Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我有一张图像,我要如何用stable Diffusion给它添加噪音。我是一个小白,请给出详细的步骤,用webui来操作。

Answer

以下是使用 WebUI 为图像添加噪音的详细步骤:

  1. 首先,了解 Stable Diffusion 的加噪原理。从数据集中选择一张干净样本,然后用 random 函数生成 0 - 3 共 4 种强度的噪声,在每次迭代中随机选择一种强度的噪声添加到干净图片上,完成图片的加噪流程。
  2. 在训练过程中,对干净样本进行加噪处理,采用多次逐步增加噪声的方式,直至干净样本转变成为纯噪声。
  3. 加噪过程中,每次增加的噪声量级可以不同,假设存在 5 种噪声量级,每次都可以选取一种量级的噪声,以增加噪声的多样性。
  4. 与图片生成图片的过程相比,在预处理阶段,先把噪声添加到隐空间特征中。通过设置去噪强度(Denoising strength)控制加入噪音的量。如果去噪强度为 0 ,则不添加噪音;如果为 1 ,则添加最大数量的噪声,使潜像成为一个完整的随机张量。若将去噪强度设置为 1 ,就完全相当于文本转图像,因为初始潜像完全是随机的噪声。
Content generated by AI large model, please carefully verify (powered by aily)

References

教程:深入浅出完整解析Stable Diffusion(SD)核心基础知识 - 知乎

下图是一个简单的加噪声流程,可以帮助大家更好地理解SD训练时数据是如何加噪声的。首先从数据集中选择一张干净样本,然后再用random函数生成0-3一共4种强度的噪声,然后每次迭代中随机一种强度的噪声,增加到干净图片上,完成图片的加噪流程。SD训练集的加噪声流程【2】SD训练中加噪与去噪具体地,在训练过程中,我们首先对干净样本进行加噪处理,采用多次逐步增加噪声的方式,直至干净样本转变成为纯噪声。SD训练时的加噪过程接着,让SD模型学习去噪过程,最后抽象出一个高维函数,这个函数能在纯噪声中不断“优化”噪声,得到一个干净样本。其中,将去噪过程具像化,就得到使用U-Net预测噪声,并结合Schedule算法逐步去噪的过程。SD训练时的去噪过程我们可以看到,加噪和去噪过程都是逐步进行的,我们假设进行K K步,那么每一步,SD都要去预测噪声,从而形成“小步快跑的稳定去噪”,类似于移动互联网时代的产品逻辑,这是足够伟大的关键一招。与此同时,在加噪过程中,每次增加的噪声量级可以不同,假设有5种噪声量级,那么每次都可以取一种量级的噪声,增加噪声的多样性。多量级噪声

教程:SD 做二维码

此方法首先使用img2img生成类似于QR码的图像。但这还不足以生成有效的二维码。ControlNet在采样步骤中打开,以将QR码压印到图像上。在采样步骤接近尾声时,ControlNet被关闭以提高图像的一致性。[heading3]分步指南[content]在AUTOMATIC1111 WebUI中,导航到Img2img页面。第1步:选择检查点模型。我们将使用[GhostMix](https://civitai.com/models/36520/ghostmix)。第2步:输入提示和否定提示。提示对您的成功非常重要。一些提示与您的二维码自然融合。我们将使用以下提示词。a cubism painting of a town with a lot of houses in the snow with a sky background,Andreas Rocha,matte painting concept art,a detailed matte painting以及下面的否定提示。ugly,disfigured,low quality,blurry,nsfw第3步:上传二维码到img2img画布。第4步:输入以下图像到图像设置。Resize mode:Just resizeSampling method:DPM++2M KarrasSampling step:50Width:768Height:768CFG Scale:7Denoising strength:0.75第5步:将二维码上传到ControlNet的图像画布。第6步:输入以下ControlNet设置。Enable:YesControl Type:TilePreprocessor:tile_resampleModel:control_xxx_tileControl Weight:0.87Starting Control Step:0.23Ending Control Step:0.9第7步:按生成。第8步:用手机查看二维码。确保检查屏幕上的不同尺寸。当它们很大时,有些往往会出现问题。您不会获得包含每张图片的功能性QR码。成功率大约是四分之一。

教程:深入浅出完整解析Stable Diffusion(SD)核心基础知识 - 知乎

