Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI智能体在电商领域到底能做什么

Answer

AI 智能体在电商领域主要有以下应用:

  1. 电商导购:以“什么值得买”智能体为例,当用户输入购买需求,如“我想买个笔记本电脑”,智能体会提取关键词,通过相关 API 检索商品信息,与内置提示词组装成上下文,请求大模型回答,提供更精准的商品推荐。
  2. 工作流协作:通过多个智能体的组装,解决复杂场景的搜索问题。例如给新产品取名,定义多个智能体分别负责不同功能,如给出建议名字、检索是否同名等,同时需要调度中枢协调工作,决定是继续下一步还是回溯。
  3. 决策支持:如在理赔提交审核中,将付款方规则转换为有向无环图,智能体遍历决策树,利用语言模型评估相关文件是否符合规则,并在复杂任务中选择最佳方法。
  4. 品牌卖点提炼:实际搭建中,遵循营销管理流程保证输出合理性,根据电商业态调整单独智能体的提示词提升信息准确度,为营销团队提供更广阔思路和灵感。
Content generated by AI large model, please carefully verify (powered by aily)

References

工具:我做了一个 AI 搜索引擎

以Kimi+的“什么值得买”智能体举例,假设用户输入“我想买个笔记本电脑”,智能体会先做Query Rewrite提取出“笔记本电脑”关键词,再通过“什么值得买”的API检索对应的商品信息,拿到检索结果后,跟智能体内置的提示词组装成上下文,请求大模型回答。于是这个智能体便成了一个电商导购类的垂直搜索()应用,在商品推荐方面有更好的回答效果。1.工作流Workflow工作流Workflow也可以理解为多智能体协作Multi-Agents,通过多个智能体的组装,解决一些复杂场景的搜索问题。比如:给新产品取名,我习惯的步骤是告诉大模型新产品是做什么的,大模型推荐几个可取的名字选择其中一个名字,去谷歌检索,是否有同名去Twitter检索是否有同名去Github检索是否有同名选择一个域名,去Namecheap搜索是否已被注册全部检测通过,确定产品名,注册域名这里涉及到一个回溯的问题,也就是在其中某个步骤发现产品名不可用,要回到第一步重新选择名字,再继续走后面的检测步骤。人工去做这件事,毫无疑问是很费时间的。AI搜索+Workflow的模式,可以有效解决这个问题。首先定义几个智能体,每个智能体完成一项功能。比如A智能体只负责给出建议的名字,B智能体负责检索谷歌是否有同名,C智能体负责检索Twitter是否有同名,D智能体负责检测Github是否有同名,E智能体负责检测可用的域名...另外还需要有一个调度中枢,协调每个智能体的工作,需要做决策,决定是继续下一步还是回溯到之前的步骤。

AI 智能体:企业自动化的新架构 - Menlo Ventures

我们将探讨的第一类智能体是决策智能体,它们使用智能体决策制定在复杂、多步骤的推理流程中导航并做出业务决策。与RAG或工具使用方法不同,这种架构首次将一定的控制逻辑交给LLMs,而不是预先设定所有步骤-但仍位于智能体自由度范围的较低端,因为智能体主要作为路由器导航一组预先确定的决策树。让我们以[Anterior](https://www.anterior.com/)(前称Co:Helm)为例。该健康计划自动化公司开发了一个临床决策引擎,用于自动化理赔提交审核。护士们如今凭借装满条件知识(就像世界上最无聊的"自选冒险")的付款人规则手册,人工完成这些审核。Anterior简化了这个过程。该公司首先将付款方规则转换为有向无环图(DAG),使用基于规则的脚本和语言模型。然后,他们的智能体遍历这个决策树,在每个节点利用LLMs来评估相关的临床文件是否符合特定的规则。对于较简单的节点,这可能涉及基本的检索增强型生成(RAG)步骤。但是,Anterior经常遇到需要子链的更复杂的任务,在这种情况下,智能体必须选择最佳方法,然后才能进入下一个节点。它会在每次决策时更新自己的状态(在内存中管理这些中间输出),并一直进行到最终确定。前者并非独一无二的采取这种方法。其他领域也在利用决策智能体,包括[Norm AI](https://norm.ai/)正在为监管合规打造AI智能体,以及[Parcha](https://www.parcha.com/)正在为KYC建立智能体。

