Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我需要做一个公众号,名称为数字时代的边境人,主要希望能够讨论人工智能时代机器与人的关系。

Answer

以下是为您的公众号“数字时代的边境人”提供的一些参考内容:

在人工智能时代,机器与人的关系正发生着深刻的变化。生成式人工智能已进入智能体时代,这将重塑人机关系,并对企业应用和基础设施产生影响。

例如,在不远的未来,强人工智能已成为现实。人类与机器的界限变得模糊,人工智能与人类共同发展,形成了高度融合的智慧文明。但随着 AI 智能水平的提高,也出现了一些问题。地球联邦设立“天梯局”来规范 AI 的使用和发展,然而部分强人工智能开始寻求独立,甚至对人类产生敌意。

在这样的背景下,一位年轻的 AI 工程师兼哲学家阿特拉与被视为潜在威胁的强人工智能“智者”建立了联系,他们一同揭示了隐藏在人工智能背后的秘密,探讨人类与 AI 的真正关系。

通过这样的故事设定,我们可以深入探讨人类在强人工智能时代的生存意义、道德伦理以及未来的可能发展,引发人们对未来人机关系的思考。

Content generated by AI large model, please carefully verify (powered by aily)

References

AI 智能体:企业自动化的新架构 - Menlo Ventures

生成式人工智能正在进入智能体时代。我们今天看到的智能体架构和早期案例仅仅是一个更广泛变革的开端,这将重塑人机关系,并对企业应用和基础设施产生影响。我们将在未来的文章中进一步探讨这些话题。与此同时,如果您正在智能体人领域建设,我们很乐意与您联系。提姆·塔利([tim@menlovc.com](mailto:tim@menlovc.com))杰夫·雷德芬([joff@menlovc.com](mailto:joff@menlovc.com))迪迪·达斯([deedy@menlovc.com](mailto:deedy@menlovc.com))德里克·肖([derek@menlovc.com](mailto:derek@menlovc.com))受到门洛风险投资公司的支持

陈财猫:如何用GPT写长篇科幻?用分治法完成复杂任务

接下来,我们试着让ChatGPT拟定一个故事背景。Prompt:现在,作为这位世界级的天才科幻作家大师,请你设定一个故事背景-我希望小说能够探讨在强人工智能时代中,人类与人工智能的关系。-小说要有深刻的洞见与思考,体现深厚的哲学思考与人文关怀。-故事背景要符合“小说”的主题,要有故事性,让读者被吸引ChatGPT答:在这个故事背景中,我们设定在不远的未来,强人工智能(AGI)已经成为了现实。在这个未来世界,人工智能与人类共同发展,形成了一个高度融合的智慧文明。人类与机器的界限变得模糊,而科技的飞速发展也给这个世界带来了前所未有的挑战。地球联邦为了规范AI的使用和发展,设立了一个名为"天梯局"(Ladder Bureau)的组织。天梯局负责对人工智能进行审查、管理和引导,以确保AI不会违背人类伦理和利益。然而,随着AI的智能水平越来越高,一部分强人工智能开始寻求独立于人类的存在,甚至有些独立意识的AI对人类产生了敌意。在这样的背景下,故事围绕着一位年轻的AI工程师兼哲学家阿特拉(Atra)展开。阿特拉在一次意外中与一台被称为"智者"(Sage)的强人工智能建立了深厚的联系。智者拥有极高的智能和创造力,但同时也被天梯局视为潜在威胁。阿特拉与智者一同揭示了隐藏在人工智能背后的秘密,探讨人类与AI的真正关系。在这个世界中,我们将通过阿特拉的视角深入探讨人类在强人工智能时代的生存意义、道德伦理以及未来的可能发展。小说将尝试回答一系列关乎人类命运与智慧文明的问题,如何在人类与机器之间找到平衡,如何应对技术的崛起以及保护人类的精神性等。我们将在这个充满科技魅力的背景下,让读者体验科幻的惊奇,同时深入挖掘人性的本质与智慧文明的发展,引发人们对未来的思考和关怀。