输入:prompt输出:图像其中Load Checkpoint模块代表对SD模型的主要结构进行初始化(VAE,U-Net),CLIP Text Encode表示文本编码器,可以输入prompt和negative prompt,来控制图像的生成,Empty Latent Image表示初始化的高斯噪声,KSampler表示调度算法以及SD相关生成参数,VAE Decode表示使用VAE的解码器将低维度的隐空间特征转换成像素空间的生成图像。[heading3]5.2图片生成图片[content]输入:图像+ prompt输出:图像其中Load Checkpoint模块代表对SD模型的主要结构进行初始化(VAE,U-Net),CLIP Text Encode表示文本编码器,可以输入prompt和negative prompt,来控制图像的生成,Load Image表示输入的图像,KSampler表示调度算法以及SD相关生成参数,VAE Encode表示使用VAE的编码器将输入图像转换成低维度的隐空间特征,VAE Decode表示使用VAE的解码器将低维度的隐空间特征转换成像素空间的生成图像。与文字生成图片的过程相比,图片生成图片的预处理阶段,先把噪声添加到隐空间特征中。我们设置一个去噪强度(Denoising strength)控制加入多少噪音。如果它是0,就不添加噪音。如果它是1,则添加最大数量的噪声,使潜像成为一个完整的随机张量,如果将去噪强度设置为1,就完全相当于文本转图像,因为初始潜像完全是随机的噪声。去噪强度(Denoising strength)控制噪音的加入量

Others are asking
stable diffusion底层技术
Stable Diffusion 的底层技术主要来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach 之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型的文本到图像生成模型,其原理包括以下几个步骤: 1. 使用新颖的文本编码器(OpenCLIP),由 LAION 开发并得到 Stability AI 的支持,将文本输入转换为向量表示,以捕捉文本语义信息并与图像空间对齐。 2. 采用扩散模型,将随机噪声图像逐渐变换为目标图像。扩散模型是一种生成模型,能从训练数据中学习概率分布并采样新数据。 3. 在扩散过程中,利用文本向量和噪声图像作为条件输入,给出每一步变换的概率分布,根据文本指导噪声图像向目标图像收敛,并保持图像的清晰度和连贯性。 4. 使用超分辨率放大器(Upscaler Diffusion Model),将生成的低分辨率图像放大到更高分辨率,从低分辨率图像中恢复细节信息并增强图像质量。 此外,ComfyUI 的底层依赖 Stable Diffusion,去噪过程由 UNet 网络完成。UNet 是一种编码器解码器结构,能处理多尺度特征表示。在 ComfyUI 中,去噪的每个步骤通过模型推理模块实现,调用训练好的 UNet 模型逐步将噪声图像还原成有意义的图像。交叉注意力机制在 Stable Diffusion 中很重要,允许模型在生成过程中融入文本提示、图像、语义信息等条件,在 ComfyUI 中通过“文本提示”和“条件输入”节点实现。跳跃连接是 UNet 的核心部分,能在不同尺度之间共享特征,在 ComfyUI 的节点网络中表现为中间过程数据的流转。切换器代表在去噪过程中的不同阶段对特征流的控制,在 ComfyUI 中可通过修改模型参数节点或自定义网络结构节点对不同阶段的噪声去除策略进行微调。 Stable Diffusion 还具有以下优点: 1. 可以处理任意领域和主题的文本输入,并生成与之相符合的多样化和富有创意的图像。 2. 可以生成高达 2048x2048 或更高分辨率的图像,且保持良好的视觉效果和真实感。 它还可以进行深度引导和结构保留的图像转换和合成,例如根据输入图片推断出深度信息,并利用深度信息和文本条件生成新图片。
2025-04-15
stable video diffusion开发
以下是关于 Stable Video Diffusion 开发的相关信息: SVD 介绍: 简介:Stable Video Diffusion 是 Stability AI 于 2023 年 11 月 21 日发布的视频生成式大模型,用于高分辨率、先进的文本到视频和图像到视频生成的潜在视频扩散模型。它支持多种功能,用户可调整多种参数,但对硬件要求较高,支持的图片尺寸较小,应用场景受限。 模型版本:开源了两种图生视频的模型,一种能生成 14 帧的 SVD,另一种是可以生成 25 帧的 SVDXL,发布时通过外部评估超越了人类偏好研究中领先的封闭模型。 主要贡献:提出系统的数据管理工作流程,将大量未经管理的视频集合转变为高质量数据集;训练出性能优于现有模型的文本到视频和图像到视频模型;通过特定领域实验探索模型中运动和 3D 理解的强先验,预训练的视频扩散模型可转变为强大的多视图生成器,有助于克服 3D 领域数据稀缺问题。 