智能体在品牌卖点提炼中的应用

在智能体的构建中,对于结构的理解和控制,是整个工作流中最重要的部分,本文旨在为大家提供的是结构化的思路,而结构中的单点,可以通过不断迭代的方式,不断完善。请注意,品牌卖点提炼助手的本质是一个办公助手的形式,它最强的能力是为本来就具有营销思维的团队提供更为广阔的思路,将核心的经历放在决策和更具创意的部分,可以极大的提高团队效率。[heading2]4.1后续的迭代方向[content]实际的搭建过程,除了按照营销管理的结构进行智能体的搭建,实际也要根据公司所处的业态进行合理的调整,给智能体更多的提示词来提升分析的合理性。比如对于电商产品,其线上的触点是淘系京东系的电商平台,和抖音小红书等兴趣电商内容平台,而线下触点则是产品的包装、包裹、包括卡、产品说明书等,人员触点是销售人员、主播、售后、客服等。而线下是的实体服务行业,其线上的触点是大众点评/美团等线上OTA本地生活平台,抖音小红书等新媒体内容平台,而线下触点则是线下的门店展示,服务流程等,人员则是电话销售、服务人员等。因此,在实际的智能体构建中,结构上遵循营销管理的流程,可以保证智能体在输出上不会乱说八道,而通过调整单独智能体的提示词,可以有效提升在某一部分助手信息的准确度。另外,营销管理的结构化提示词中有一个注意事项,不要依赖于举例,因为举例有可能会限制AI在某一个方向上的发散思维,虽然避免了AI胡说八道,也限制了提供更有创造性思路的可能性。在营销过程中,更依赖于公司人员和咨询人员的决策力和敏锐的洞察力,智能体的灵感助手能够帮助我们更轻松的决策。

