据中的一个单位,而且每个“Token”都可能携带了丰富的语义信息。比如,在处理一句话时,“Token”可能表示一个字,一个词,甚至一个短语,这些都可以被认为是语言的基本单元。同时,每个“Token”在模型中都有一个对应的向量表示,这个向量包含了该“Token”的语义信息、句法信息等。 Unicode 是一种在计算机上使用的字符编码,为每种语言中的每个字符设定了统一并且唯一的二进制编码,以满足跨语言、跨平台进行文本转换、处理的要求。例如中文中的“你”字对应特定的 Unicode 编码。GPT 实际是将我们输入的文字转换成 Token,然后通过 GPT 模型预测 Token,再将 Token 转换成文字,最后再输出给我们。通过 Token 的学习,能感觉到 ChatGPT 理解文本的方式和人类并不相同,它在以自己的方式理解这个世界。 在 ComfyUI SD3 中,如输入的文字描述会被转换为 Tokens(文本向量),其中包括使用 CLIPG/14、CLIPL/14、T5 XXL 等预训练文本编码器将描述文字转换为 Tokens,每个编码器生成 77 个 Token,总共 154 个 Token 等一系列处理过程。
2025-02-07
100 万 tokens 什么概念
100 万 tokens 具有以下重要意义和影响: 算法视角:更宽的上下文窗口允许模型在推理时纳入训练数据中未找到的大量新的、特定于任务的信息,从而提高各种自然语言或多模式任务的性能。对越来越长的上下文进行数据建模的能力经历了从 Shannon 1948 提出的 2gram 语言模型、到 1990 年代和 2000 年代的现代 ngram 模型(5 个上下文 token),2010 年代的循环神经网络(RNN)达到数百个 token(Jozefowicz 等),到 2023 年 Anthropic 将上下文扩展到几十万 token 的发展历程。 产品视角:长上下文意味着 LLM 理解能力增强。从提示词到 RAG,都是为了增加给模型的上下文,进而让需求更明确,让模型理解得更好。从用数据训练模型、到指令微调,到提示词和 RAG,到大模型的超长下文,机器越来越像人了。提示词和 RAG 正在快速被弱化,但出于工程和商业考量,目前在很多领域还是主流,未来依然可能是一个混合状态。模型上下文长度覆盖了书籍、电影、长视频等产品的通用长度,应该会引发相关链路上产品交互层的变化。 具体应用:Gemini1.5 支持 100 万 token,可以一次性处理大量信息,比如 1 小时的视频,11 小时的音频,超过 30,000 行代码或超过 700,000 个单词的代码库。Claude2100 k 模型的上下文上限是 100k Tokens,即 100000 个 Token。ChatGPT16 k 模型的上下文上限是 16k Tokens,即 16000 个 Token;ChatGPT432 k 模型的上下文上限是 32k Tokens,即 32000 个 Token。Token 限制同时对一次性输入和一次对话的总体上下文长度生效,当达到上限时,会遗忘最前面的对话。若想直观查看 GPT 如何切分 token,可以打开。此外,英文的 Token 占用相对于中文较少,因此很多中文长 Prompt 会被建议翻译成英文设定,然后要求中文输出。
2025-01-28
智谱 注册送2000万 tokens
智谱 BigModel 共学营第二期相关信息如下: 本期共学应用为人人可打造的微信助手。 注册智谱 Tokens:智谱 AI 开放平台的网址为 https://bigmodel.cn/ 。参与课程至少需要有 token 体验资源包,获取资源包有三种方式: 新注册用户,注册即送 2000 万 Tokens。 充值/购买多种模型的低价福利资源包,直接充值现金,所有模型可适用的网址为 https://open.bigmodel.cn/finance/pay 。 共学营报名赠送资源包。 语言资源包:免费 GLM4Flash 语言模型/ 。 多模态资源包: 。 多模态资源包: 。所有资源包购买地址:https://bigmodel.cn/finance/resourcepack 。 先去【财务台】左侧的【资源包管理】看看自己的资源包,本次项目会使用到的有 GLM4、GLM4VPlus、CogVideoX、CogView3Plus 模型。 进入智能体中心我的智能体,开始创建智能体。 会议 ID:185 655 937 ,会议链接:https://vc.feishu.cn/j/185655937 ,共学营互动群。 BigModel 开放平台是智谱一站式的大模型开发及应用构建平台。基于智谱自研的全模型矩阵,面向企业客户及合作伙伴,支持多样化模型和自定义编排。平台提供即插即用的智能工具箱,包括 API 接口、模型微调及部署功能,同时具备流程编排以适应复杂业务场景。还提供免费、好用、高并发的 GLM4Flash 模型,0 元上手大模型,新用户注册登录即送 2000 万 Tokens,调用智谱全家桶模型。更多应用场景包括: 。
2024-12-05
各个大模型tokens价格
截止 2024 年 5 月,我查询到的大模型Token价格供您参考: !