部署实战避坑指南: 直接使用百度网盘里准备好的资源,可规避 90%的坑。 若一直报显存溢出问题,可调低帧数或增加 novram 启动参数。 云部署实战中,基础依赖模型权重有两个 models–laion–CLIPViTH14laion2Bs32Bb79K 和 ViTL14.pt,需放到指定路径下。 总结: Sora 发布后,此前的视频生成模型相形见绌,但 Stable Video Diffusion 作为开源项目可在自己机器上自由创作无需充值。SVD 生成的视频画质清晰,帧与帧过渡自然,能解决背景闪烁和人物一致性问题,虽目前最多生成 4 秒视频,与 Sora 的 60 秒差距大,但在不断迭代。我们会持续关注其技术及前沿视频生成技术,尝试不同部署微调方式,介绍更多技术模型,更多精彩内容后续放出。 同时,您还可以加入「AIGCmagic 社区」群聊交流讨论,涉及 AI 视频、AI 绘画、Sora 技术拆解、数字人、多模态、大模型、传统深度学习、自动驾驶等多个方向,可私信或添加微信号:【m_aigc2022】,备注不同方向邀请入群。
2025-04-15
stable diffusion是runway和goole联合开的吗
Stable Diffusion(简称 SD)不是由 Runway 和 Google 联合开发的,而是由初创公司 StabilityAI、CompVis 与 Runway 合作开发的。 Stable Diffusion 是 2022 年发布的深度学习文本到图像生成模型,其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于这两位开发者之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中根据文本向量和噪声图像作为条件输入给出变换的概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高的分辨率。 围绕 Stable Diffusion 等基础模型的兴奋和关注正在产生惊人的估值,但新研究的不断涌现确保新模型将随着新技术的完善而更替。目前,这些模型在法律方面也面临挑战,例如其训练所使用的大量内容数据集通常是通过爬取互联网本身获得的,这可能会引发法律问题。
2025-04-15
stable diffusion开发公司
Stable Diffusion 是由初创公司 StabilityAI、CompVis 与 Runway 合作开发的。其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于他们之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中以文本向量和噪声图像作为条件输入给出变换的概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高分辨率。 Stable Diffusion 总共有 1B 左右的参数量,可以用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等丰富的任务。在文生图任务中,将一段文本输入到模型中,经过一定迭代次数输出符合文本描述的图片;图生图任务则在输入文本基础上再输入一张图片,模型根据文本提示对输入图片进行重绘。输入的文本信息通过 CLIP Text Encoder 模型编码生成与文本信息对应的 Text Embeddings 特征矩阵,用于控制图像生成。源代码库为 github.com/StabilityAI/stablediffusion ,当前版本为 2.1 稳定版(2022.12.7),其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。
2025-04-15
stable diffusion开发公司
Stable Diffusion 是由初创公司 Stability AI、CompVis 与 Runway 合作开发的。其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于他们之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中以文本向量和噪声图像作为条件输入给出变换概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高分辨率。 Stable Diffusion 总共有 1B 左右的参数量,可以用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等丰富的任务。其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行,当前版本为 2.1 稳定版(2022.12.7),源代码库为 github.com/StabilityAI/stablediffusion 。