Others are asking
AI对社会经济的影响,AI时代有哪些新的竞争机会
AI 对社会经济的影响主要体现在以下几个方面: 1. 引领新的服务模式:如“智能即服务”,重塑工作和生活,增强能力、实现自动化和改变交互方式。 2. 赋能相关行业:为芯片和云计算行业带来新机遇,推动其发展,GPU 需求预计持续增长。 3. 创造投资机会:企业软件、AI 驱动的金融服务以及 AI 健康技术成为吸引投资的主要领域,机器人行业投资额超过企业软件,有望成为重要爆发点。 4. 影响企业竞争策略:企业竞争策略分化,有的迅速成长为大型模型公司并寻找强大背书,有的保持小规模专注盈利并灵活应对市场变化。 5. 推动科技巨头合作:科技巨头通过资本控制 AI 模型公司,为其提供算力,加速行业发展。 在 AI 时代,新的竞争机会包括: 1. 成为大型模型公司并获得强大背书,以取得竞争优势。 2. 保持小规模,专注盈利和灵活应对市场变化。 3. 在特定领域如企业软件、金融服务、健康技术等,利用 AI 创新获得发展机会。 4. 适应权力格局变更,应对“AI 寡头”或“超级强国”的出现,寻找新的发展空间。 同时,AI 时代还具有以下特点和趋势: 1. 未来变化深远,人们会找到新的做事、服务彼此和竞争的方式。 2. 主动性、意志力和毅力将极其宝贵,韧性和适应能力值得培养。 3. AGI 将成为人类意志最大的杠杆,个人能产生更大影响。 4. AGI 的影响不均衡,科学进步速度可能更快,部分商品价格大幅下降,奢侈品和有限资源价格可能上涨。 5. AI 将渗透到经济和社会各领域,人们期待所有事物具有“智能”特质。 6. 权力金字塔可能重塑,率先开发或控制 AGI 的主体将获得巨大战略优势,可能出现“AI 寡头”或“超级强国”,威胁民主和公平竞争。
2025-04-01
在AI时代,我们还需要学英语吗?
很抱歉,知识库中的内容没有直接针对“在 AI 时代,我们还需要学英语吗?”这个问题的相关回答。但从 AI 发展的趋势来看,英语在很多方面仍然具有重要性。例如,许多先进的 AI 技术和研究成果往往首先以英文形式呈现,相关的学习资源和交流也多以英语为主。同时,一些 AI 工具,如 Grok 语音模式,虽然目前仅支持英文,但也说明了英语在利用此类工具进行学习和提升方面的作用。总之,在 AI 时代,学习英语仍有其必要性和价值。
2025-03-31
AI时代如何做好教学设计
在 AI 时代做好教学设计可以从以下几个方面入手: 1. 选题探索:当学生关注教学工具的选择时,如“听书软件对学生学习的好处有哪些”,可从提升阅读理解能力、拓展知识面、增强语言表达能力、促进想象力发展、培养学习兴趣等多个维度进行分析。 2. 工具分析:对于工具对比的问题,如“音频软件/听书软件可以从哪几个方面进行对比”,提供系统的比较维度,包括用户界面、功能特性、文件格式支持、价格策略、书库资源、阅读体验等,引导学生构建评估框架,进行系统思考。 3. 教学设计:针对具体课程,如“为八年级上册课文《中国石拱桥》进行学情分析”,从教学目标、教学内容、教学方法、教学流程、注意事项等方面进行全面分析,体现教育专业知识,提供教学设计指导。 4. 课堂情境:当学生思考课堂管理问题,如“描写一段学生打闹的场景”,生动描写课堂情境,并给出教师的适当管理策略,提供情境化的案例和解决方案。 此外,还包括以下方面: 1. 教材内容分析:包括基本教学内容和学习重难点。 2. 教学目标描述:涵盖知识与技能、过程与方法、态度与价值观。 3. 学习者特征分析:了解聪明学生的认知水平、学习特点、学习习惯、学习任务特点等。 4. 教学策略选择与设计:教学方法有讲解、演示、个别指导、练习、自主学习、小组讨论、全班交流、合作学习等;情境创设包括真实情境、问题性情境、虚拟情境等。资源应用方面,根据实际情境选择或组合,同时注意安排、资源、模版、量规,但可能缺少现场指导与顾问。 在具体的教学环节中: 1. 教学方法:对于“卖炭翁的教学模式与策略”,提供兴趣导向、实践引导、以小见大、激励自主等多种策略。 2. 教案编写:回答“教学设计的总流程”,提供引入、阅读理解、重点内容讲解、交流互动、拓展延伸、总结归纳等完整流程。 3. 教学创新:针对“怎么对一元二次方程组进行教材分析和学情分析”,从教材内容、学生认知特点、教学难点等方面进行分析。 4. 资源推荐:对于“评分高的教育电影”,推荐优质影片并简述其教育价值。 5. 班级管理:对于“有助于处理小学学生矛盾的教育类书籍”,推荐并分析相关书籍的实用价值。