Others are asking
我想做电商主图,用什么ai
如果您想制作电商主图,可以考虑以下几种 AI 工具和方法: 1. Midjourney:通过输入相关关键词,如“Guerlain Perfume,plant flowers,top light.cean natural backaround with water,saturation color scheme.The productis bright,Motled shading,studo lighfing,contrast high precision,Fine gloss,Centered composition,Photography,HD4Krealism–q 2–v 5–s 750–ar 9:16”,生成图片后再进行后期修改调整和文字排版。 2. Stable Diffusion:对于运营网店的女装店主,可采用局部重绘的方法。先真人穿衣服拍照,获取真实质感的照片,选好真人照片风格的底模,如 majicmixRealistic_v7,再根据不同平台需求换头,如面向海外市场换白女头,然后在图生图下的局部重绘选项卡下涂抹自己替换的部分,并设置相关的 prompts 和 parameters,如“breathtaking cinematic photo,masterpiece,best quality,,blonde hair,silver necklace,carrying a white bag,standing,full body,detailed face,big eyes,detailed hands”。
2025-04-15
大模型 个性化 电商
大模型在电商领域的应用主要体现在以下方面: 1. 生成电商服饰数据:以大元模型广场为例,可让大模型按要求生成电商服饰数据(含尺码、价格、描述等信息,输出为 Excel 结构),用于辅助运营小二回复问题沉淀;当缺少真实数据或担心数据安全时,还可用示例数据跑测试及做非结构化清洗。 2. 个性化营销:在广告营销行业,大模型从初期的市场分析、中期的客户转化以及后期的客户复购均可参与,为消费者提供更个性化、智能化和互动性强的营销体验,而对于广告图案的生成完全可以通过 AI+设计相关的 SOP 来提高效率。 在医疗行业,大模型的应用主要涵盖三个方向:疾病的诊断与预测、药物研发以及个性化医疗。例如,麻省理工学院利用 AI 发现了新型广谱抗生素 Halicin,研究者通过训练集让 AI 学习分子特点,最终成功识别出符合要求的分子。目前很多医疗研究机构都进行医疗大模型的开发研究。 在图像生成领域,如 Midjourney 发布了模型个性化 Personalization 或'p'的早期测试版本。其工作原理是学习用户的喜好,以便更可能用用户的口味来填补空白。使用时只需在提示后输入p,或使用提示栏中的设置按钮为所有提示启用个性化功能,还可以使用s 100 控制个性化效果的强度。但个性化目前不是一个稳定的功能,会随着更多的成对排名而变化,并且可能会推出算法更新。
2025-04-11
Ai如何帮助电商
AI 在电商领域有以下多方面的帮助: 1. 产品推荐:通过分析客户数据,为每个客户推荐他们可能感兴趣的产品。 2. 搜索和个性化:改善搜索结果,为客户提供个性化的购物体验。 3. 动态定价:根据市场需求动态调整产品价格。 4. 聊天机器人:提供服务,回答客户问题并解决他们的问题。 5. 生成产品照片:像这样的工具帮助品牌创建引人注目的产品照片,提升产品对在线购物者的吸引力。 6. 创作营销内容:可以编写经过 SEO 优化的产品描述。 7. 商品展示图制作:可以借助 Stable Diffusion 等 AI 作图工具,通过局部重绘等方法美化商品展示图,比如真人穿衣服拍照后进行处理和替换等操作。
2025-03-29
我是一名电商设计师,现在想学习SD AI绘图,有一点基础,但学习课程资源有限,请你帮我制定一份详细的学习计划,并提供一些学习资源。
以下是为您制定的学习 SD AI 绘图的详细计划及相关学习资源: 学习计划: 1. 首先,深入学习 Stable Diffusion 的核心基础原理,包括模型工作流程、核心基础原理、训练全过程以及其他主流生成式模型介绍。 2. 接着,掌握 Stable Diffusion 的核心网络结构,如 SD 模型整体架构、VAE 模型、UNet 模型、CLIP Text Encoder 模型等。 3. 学习从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画的不同方式,如使用 ComfyUI、SD.Next、Stable Diffusion WebUI、diffusers 搭建推理流程,并查看生成示例。 4. 了解 Stable Diffusion 的经典应用场景,如文本生成图像、图片生成图片、图像 inpainting、使用 controlnet 辅助生成图片、超分辨率重建等。 5. 最后,尝试从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型,包括配置训练环境与训练文件,以及基于 Stable Diffusion 训练 LoRA 模型。 学习资源: 1. 