2024-05-13
有哪些支持超长上下文的大模型
以下是一些支持超长上下文的大模型: Scout:支持 1000 万上下文,适合处理超长文本和复杂推理任务。 Maverick:具有 100 万上下文,长记忆优势适配多场景替代 RAG。 Behemoth:2 万亿参数级别的大模型在训,已超越 GPT4.5 在 STEM 表现。 Claude2100k 模型的上下文上限是 100k Tokens,即 100000 个 token。 ChatGPT16k 模型的上下文上限是 16k Tokens,即 16000 个 token。 ChatGPT432k 模型的上下文上限是 32k Tokens,即 32000 个 token。 需要注意的是,token 限制同时对一次性输入和一次对话的总体上下文长度生效。例如,一次性输入不能超过规定的 token 数量,而且随着对话的进行,当达到上限时,会遗忘最前面的对话内容。
2025-04-08
问题定义: 1. 核心问题陈述:创作一份个人参赛的、以光伏业务中财务工作与AI结合进行业务赋能为主题的展示类参赛方案框架。 2. 关键上下文信息:公司举办AI创新大赛,个人参赛,主题方向为工作和AI结合限定在业务赋能,公司业务是光伏领域。 3. 问题的具体范围界定:聚焦光伏业务中财务工作与AI结合进行业务赋能的展示方案框架创作。 答案要求: 1. 内容范围: - 必须包含:整体参赛方案思路、光伏财务业务与AI结合的具体方向、展示方案大致框架。
很抱歉,您提供的知识库内容中没有与光伏业务中财务工作与 AI 结合进行业务赋能的参赛方案框架相关的信息。但以下是为您生成的一个可能的参赛方案框架示例: 一、整体参赛方案思路 本次参赛方案旨在探索如何将 AI 技术应用于光伏业务中的财务工作,以实现更高效、精准和智能化的业务赋能。通过深入分析光伏行业的特点和财务工作的需求,结合先进的 AI 技术,提出创新的解决方案,提升财务工作的效率和质量,为公司的光伏业务发展提供有力支持。 二、光伏财务业务与 AI 结合的具体方向 1. 财务预测与分析 利用机器学习算法对光伏项目的成本、收益进行预测,为投资决策提供数据支持。 分析市场趋势和政策变化对财务状况的影响,提前制定应对策略。 2. 风险评估与管理 运用大数据和人工智能技术,对光伏项目的风险进行实时监测和评估。 建立风险预警模型,及时发现潜在的财务风险。 3. 成本优化与控制 通过智能算法优化供应链管理,降低采购成本。 分析生产过程中的能耗数据,实现成本的精细化控制。 4. 财务报表自动化生成与审计 利用自然语言处理技术自动生成财务报表,提高工作效率。 运用 AI 辅助审计,提高审计的准确性和效率。 三、展示方案大致框架 1. 项目背景与目标 介绍光伏行业的发展现状和公司的业务情况。 阐述将财务工作与 AI 结合的目标和意义。 2. 技术方案与实现 详细介绍所采用的 AI 技术和算法。 展示技术方案的实现过程和关键步骤。 3. 应用案例与效果 分享实际应用案例,展示 AI 在财务工作中的具体应用场景。 分析应用效果,如成本降低、效率提升、风险控制等方面的成果。 4. 未来展望与挑战 展望 AI 在光伏财务领域的未来发展趋势。 探讨可能面临的挑战及应对策略。 5. 总结与结论 总结方案的核心内容和创新点。 强调对公司光伏业务的价值和贡献。 以上框架仅供参考,您可以根据实际情况进行进一步的细化和完善。
2025-03-28
目前支持上下文长度最长的是什么AI
目前支持上下文长度较长的 AI 有以下几种: Kimi:是国内最早支持 20 万字无损上下文的 AI,现在已提升到 200 万字,对长文理解表现出色,适合处理长文本或大量信息的任务,但在文字生成和语义理解、文字生成质量方面可能不如国内其他产品,且不支持用户自定义智能体。 http://X.AI 发布的 Grok1.5:支持 128k 上下文长度,性能翻倍,在 MATH、HumanEval、GSM8K、MMLU 测试中表现出色。 AI21 发布的 Jamba:创新的 SSMTransformer 架构,支持 256K 上下文长度,结合 Joint Attention 和 Mamba 技术,提升长上下文吞吐量。