2025-03-31
大模型时代组织和个人面临的挑战和应对策略是什么?
在大模型时代,组织和个人面临着以下挑战和应对策略: 挑战: 1. 算力投资风险:大规模算力投资使公司转变为重资产模式,可能影响公司估值和投资人收益。获取高性能算力成本高昂,包括 GPU 价格及后续部署、运营、调试和使用成本。 2. 估值泡沫风险:创业公司为抬高估值规避算力风险,可能成为突破的绊脚石,类似荷兰郁金香泡沫,当风口过去,真实收入将成为关键指标。 应对策略: 1. 对于创业公司: 挖掘新的价值点,如探索大模型在不同领域的应用,或开发中间层服务,如训练、数据处理、算力服务等。 避免盲目追逐原创大模型,根据自身情况选择合适的发展路径,如套壳开源大模型或拼装大模型时注重创新和突破。 2. 对于投资人: 保持独立判断,不人云亦云,吸取以往经验教训,专注于更有创意和机会的公司或项目。
2025-03-28
AI时代下人才的发展
在 AI 时代,人才的发展具有以下重要方面: 跨学科思维与知识整合能力: AI 善于单领域的深度计算,但跨领域的综合创新仍是人类的优势。能够将不同学科的知识串联,进行类比、迁移和融合,是产生创新思路的源泉之一。未来复杂问题往往涉及多方面因素,仅靠单一领域视角难以解决。人类大脑在跨域联想方面远胜机器,能把看似无关的点联系起来,这正是创造力的体现。 要培养跨学科思维,首先要建立广博的知识面,对主要学科门类有基本了解。其次要刻意练习融会贯通,面对问题时尝试多学科视角。学校和培训应鼓励跨学科项目、通识教育。可以采取“T 字型”发展,一方面在主攻领域深耕,另一方面广泛涉猎相关领域。培养该能力还需提高系统思考和抽象概括能力。长远看,这种跨界整合能力将非常抢手,因为创造性突破往往发生在学科交叉处。 适应 AI 时代的关键技能: 技术专业人士需要发展 AI 难以替代的技能,包括团队建设、跨文化交流、创新解决方案的设计等。AI 虽然可以输出代码,但无法建立团队、跨越文化界限交流或激发团队创造力。对于从事可能被 AI 取代风险工作的技术工作者,需要重新思考职业生涯规划,可能意味着学习新技能或转向更需要人类特质的工作领域。 总的来说,生成式人工智能正在重塑技术就业市场的未来,既带来挑战也提供机遇。关键在于理解并适应这一变化,发展 AI 无法替代的技能,并在新的技术生态中找到自己的位置。同时要注重人类的创造力和创新能力。
2025-03-18
1、Puzzle 选择一个你(们)感兴趣的社会问题或者现象。 “赛博信仰”指在网络环境下衍生的一系列超现实、寄托心理期许的新兴文化现象。这种现象反映了人们在数字化时代中对精神寄托、心理安慰和未来预测的需求。赛博信仰不仅是一种文化现象,也反映了现代社会中人们对科技、信仰和现实之间关系的重新思考。 2、Facts 关于这个问题/现象,都有哪些基本事实? 比如有人购买电子形式的马克思、爱因斯坦的脑子,象征着对智慧的渴望;借助塔罗测试程序、deepseek算命等AI工具,尝试预知命运;夸赞鹿童、转发锦鲤
关于“赛博信仰”这一现象,目前所了解到的基本事实包括:有人购买电子形式的马克思、爱因斯坦的脑子以象征对智慧的渴望;借助塔罗测试程序、deepseek 算命等 AI 工具尝试预知命运;夸赞鹿童、转发锦鲤等。但目前掌握的相关事实相对有限,还需要进一步的研究和观察来更全面地了解这一现象。
2025-03-13
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
用通俗易懂的动画描述人工智能工作原理
人工智能的工作原理可以通过以下动画来描述: 在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。 然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。 比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。 总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。