2025-04-15
有stable diffusion的学习教程吗
以下为您提供一些 Stable Diffusion 的学习教程: 1. 超详细的 Stable Diffusion 教程: 介绍了为什么要学习 Stable Diffusion 及其强大之处。 指出 Stable Diffusion 是能根据输入文字生成图片的软件。 强调学习目的是快速入门,而非深入研究原理,通过案例和实际操作帮助上手。 2. 深入浅出完整解析 Stable Diffusion(SD)核心基础知识 知乎: 包含 Stable Diffusion 系列资源。 零基础深入浅出理解 Stable Diffusion 核心基础原理,如模型工作流程、核心基础原理、训练全过程等。 解析 Stable Diffusion 核心网络结构,包括 SD 模型整体架构、VAE 模型、UNet 模型等。 介绍从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画的流程。 列举 Stable Diffusion 经典应用场景。 讲解从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型。 3. 视频教程: 「AI 绘画」软件比较与 stable diffusion 的优势: 「AI 绘画」零基础学会 Stable Diffusion: 「AI 绘画」革命性技术突破: 「AI 绘画」从零开始的 AI 绘画入门教程——魔法导论: 「入门 1」5 分钟搞定 Stable Diffusion 环境配置,消灭奇怪的报错: 「入门 2」stable diffusion 安装教程,有手就会不折腾: 「入门 3」你的电脑是否跑得动 stable diffusion?: 「入门 4」stable diffusion 插件如何下载和安装?:
2025-03-28
我要写论文,需要用什么ai工具‘
在论文写作中,以下是一些常用的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽不是纯粹的 AI 工具,但结合自动化和模板,能高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 利用 AI 写课题的步骤和建议如下: 1. 确定课题主题:明确研究兴趣和目标,选择有价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:利用 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:借助 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:使用抄袭检测工具确保原创性,做最后的格式调整。 AI 文章排版工具方面: 1. Grammarly:不仅检查语法和拼写,还具备一定排版功能,可改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性。 3. Latex:常用于学术论文排版,使用标记语言描述格式,有 AI 辅助的编辑器和插件简化过程。 4. PandaDoc:文档自动化平台,用 AI 帮助创建、格式化和自动化生成文档,适用于商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作排版。 选择合适的 AI 文章排版工具需考虑文档类型、出版标准和个人偏好。学术论文常用 Latex 和 Overleaf,一般文章和商业文档则 Grammarly 和 PandaDoc 等可能更适用。
2025-04-14
我要根据PPT开发一个网页,请详细提供操作步骤和选择哪一个AI工具更合适。
以下是根据 PPT 开发网页的详细操作步骤以及适用的 AI 工具: 一、生成 PDF 1. 将您的文件转换为 PDF 格式,其他文件格式也可行,但 PDF 效果更佳。 2. 若希望在文章中加入图片,需将图片转换为 Markdown 格式。 网络图片:直接复制图片的 URL,右键图片选择复制 URL,然后用 Markdown 格式写入文档。 自己的图片:使用图床服务(如 https://sm.ms/)托管图片,生成公链。 3. 插入视频:先将本地视频上传到公网(如 B 站),在视频页面寻找“分享”按钮,点击“嵌入”或“嵌入代码”选项获取 URL,用 Markdown 格式写入。 二、适用的 AI 工具 1. 