2025-03-17
我在写小说,怎么让AI在写作时能很好地根据整体故事情节和上下文进行故事的展开和描写
以下是一些让 AI 在写作小说时能很好地根据整体故事情节和上下文进行故事展开和描写的方法: 1. 创作穿越故事的 Prompt 时,明确以下内容: 标题:“generate:小说的标题” 设置:“generate:小说的情景设置细节,包括时间段、地点和所有相关背景信息” 主角:“generate:小说主角的名字、年龄、职业,以及他们的性格和动机、简要的描述” 反派角色:“generate:小说反派角色的名字、年龄、职业,以及他们的性格和动机、简要的描述” 冲突:“generate:小说故事的主要冲突,包括主角面临的问题和涉及的利害关系” 对话:“generate:以对话的形式描述情节,揭示人物,以此提供一些提示给读者” 主题:“generate:小说中心主题,并说明如何在整个情节、角色和背景中展开” 基调:“generate:整体故事的基调,以及保持背景和人物的一致性和适当性的说明” 节奏:“generate:调节故事节奏以建立和释放紧张气氛,推进情节,创造戏剧效果的说明” 其它:“generate:任何额外的细节或对故事的要求,如特定的字数或题材限制” 根据上面的模板生成为特定题材小说填充内容,并分章节,生成小说的目录。 2. 接下来,让 AI 一段一段进行细节描写。为确保文章前后一致,先让 AI 帮助写故事概要和角色背景介绍,并在其基础上按自己的审美略做修改。 3. 可以让 AI 以表格的形式输出细节描述。这样做有三个好处: 打破 AI 原本的叙事习惯,避免陈词滥调。 按编号做局部调整很容易,指哪改哪,别的内容都能够稳定保持不变。 确保内容都是具体的细节,避免整段输出时缩减导致丢光细节只有笼统介绍。 4. 把生成的表格依次复制粘贴,让 AI 照着写文章,偶尔根据需要给 AI 提供建议。 5. 注意小说大赛的要求,如最后的作品必须是 AI 直接吐出来的,不能有任何改动,不能超过规定字数等。如果需要修改,可能会遇到像 GPT4 记性不好或 Claude 改掉关键情节等问题。
2025-01-26
如何优化ai对话脚本和逻辑(多轮对话测试提升ai上下文理解)
以下是优化 AI 对话脚本和逻辑(多轮对话测试提升 AI 上下文理解)的方法: 1. 样例驱动的渐进式引导法 评估样例,尝试提炼模板:独自产出高质量样例较难,可借助擅长扮演专家角色的 AI 改进初始正向样例,如使用 Claude 3.5 进行对话,输入初始指令,通过其回复侧面印证对样例的理解与建议。 多轮反馈,直至达到预期:AI 可能犯错输出要求外内容,需多轮对话引导,使其不断修正理解,直至达成共识。 用例测试,看看 AI 是否真正理解:找 13 个用例,让 AI 根据模板生成知识卡片,根据结果验证是否符合预期,不符合则继续探讨调整。用例测试和多轮反馈步骤灵活,可根据需要自由反馈调整。 2. Coze 全方位入门剖析 标准流程创建 AI Bot(进阶推荐) 为 Bot 添加技能:国内版暂时只支持使用“云雀大模型”作为对话引擎,可根据业务需求决定上下文轮数。在 Bot 编排页面的“技能”区域配置所需技能,可选择自动优化插件或自定义添加插件。还可根据需求配置知识库、数据库、工作流等操作,参考相关介绍和实战操作或官方文档学习。 测试 Bot:在“预览与调试”区域测试 Bot 是否按预期工作,可清除对话记录开始新测试,确保能理解用户输入并给出正确回应。
2024-12-29
ai能够回复多少内容和它的上下文限制有关吗