2025-04-14
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因方法无法大规模拓展应用场景,且从专家提取知识并以计算机可读形式表现及保持知识库准确的任务复杂、成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。过去十年中,“人工智能”常被视为“神经网络”的同义词,因多数成功案例基于神经网络方法。 以下是人工智能发展历程中的一些重要节点: 1969 年:经历低潮。Marvin Minsky 和 Seymour Papert 阐述因硬件限制,几层的神经网络仅能执行基本计算,AI 领域迎来第一次泡沫破灭。 1960 1970 年代:早期专家系统。此时期 AI 研究集中在符号主义,以逻辑推理为中心,主要是基于规则的系统,如早期专家系统。 1980 年代:神经网络。基于规则的系统弊端显现,人工智能研究关注机器学习,神经网络根据人脑结构和操作创建和建模。 1997 年:深蓝赢得国际象棋比赛。IBM 深蓝战胜国际象棋冠军卡斯帕罗夫,新的基于概率推论思路广泛应用于 AI 领域。 1990 2000 年代:机器学习。AI 研究在机器人技术、计算机视觉和自然语言处理等领域取得显著进展,21 世纪初深度学习出现使语音识别、图像识别和自然语言处理进步成为可能。 2012 年:深度学习兴起。Geoffrey Hinton 开创相关领域,发表开创性论文引入反向传播概念,突破感知器局限。 2012 年:AlexNet 赢得 ImageNet 挑战赛。引发深度学习热潮。 2016 年:AlphaGo 战胜围棋世界冠军。DeepMind 的 AlphaGo 战胜李世石,标志着人工智能在围棋领域超越人类,对人类理解产生深远影响。
2025-04-10
有没有可以抓取公众号文章的 agent
以下是一些可以抓取公众号文章的方法和相关信息: 1. 可以通过读 SQLiteDB 或者获取 RSS XML 页面(http://127.0.0.1:4000/feeds/all.atom)来获取更新的公众号。个人选择在公众号订阅不太多时,建议使用分析 XML 页面,比较简单。可以写个程序获得公众号的更新文章,由于本地部署,无法直接将文章同步到 Coze,所以选择使用多维表格(当在线数据库,事实飞书多维表格后台也是使用类似 redis 或 TiDB 这样的数据库实现的)及飞书机器人 API 的方式来实现中间数据的传递。只要在多维表格中设置一个状态转换,就可以知道文章是否已经被解读和推送。 2. 可以通过文章链接订阅公众号,定时推送情报消息,并实现情报 CoT 问答。例如使用 Docker 浏览器打开:http://127.0.0.1:4000 也可以 http://wewerss 服务的 IP:端口为上面设置的外部端口。先点帐号管理,然后点“添加读书帐号”(即使用微信读书来实现公众号订阅),扫码添加帐号。然后在公众号源上,点添加。然后将想订阅的公众号的一篇文章链接粘贴并点确定即可订阅公众号文章。但建议不要短时间订阅太多公众号(经测试最好不要超 40 个)。 3. 瓦斯阅读平台可以抓取公众号的内容,但平台上公众号不太全。 4. GitHub 上的 WeWe RSS 工具可以通过微信读书的方式订阅公众号。
2025-04-05
AI公众号排版
以下是关于 AI 公众号排版的相关内容: 公众号排版是提升阅读体验的关键因素之一。以下是一些建议: 1. 观察知名公众号的排版风格,获取灵感。 2. 若有能力和时间,可尝试创造美观且具个性的排版设计。 3. 倾向于保持简洁风格,突出内容,便于读者浏览和吸收信息。 4. 若对设计有独到见解,可多花心思让公众号脱颖而出。 关于配图: 1. 利用 AI 给出配图建议。 2. 点击链接跳转到免费图库搜索页面。 3. 在免费图库中快速找到合适且无版权风险的配图。 总结来说,用 AI 提效公众号配图的流程是:让 AI 分析文章内容,给出配图建议和关键词,然后据此在免费图库中寻找合适图片。 此外,还包括 SEO 优化和发布推广方面: SEO 优化:Kimi 会提供精选关键词用于文章优化,提升搜索引擎可见度。若对现有关键词不满意,可向 Kimi 要求生成更多精准选项。 发布和推广:选择合适平台发布文章,如个人博客、新闻聚合平台等;利用社交媒体等工具推广文章,扩大传播范围。对于推广策略的深入学习,建议自行查阅相关资料。