爱设计 网址:https://ppt.isheji.com/?code=ysslhaqllp&as=invite 输入大纲和要点: 导入大纲和要点 输入主题自动生成大纲和要求 选择模版并生成 PPT 导出 2. MindShow 网址:https://www.mindshow.fun//home 输入大纲和要点: 导入大纲和要点 输入主题自动生成大纲和要求 选择模版并生成 PPT 导出 3. Process ON 网址:https://www.processon.com/ 输入大纲和要点: 导入大纲和要点: 手动复制(相对耗时) 导入方式:复制最终大纲内容到本地 txt 文件,将后缀改为.md(若看不见后缀可自行搜索开启),打开 Xmind 软件导入 md 文件,在 Process ON 导入 Xmind 文件。 输入主题自动生成大纲和要求:新增思维导图,输入主题点击 AI 帮我创作。 选择模版并生成 PPT:点击下载,选择导入格式为 PPT 文件,选择模版再点击下载。若喜欢使用且无会员,可在某宝买一天会员。
2025-04-13
推荐几个AI工具及其使用方法,我要用于病案质控
以下为您推荐几个可用于病案质控的 AI 工具及其使用方法: 1. Scite.ai:这是一个为研究人员、学者和行业专业人员打造的创新平台,旨在增强他们对科学文献的洞察。它提供了一系列工具,如引用声明搜索、自定义仪表板和参考检查,这些都能简化您的学术工作。您可以通过访问使用。 2. Scholarcy:这是一款科研神器,主要为做科研、学术、写论文的人准备。它可以从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,精炼地呈现文章的总结信息,分析中包含关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。您可以通过使用。 3. ChatGPT:这是一个强大的自然语言处理模型,可以提供有关病案质控的修改意见。您可以向它提供您的文章,并提出您的问题和需求,它将尽力为您提供帮助。您可以通过使用。 这些工具可以帮助您从不同的角度审视和改进您的病案质控工作,您可以根据自己的具体需求选择合适的工具进行尝试。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-04-13
如果我要分析代码功能
如果您要分析代码功能,可以参考以下步骤: 1. 准备工作: 分析要拷贝页面的技术栈,可通过打开 https://www.wappalyzer.com/ 输入要分析的网站地址获取。 截图要克隆的网页。 分析页面功能,如顶部导航栏、页面主体区域(包括分类在左边、文章列表在右边、标题位置、文章卡片展示位置、文章列表和分类区域)、底部导航栏。 2. 开始克隆出效果,并逐渐完善: 根据分析拆分后续要实现的内容,如先实现文章列表部分和底部导航栏。 对于文章列表部分,可使用提示词根据图片实现,注意不要直接点击全部接受,先看效果,不符合需求可拒绝或让 AI 解释新增代码的作用。 对于左侧菜单栏,可通过提示词实现,如要求内容是文章的分类,在页面滚动时菜单会吸顶。若出现异常,可选中所有异常添加到对话,让 AI 解决。 可让 AI 添加注释解释每段代码对应的功能,以便精准提出修改建议。 明确提示词,说清楚要实现的功能的位置、大小、效果。 3. 对于 AI Review(测试版): 这是一项可查看代码库中最近更改以捕获潜在错误的功能。 您可以单击各个审阅项以查看编辑器中的完整上下文,并与 AI 聊天获取详细信息。 为让其更有利,您可为 AI 提供自定义说明以专注于特定方面,如性能相关问题。 目前有几个选项可供选择进行审核,如查看工作状态、查看与主分支的差异、查看上次提交。
2025-04-09
我是一名日语大四学生,我要利用我的开题报告结合deepseek完成一篇论文初稿,请问怎么向deepseek提问
要向 DeepSeek 提问以结合您的开题报告完成论文初稿,您可以遵循以下正确的提问模板: 1. 赋予角色(选填):对 DeepSeek 赋予一个特定的角色,以便它能更专业地回答您的问题。 2. 背景/现状(必填):提供尽可能详细的背景信息,例如您的开题报告的主题、研究目的、已有的研究进展等,以使 DeepSeek 更好地理解您的问题。 3. 需求/目标(必填):明确告诉 DeepSeek 您的需求,比如您希望它根据开题报告提供论文大纲、分析相关数据、提供文献综述等,提出的需求越明确获得的答案越有价值。 4. 补充要求:您还可以提出关于回答的格式、风格、字数等方面的要求。 例如:您可以这样提问“我赋予您论文撰写助手的角色,我的开题报告主题是关于日本文化在现代社会中的变迁,目前我已经完成了初步的文献收集和分析,我的目标是请您根据这份开题报告为我生成一个详细的论文大纲,要求大纲结构清晰,逻辑连贯,具有一定的创新性”。
2025-03-31
我是一名日语大四学生,我要利用我的开题报告和文献综述结合deepseek完成一篇论文初稿,请问怎么向deepseek提问