AI 能够回复的内容与其上下文限制有关。 首先,上下文在英文中通常翻译为“context”,指的是对话聊天内容前、后的信息。使用时,上下文长度和上下文窗口都会影响 AI 大模型回答的质量。上下文长度限制了模型一次交互中能够处理的最大 token 数量,而上下文窗口限制了模型在生成每个新 token 时实际参考的前面内容的范围。 不同的 AI 平台有不同的限制方式。例如,Claude 基于 token 限制上下文,简单理解就是每次和 AI 对话,所有内容字数加起来不能太多,如果超过了,它就会忘记一些内容,甚至直接提示要另起一个对话。ChatGPT 则限制会话轮数,比如在一天之中,和它会话的次数有限制,可能 4 个小时只能说 50 句话。 应对这些限制的策略包括将复杂任务分解为小模块、定期总结关键信息以及在新会话中重新引入重要上下文。
2024-11-15
Coze + 飞书 + 飞书多维表格:通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出。由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,无需开发任何插件、APP,能实现跨平台的稍后读收集与智能阅读计划的推荐。其设计思路包括简化“收集”,实现跨平台收集和通过输入 URL 完成收集;自动化“整理入库”,自动整理关键信息并支持跨平台查看;智能“选择”推荐,根据收藏记录和用户兴趣生成阅读计划——这个方法具体如何操作?
以下是关于通过飞书机器人与 Coze 搭建的智能体进行对话,并利用飞书多维表格存储和管理稍后读数据,实现跨平台的稍后读收集与智能阅读计划推荐的具体操作方法: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口完成收集输入。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用飞书·稍后读助手: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。但目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 至此,专属 AI 稍后读智能体大功告成,您可以尽情享受相关服务。
2025-01-27
如何在agent 工作流中间加入对话窗口?
在 agent 工作流中间加入对话窗口可以参考以下步骤: 1. 对于分段输入正文,考虑到对照精读环节适合批处理形式,需要把正文分割,用 LLM 节点批处理每一段的对照精读,最终拼合精读结果以输出完整文本。用户输入原文的格式一般是:为了确保正确区分标题句和段落内容,直接在 AI 对话窗口中通过开场白提示用户按格式输入文章,用“”符直接标记标题句。然后用 Python 脚本去掉标题句,并把剩下内容按照段落的换行逐段输出为 Array<String>格式,同时附上 Python 代码。试运行后,节点会按照预期分次输出每一段原文。 2. 在点击“发布”发布工作流后,创建一个 bot 进行最终的工作流封装。封装过程包括:创建 Bot、填写 Bot 介绍、切换 Bot 模式为“单 Agent(工作流模式)”(因为此 Agent 只需在每次输入英文文章时返回精读结果,不需要外层 bot 对输入进行其他任务理解,直接调用工作流即可)、把配置好的工作流添加到 Bot 中、填写开场白引导用户使用,并关闭开场白预置问题(因为使用流程里用不到)。
2024-09-20
TPM 限制是什么意思?请用文字、数据、案例、比喻等形式进行教学
TPM 限制指的是每分钟处理的事务数(Transactions Per Minute)的限制。 以字节火山引擎为例,它默认提供了高达 500 万 TPM 的初始限流。这对于像一次工作流测试就消耗 3000 多万 tokens 的用户来说,限流的设置具有重要意义。 打个比喻,TPM 限制就好像是一条道路上设置的通行车辆数量限制,如果超过这个限制,就可能导致交通拥堵或者无法正常通行。在 AI 领域,超过 TPM 限制可能会影响服务的性能和稳定性。 比如,当有大量的请求同时发送到系统,如果没有 TPM 限制,可能会导致系统响应变慢甚至崩溃;而有了合理的 TPM 限制,就能保证系统有序地处理请求,为用户提供稳定可靠的服务。
2025-02-26