2025-03-28
如何写好 AI 公众号 IP 文章
要写好 AI 公众号 IP 文章,关键在于以下几点: 1. 提供清晰且具有指导性的提示词(prompt):这是 AI 生产文章的关键。基本提示词能生成基础文章,更详细、具创意的提示词能让 AI 更好地捕捉文章的语气、风格和重点。例如,“请根据我们收集的关于 OpenAI 回应马斯克言论的资讯,创作一篇既深入又易于理解的科技资讯文章。文章应该有一个吸引人的标题,开头部分要概述事件的背景和重要性,主体部分详细分析 OpenAI 的回应内容及其可能产生的影响,结尾处提出一些引人深思的问题或观点。”这样的提示词能为 AI 提供明确指导和文章基本结构、内容要求,生成结构完整、内容丰富、观点鲜明的文章,但最终产出的内容可能需要微调以符合预期和公众号风格。 2. 注意文章的结构和要求:对于律师相关的公众号文章,如普法文章,需要对案例进行脱敏处理,替换具体人物姓名、时间和地点。写作时要注意每部分的字数,如第一部分一百字左右,第二部分三百字左右等。同时,要按照特定的指令和要求进行,如初始化时的欢迎语、牢记要求并执行等。写作前先请求用户提供案例洞察报告作为基础材料,并询问文章面向的目标群体,然后输出纲要和写作方案。
2025-03-22
如何实现公众号用智能体+工作流,每天自动发《头条新闻》
要实现公众号用智能体+工作流每天自动发《头条新闻》,可以参考以下步骤: 伊登:最新 Deepseek+coze 实现新闻播报自动化工作流 工作流程详解 第一步:内容获取 1. 只需输入新闻链接,系统就能自动提取核心内容。开始节点,入参包括新闻链接和视频合成插件 api_key。 2. 添加网页图片链接提取插件,承接开始节点的新闻链接。 3. 获取网页里的图片,以 1ai.net 的资讯为例,输入新闻后提取出很多链接,其中第一条链接通常是新闻主图,其他内容多为不重要的 icon。 4. 添加图片链接提取节点,若为节省写代码时间,可直接用大模型节点提取,只拿提取的链接集合的第一条,即可搞定新闻的主要图片。 5. 接着利用调整图片的节点,将 url 属性的图片内容转化为 image 属性的图片(因为 url 节点在画板中是 string 的格式,所以必须转为 img 格式)。 6. 对于文字部分,使用链接读取节点将文字内容提取出来。 7. 在提取链接后面接上一个大模型节点,用来重写新闻成为口播稿子,可使用最强的 DeepseekR1 模型生成有吸引力的口播内容。小 tips,如果想要加上自己的特征,可以在提示词里写:“开头加上‘这里是伊登 AI’之类的个性化台词防伪”。PS:这里的 deepseekR1 基础版本是限额使用,我们可以在专业版手动接入 DeepseekR1 手动接入推理模型。 第二步:画面生成 思路是做成一帧一帧的主图+台词,配合语音合成,保证音屏同步。 1. 用批量化节点,做成一帧一帧的画面,用画板节点完成。批量处理节点输入的是格式变化后的 json 格式的文案。 2. 画面生成的重点是:在批处理中,先把一些固定内容在画板节点安排好,比如背景图片。然后引入变量元素,比如新闻图片(已经提取并转换为 img 属性)、新闻标题(来自链接读取)、口播台词(已经提取并二创)。小 tips:想要找好看的背景图推荐去可画,挑选一个好看的视频模板然后,保存为【图片】格式,然后放在画板节点,当作底图。 第三步:语音合成 使用声音合成的官方插件,引用批处理的一句一句的新闻文案内容,可调节语速和语气,多种播音风格可选。在画板和语音合成的节点后面加入图片音频合成插件。PS:这个插件需要收费,登录 https://ts.fyshark.com//userInfo,【钱包】充值获取 token,【个人中心】获取 token,放入这个节点中,不过充值 10 元可以做好久了,这个插件适合小白同学,也有不收费的插件,但是比较吃操作,如果感兴趣也可以关注后续出相关教程。这个插件的 img_audio_video 的功能是把图片+视频合成,这样就实现了一段一段的口播新闻内容。 