教程:深入浅出完整解析 Stable Diffusion(SD)核心基础知识 知乎。 目录涵盖了 Stable Diffusion 系列的各个方面,包括核心基础知识、网络结构解析、搭建推理流程、应用场景和模型训练等。 2. SD 模型权重百度云网盘: 关注 Rocky 的公众号 WeThinkIn,后台回复:SD 模型,即可获得资源链接,包含多种模型权重。 3. SD 保姆级训练资源百度云网盘: 关注 Rocky 的公众号 WeThinkIn,后台回复:SDTrain,即可获得资源链接,包含数据处理、模型微调训练以及基于 SD 的 LoRA 模型训练代码全套资源。 4. Stable Diffusion 中 VAE,UNet 和 CLIP 三大模型的可视化网络结构图下载: 关注 Rocky 的公众号 WeThinkIn,后台回复:SD 网络结构,即可获得网络结构图资源链接。
2025-03-28
怎么用AI做电商
以下是关于如何用 AI 做电商的一些方法和应用场景: 在商品展示方面,可以利用 AI 绘画工具如 Stable Diffusion 来制作商品展示图。对于女装商品,可先让真人穿衣服拍照,获取真实质感的照片。选好真人照片风格的底模,如 majicmixRealistic_v7,并根据不同平台需求进行换头操作,如面向海外市场换白女头。在图生图下的局部重绘选项卡下涂抹需要替换的部分,并设置合适的 prompts 和 parameters。 在电商运营中,AI 有多种应用场景: 1. 产品推荐:通过分析客户数据,为每个客户推荐可能感兴趣的产品。 2. 搜索和个性化:改善搜索结果,提供个性化的购物体验。 3. 动态定价:根据市场需求动态调整产品价格。 4. 聊天机器人:提供服务,回答客户问题并解决问题。 此外,还可以利用 AI 数字人带货本地生活电商: 1. 用 ChatGPT 生成短视频选题文案,明确身份、描述需求和回答要求。 2. 用 ChatGPT 生产短视频文案,结合需求与框架。 3. 生成虚拟数字人短视频:打开相关网站,输入内容,选择头像、国家和声音,等待生成后结合产品讲解并发布进行视频带货。
2025-03-24
做电商的话如何使用AI结合拍摄的产品图片生成推广图片和视频
以下是关于在电商中使用 AI 结合拍摄的产品图片生成推广图片和视频的方法: 虚拟数字人结合产品做视频: 1. 添加产品/介绍背景:如果有自己的视频/图片素材可以使用,没有的话可以根据搜索添加。 2. 扣像结合背景:在剪映中把数字人扣下来,导入视频,点击画面选择抠像,点击智能抠像,调整到合适的大小和位置。 3. 添加字幕和音乐:智能识别字幕,可搜索添加音乐或手动添加自己喜欢的音乐。 使用数字人无需真人模特: 只需上传产品图片,数字人即可手持产品进行口播展示。支持语音和口型同步,动作、姿势定制,提供 1000 多种国家数字人模特,覆盖全球 28 种语言,能快速生成产品宣传视频,省去拍摄烦恼。在线体验: 。 此外,使用 AI 来完成阿里巴巴营销技巧和产品页面优化,可以采取以下步骤: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速识别关键信息。 2. 关键词优化:AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述。 3. 产品页面设计:AI 设计工具根据市场趋势和用户偏好生成吸引人的页面布局。 4. 内容生成:AI 文案工具撰写有说服力的产品描述和营销文案。 5. 图像识别和优化:AI 图像识别技术选择或生成高质量产品图片。 6. 价格策略:AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:AI 分析客户评价和反馈,优化产品和服务。 8. 个性化推荐:AI 根据用户购买历史和偏好提供个性化产品推荐。 9. 聊天机器人:AI 驱动的聊天机器人提供 24/7 客户服务。 10. 营销活动分析:AI 分析不同营销活动效果,了解哪些活动更吸引顾客并产生销售。 11. 库存管理:AI 预测需求,优化库存管理。 12. 支付和交易优化:AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:AI 帮助在社交媒体上找到目标客户群体,精准营销提高品牌知名度。 14. 直播和视频营销:AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。
2025-03-22
AI智能体在企业应用案例