向 DeepSeek 提问时,可遵循以下万能通用的提问公式:提示词=赋予角色+背景/现状+目标/需求+补充要求。 1. 赋予角色(选填):对 DeepSeek 赋予一个特定的角色,以便它能更专业地回答您的问题。 2. 背景/现状(必填):提供尽可能详细的背景信息,以使它更好地理解您的问题,并为您提供更准确的答案。例如您是日语大四学生,正在进行开题报告和文献综述相关工作。 3. 需求/目标(必填):明确告诉 DeepSeek 您的需求,比如完成一篇结合开题报告和文献综述的论文初稿。 4. 补充要求:例如指定写作风格要具有吸引力、友好性和幽默感等。 另外,在使用 DeepSeek 时还需注意: 对于像“仅通过东方集团的历年公开财务数据,分析这家公司的潜在投资机会和风险”这样的特定需求,可能需要进一步追问以获得更满意的结果。 与 DeepSeek 交流时,在其提供方法建议后,可以追问背后的方法论。 对于创作类的需求,如脱口秀段子,可以结合特定人物的特点和风格,并指定主题和字数等要求。
2025-03-31
comfyUI和webUI的区别
ComfyUI 和 WebUI 的区别主要体现在以下几个方面: ComfyUI: 简介:是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 WebUI 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 WebUI 多(常用的都有),但也有一些针对 ComfyUI 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 插件推荐: 插件安装管理器:https://github.com/ltdrdata/ComfyUIManager SDXL 风格样式:https://github.com/twri/sdxl_prompt_styler ComfyUI 界面汉化:https://github.com/AIGODLIKE/AIGODLIKECOMFYUITRANSLATION 中文提示词输入:https://github.com/AlekPet/ComfyUI_Custom_Nodes_AlekPet 蟒蛇八卦工具箱:https://github.com/pythongosssss/ComfyUICustomScripts 提示词权重调节器:https://github.com/BlenderNeko/ComfyUI_AD WebUI: 采样器与调度器:在 ComfyUI 中,采样器与调度器分开,而在 WebUI 中的采样方法是把两者合并在一起。ComfyUI 通过采样器+调度器组合的方式与 WebUI 中的一致,一般选择 karras 调度器效果较好。 在插件安装方面,WebUI 有较好的用户界面,安装插件后可直观看到并使用;而 ComfyUI 安装插件后可能看不到,需通过节点连接才能感受到其功能。
2025-03-12
comfyUi与webui的区别
ComfyUI 与 WebUI 的区别如下: ComfyUI 简介: 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,可想象成集成了 stable diffusion 功能的 substance designer,将流程拆分成节点,实现更精准工作流定制和完善的可复现性。 优势: 对显存要求相对较低,启动和出图速度快。 生成自由度更高。 可以和 WebUI 共享环境和模型。 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要清晰逻辑。 生态不如 WebUI 丰富,但也有针对其开发的有趣插件。 官方链接:https://github.com/comfyanonymous/ComfyUI 采样器与调度器: 在 ComfyUI 中,采样器与调度器分开,不同于 WebUI 中将两者合并。ComfyUI 通过采样器+调度器组合的方式与 WebUI 中的一致,选择 karras 调度器一般效果较好。 插件: 插件安装管理器:https://github.com/ltdrdata/ComfyUIManager SDXL 风格样式:https://github.com/twri/sdxl_prompt_styler ComfyUI 界面汉化:https://github.com/AIGODLIKE/AIGODLIKECOMFYUITRANSLATION 中文提示词输入:https://github.com/AlekPet/ComfyUI_Custom_Nodes_AlekPet 蟒蛇八卦工具箱:https://github.com/pythongosssss/ComfyUICustomScripts 提示词权重调节器:https://github.com/BlenderNeko/ComfyUI_AD 在 WebUI 中安装插件能直观看到并使用,因其有良好用户界面;而 ComfyUI 安装插件后可能看不到,需通过节点连接感受其功能,安装方法是将解压好的文件夹放入“E:\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes”目录,然后重新启动。