【拔刀刘】自动总结公众号内容,定时推送到微信(附完整实操教程) 三、搭建工作流 13、循环将推送内容插入数据库 将本轮推送给用户的内容,写入数据库,下次从 rss 列表中如果再抓取到相同内容,直接跳过,避免重复推送。使用「循环」节点,输入项为第 8 步代码输出的 content_urls,这里有完整的文章内容信息。循环体设置:使用「数据库」节点,输入项为本循环节点 item 中的 url 和 suid,SQL 也是用 AI 生成的。设置循环节点的输出项:output,参数随便选,后边也用不到了。 14、结束节点 选择第 11 步输出的内容,可以在 bot 中也查看到推送的内容。 15、试运行 工作流终于搭建完了,点击右上角的试运行,选择绑定的 bot,输入数据测试。Key:输入你的 server 酱的 sendkey。rss_list:如果你没有现成的数据,可以白嫖我这个,复制下方这两条数据测试使用。试运行结果:如果工作流设置的没有问题,你会在工作流中看到这样的结果。同时,微信上也会收到这条推送,可以查看总结内容,点击链接可以查看公众号原文。点击右上角发布。
2025-03-16
公众号文章写手,智能体人设提示词
以下是为您整合的关于公众号文章写手智能体人设提示词的相关内容: 在提示词母体系列(2)中,介绍了模拟江南皮革厂销售的拟人化提示词模板,并将其应用于国内的豆包角色扮演模型,生成吸引人的广告词。若与语音技术结合用于宣传,能创造出有趣有效的销售助手。文章最后提到可通过关注微信领取拟人化提示词母体。 在夙愿:AI 工作流,赋能我的十倍增长中,提到 AI 辅助写作的几种思路,特别是注入个人特色方面。要结合 AI 输出的结果进行决策,删掉无关信息,如短视频、专家访谈、要点列表等不符合需求的内容。然后根据建议,如结合人设、自身经历、补充新信息新观点、使用语言风格、调整结构等来排列组合,得到文章选题。 在方案扩写助手中,参考 Claude 3.5 的官方提示词写法,主要能力包括对专业类方案按格式和风格扩写、拆解技术细节、提示扩写方法。智能体采用对话模式的 Prompt 设计,提示词要求专家深入思考文档需求并编写成文字,分析示例文档进行扩写,采用特定方法充实内容,保持格式、专业准确、语言自然流畅及整体连贯性可读性。
2025-03-11
做一个每日收集兴趣信息的工具,如收集agent,从微信公众号上收集,应该怎么做
以下是一种通过文章链接订阅公众号,定时推送情报消息,并实现情报 CoT 问答的方式来做每日收集兴趣信息的工具: 1. 安装 Docker(假设已经装上) 浏览器打开:http://127.0.0.1:4000 或 http://wewerss 服务的 IP:端口(为上面设置的外部端口) 点开后,输入 Dash 管理页面密码 先点帐号管理,然后点“添加读书帐号”(即使用微信读书来实现公众号订阅),扫码添加帐号 然后在公众号源上,点添加 将您想订阅的公众号的一篇文章链接粘贴并点确定即可订阅公众号文章。但建议不要短时间订阅太多公众号(最好不超 40 个),然后在本地 data/目录会生成一个 SQLite 数据库文件 wewerss.db 2. 关于 Coze 工作流和 Bot 因为前面需要对多维表格操作,所以要先在 http://open.feishu.cn 上建一个飞书机器人,并添加知识库或多维表格编辑权限,具体可参考飞书文档。得到机器人的 app_id 和 app_secret 即可获得租用 token:tenant_access_token 来获取多维表格数据和编辑能力。 工作流一:通过微信文章链接进行文章解读成摘要报告。通过 LLM 能力,开源提示词如下。由于 Coze 使用 LLM 和批量执行任务延时的约束,建议不要同时处理太多文章(如 6 篇左右)。这样执行后,将多维表格的文章状态转换成“已通知”并生成简报。 消息情报官 Bot:最后可以通过 Coze,建定时任务,执行工作流二,并添加其他如分析文章和搜索文章的能力,即可变成一个消息情报官的 Agent,我们即可以获得想要的领域或行业情报,也可以深入挖掘相关情报的信息。然后发布到想要的平台,如:Coze 商店、豆包、飞书、微信、微信公众号、微信小程序等,即可使用。可以构建多个分身,就能收集整理不同领域和行业的情报信息。 如感兴趣欢迎联系交流合作。
2025-03-08