我想我的ai深度思考,他现在给我都太浅显,输出字符也有限制,给我推荐一个解决办法
以下是一些可能有助于解决您的 AI 深度思考和输出字符限制问题的办法: 1. 对于输出字符限制,如果使用的是 GPT3.5 等模型,可以将汉字数大致换算成 token 数,比如简单算法是一个 token 大概是 0.5 个汉字,或者每个汉字耗费 2 2.5 个 token。例如 1000 字大约是 2000 2500 个 token 左右。 2. 可以使用 OpenAI 的 Tokenizer 工具来计算 token 数,以便更准确地控制输出长度。 3. 在编写用户提示词时,注重写法。例如最简单的方法是模仿特定风格输出标题内容,要用特殊字符区分相关内容,包含示例、凝视者等内容,输出包含标题和正文。还可以用少量样本提示(两个样本),并试运行看结果。 4. 对于提高 AI 深度思考能力,可以参考一些相关的最佳实践资料,深入了解模型处理文本的原理和机制,例如 GPT 系列模型通过使用 tokens 来处理文本,模型能理解这些 tokens 之间的统计关系。
2025-02-25
AI在读取国内电商网址时由于限制经常读取失败,有什么解决办法吗
目前对于 AI 在读取国内电商网址时因限制而经常读取失败的情况,暂时没有明确有效的通用解决办法。这可能涉及到复杂的网络规则、电商平台的安全策略以及技术限制等多种因素。但您可以尝试以下几种可能的途径: 1. 检查网络设置,确保网络连接稳定且没有被限制。 2. 确认您使用的 AI 工具是否符合相关法律法规和平台规定,避免违规操作。 3. 联系电商平台的客服,咨询关于读取限制的具体政策和可能的解决方案。 4. 探索使用经过授权或合法合规的接口来获取所需数据。
2025-02-12
用 ai 来分析数据,附件大小有限制吗
使用 AI 来分析数据时,附件大小通常是有限制的。 对于代码解释器(一种 GPT4 模式),您可以将文件上传到 AI,它可用于执行程序、运行数据分析等,但使用时需要充分了解统计数据和数据以检查其工作。 在 ChatGPT 助力的数据分析中,文中所提到的个性化分析示例使用的均是假数据。在实际业务中处理大量数据时,除了长类型字段有限制外,还需指定允许查询或解析的字段告诉 ChatGPT,结果数据要进一步校验是否符合要求,超长数据可以截取关键字段的内容丢给 GPT 总结分析。 需要注意的是,不同的 AI 工具和应用场景可能会有不同的附件大小限制和数据处理要求。
2025-01-28
有哪些免费的没有限制的编程助手
以下是一些免费且没有限制的编程助手: 1. JanitorAI(http://janitorai.com/) 2. Spicychat(http://spicychat.ai/) 3. CrushOn(http://crushon.ai/) 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可快速生成代码,提升开发效率。 此外,还有以下可以帮助编程、生成代码、debug 的 AI 工具: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议。 2. 通义灵码:阿里巴巴团队推出,提供多种编程辅助能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,为开发人员实时提供代码建议。 4. Cody:代码搜索平台 Sourcegraph 推出,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 5. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手。 6. Codeium:由 AI 驱动,通过提供代码建议、重构提示和代码解释来帮助软件开发人员提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据自身需求选择最适合的工具。
2025-01-10