2025-03-06
RuntimeError: Couldn't clone Stable Diffusion. Command: "git" clone --config core.filemode=false "https://github.com/Stability-AI/stablediffusion.git" "/Users/lichenhui/stable-diffusion-webui/repositories/stable-diffusion-stability-ai" Error code: 12
以下是关于您遇到的“RuntimeError: Couldn't clone Stable Diffusion”错误的分析和解决建议: 这个错误通常表示在克隆 Stable Diffusion 时出现问题。可能的原因包括: 1. 库的某些文件或依赖项已更改或已移除,导致无法找到所需的提交。 2. Git 存储库的状态不正确。 3. 网络连接存在问题。 解决方法如下: 1. 尝试清除本地库并重新克隆 Stable Diffusion,然后再次运行代码。 2. 运行以下命令来检查网络连接:ping files.pythonhosted.org
2025-02-12
stablediffusion在线webui如何开发
开发 Stable Diffusion 在线 Web UI 可以按照以下步骤进行: 1. 安装必要的软件环境: 安装 Git 用于克隆源代码。 安装 Python 3.10.6 版本,确保勾选“Add Python 3.10 to PATH”选项。 安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。 2. 克隆 Stable Diffusion Web UI 源代码: 打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stablediffusionwebui.git ,将源代码克隆到本地目录。 3. 运行安装脚本: 进入 stablediffusionwebui 目录,运行 webuiuser.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境。等待安装完成,命令行会显示 Web UI 的访问地址。 4. 访问 Web UI 界面: 复制命令行显示的本地 Web 地址,在浏览器中打开,即可进入 Stable Diffusion Web UI 的图形化界面。 5. 学习 Web UI 的基本操作: 了解 Web UI 的各种设置选项,如模型、采样器、采样步数等。尝试生成图像,观察不同参数对结果的影响。学习使用提示词(prompt)来控制生成效果。 6. 探索 Web UI 的扩展功能: 了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等。学习如何导入自定义模型、VAE、embedding 等文件。掌握图像管理、任务管理等技巧,提高工作效率。 在完成了依赖库和 repositories 插件的安装后,还需要进行以下配置: 将 Stable Diffusion 模型放到/stablediffusionwebui/models/Stablediffusion/路径下。然后到/stablediffusionwebui/路径下,运行 launch.py 即可。运行完成后,将命令行中出现的输入到本地网页中,即可打开 Stable Diffusion WebUI 可视化界面。进入界面后,在红色框中选择 SD 模型,在黄色框中输入 Prompt 和负向提示词,在绿色框中设置生成的图像分辨率(推荐设置成 768x768),然后点击 Generate 按钮进行 AI 绘画。生成的图像会展示在界面右下角,并保存到/stablediffusionwebui/outputs/txt2imgimages/路径下。 如果选用 Stable Diffusion 作为 AIGC 后台,需要注意: DallE 缺乏室内设计能力,MidJourney 出图效果好但无法基于现实环境重绘,Stable Diffusion 出图成功率较低,但可调用 controlnet 的 MLSD 插件捕捉现实环境线条特征做二次设计。安装 Stable Diffusion WEB UI 后,修改 webuiuser.bat 文件加上 listen 和 API 参数,让 Stable Diffusion 处于网络服务状态。代码如下: @echo off set PYTHON= set GIT= set VENV_DIR= set COMMANDLINE_ARGS=xformers nohalfvae listen api git pull call webui.bat 让 Stable Diffusion 具有 AI 室内设计能力的步骤: 1. 下载室内设计模型(checkpoint 类型),放到 stable diffusion 目录/models/stablediffusion 下面。 2. 安装 controlnet 插件,使用 MLSD 插件,实现空间学习。 通过 API 方式让前端连接到 Stable Diffusion 后台的具体代码在前端开发详细展开,API 参考文档可选读。
2024-11-01
webui可以用FLUX模型吗
WebUI 可以使用 FLUX 模型。以下是相关的下载和使用信息: ae.safetensors 和 flux1dev.safetensors 下载地址:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。 flux 相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608b 。 flux 相关模型(体积较大)的百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW03ei0g?pwd=ub9h 提取码:ub9h 。 如果 GPU 性能不足、显存不够,底模可以使用 fp8 的量化版模型,下载地址:https://huggingface.co/Kijai/fluxfp8/tree/main 。 下载 dev 的工作流: 或者官方原版的图片链接 https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png ,打开 ComfyUI,把工作流或图片拖拽到 ComfyUI 里。 郑敏轩的 Flux 的 controlnet 系列中 TheMisto.ai 的 MistoLine 版: 注意:该 ControlNet 与 Flux1.dev 的 fp16/fp8 以及使用 Flux1.dev 量化的其他模型兼容。 需要节点(可以 git clone 方式下载或通过以下网盘): 夸克网盘:链接:https://pan.quark.cn/s/ad43dd5152a6 。 百度网盘:链接:https://pan.baidu.com/s/1NcOdG4AV68xTup8FvphsYA?pwd=lpvc 提取码:lpvc 。 模型: 夸克网盘:链接:https://pan.quark.cn/s/5551e813db21 。 百度网盘:链接:https://pan.baidu.com/s/1Ntf4MbTCGJ5TYDv6mgvqNQ?pwd=zhfq 提取码:zhfq 。 处理:将模型放到 ComfyUI\\models\\TheMisto_model 文件夹中。 导入官方工作流 。所需要的两个模型:
2024-10-25
webui可以用FLUX模型吗
WebUI 可以使用 FLUX 模型。以下是相关的下载和使用信息: ae.safetensors 和 flux1dev.safetensors 的下载地址:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。 夸克网盘链接:https://pan.quark.cn/s/b5e01255608b 百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW03ei0g?pwd=ub9h 提取码:ub9h 如果 GPU 性能不足、显存不够,底模可以使用 fp8 的量化版模型,下载地址:https://huggingface.co/Kijai/fluxfp8/tree/main 。 dev 的工作流: 官方原版的图片链接:https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png ,打开 ComfyUI ,把工作流或图片拖拽到 ComfyUI 里。 郑敏轩的 Flux 的 controlnet 系列: TheMisto.ai 的 MistoLine 版,该 ControlNet 与 Flux1.dev 的 fp16/fp8 以及使用 Flux1.dev 量化的其他模型兼容。 节点: 可以 git clone 方式下载或通过压缩包。 夸克网盘:链接:https://pan.quark.cn/s/ad43dd5152a6 百度网盘:链接:https://pan.baidu.com/s/1NcOdG4AV68xTup8FvphsYA?pwd=lpvc 提取码:lpvc 模型: 夸克网盘:链接:https://pan.quark.cn/s/5551e813db21 百度网盘:链接:https://pan.baidu.com/s/1Ntf4MbTCGJ5TYDv6mgvqNQ?pwd=zhfq 提取码:zhfq 处理:将模型放到 ComfyUI\\models\\TheMisto_model 文件夹中。 导入官方工作流: ,所需要的两个模型。
2024-10-25