以下是一些 AI 智能体在企业中的应用案例: 决策智能体: 以 Anterior 为例,它是一家健康计划自动化公司,开发了用于自动化理赔提交审核的临床决策引擎。将付款方规则转换为有向无环图,智能体遍历决策树,利用 LLM 评估相关临床文件是否符合规则,在复杂任务中选择最佳方法并更新状态,直至最终确定。 Norm AI 正在为监管合规打造 AI 智能体,Parcha 正在为 KYC 建立智能体。 检索增强生成(RAG): 以 Sana 的企业搜索用例为例,应用程序加载和转换无结构文件,将其分块并作为向量嵌入存储在数据库中。当用户提问时,系统检索相关上下文块,折叠到“元提示”中与检索信息一起喂给 LLM,合成答复返回给用户。 Eve 法律研究的共同驾驭员会将研究查询分解为独立提示链,运行每个提示链生成中间输出,并综合编写最终备忘录。 生成式 AI 应用: 具有搜索、合成和生成三个核心用例,Menlo Ventures 投资组合公司如 Sana(企业搜索)、Eve(法律研究副驾驶)和 Typeface(内容生成 AI)是早期突破性的代表。 领先的应用程序构建商如 Anterior、Sema4 和 Cognition 正在建立解决方案,处理之前只能由大量人力解决的工作流程。借助多步逻辑、外部内存以及访问第三方工具和 API 等新型构建块,拓展 AI 能力边界,实现端到端流程自动化。
2025-02-16
AI 智能体在企业落地
以下是关于 AI 智能体在企业落地的相关内容: 决策智能体方面: 决策智能体使用智能体决策制定在复杂、多步骤的推理流程中导航并做出业务决策。 以 Anterior 为例,其将付款方规则转换为有向无环图(DAG),智能体遍历决策树,在每个节点利用 LLMs 评估相关临床文件是否符合特定规则,遇到复杂任务时选择最佳方法并更新自身状态。 其他领域如 Norm AI 为监管合规打造 AI 智能体,Parcha 为 KYC 建立智能体。 相关人物与业务方面: 韦恩是智能体创业者、WayToAGI 共建者、微软提示词工程师、多平台 Agent 开发者、企业级 AI Agent 定制专家,荣获多家 AI 开发平台比赛奖项,有 12 年程序开发背景,是多家企业的 AI 落地顾问,承接 1v1 辅导、智能体培训、智能体定制开发、企业 AI 项目落地等业务。 生成式 AI 应用方面: 生成式 AI 应用当前有搜索、合成和生成三个核心用例与强大的产品市场契合度。 领先的应用程序构建商如 Anterior、Sema4 和 Cognition 正在建立解决方案,处理之前只能由大量人力解决的工作流程。 借助多步逻辑、外部内存以及访问第三方工具和 API 等新型构建块,下一波智能体正在拓展 AI 能力的边界,实现端到端流程自动化。
2025-02-16
flowith 2.0与refly的区别具体在哪里?
Flowith 2.0 与 Refly 的区别主要体现在以下方面: 功能定位:Refly 是一款国产应用,是全站式的文本创作工具,集成了“知识库+自由画布+AI 搜索+内容编辑”等功能,覆盖主题搜索、思维拓展、在线文档、文本优化等完整创作链条的每一个环节。Flowith 2.0 是一款出海应用,有成为订阅制 AI 知识社区的野心。 知识库:Flowith 2.0 的知识库允许自行上传制作并发布,还可以自由添加(或购买)他人已经发布的知识库,这是其作为 AI 付费订阅知识社区的基本雏形,而 Refly 没有此功能。 内容编辑器:Flowith 2.0 的内容编辑器有 Markdown、图片编辑器、代码编辑器、实时语音聊天等几种不同的模式,Refly 未提及有此多样的模式。 交互设计:Flowith 2.0 继承并优化了 1.0 版本的交互设计,尤其是 Agent 功能设计(包括 Project 功能、Oracle 模式、Agent Community 等)得到了强化,以及依旧流畅酷炫的对话模式(包括插件模式、比较模式、图片/视频生成模式等),Refly 未提及相关内容。 团队协作:Flowith 2.0 支持团队协作,允许邀请外部协作者评论、共同编辑当前 Flow,Refly 未提及此功能。
2025-02-13
智能体在电商领域的应用
智能体在电商领域有以下应用: 1. 电商导购:以“什么值得买”智能体为例,当用户输入“我想买个笔记本电脑”,智能体会先提取关键词“笔记本电脑”,通过相关 API 检索商品信息,与内置提示词组装成上下文,请求大模型回答,提供更好的商品推荐效果。 2. 工作流协作:工作流也可理解为多智能体协作,通过多个智能体的组装解决复杂场景的搜索问题。例如给新产品取名,涉及多个步骤和检测,人工操作费时,而 AI 搜索与 Workflow 模式可有效解决,通过定义多个智能体完成各项功能,并由调度中枢协调工作和决策。 在品牌卖点提炼方面: 1. 构建中对结构的理解和控制最为重要,旨在提供结构化思路,单点可通过不断迭代完善。品牌卖点提炼助手本质是办公助手,能为有营销思维的团队提供思路,提高团队效率。 2. 实际搭建需根据公司业态调整,给智能体更多提示词提升分析合理性。不同行业的线上、线下和人员触点不同,遵循营销管理流程保证输出,调整提示词提升准确度。营销管理结构化提示词中避免依赖举例,决策和洞察力仍依赖人员,智能体作为灵感助手辅助决策。 3. 最终提炼的品牌卖点应用于与用户交互的所有场景,即触点,包括线上(如微信、抖音等平台)、线下(产品到达消费者手上的场景或线下实体门店场景)和人员(线上直播间、人工客服或线下销售人员等)触点。在最终步骤,需找到所有传达品牌卖点的场景,结合需求制作落地页或沟通话术,建立品牌价值。
2024-12-20
AI智能体在电商领域可落地的应用
AI 智能体在电商领域有以下可落地的应用: 1. 电商导购:以“什么值得买”智能体为例,当用户输入“我想买个笔记本电脑”,智能体会先提取关键词“笔记本电脑”,通过相关 API 检索商品信息,与内置提示词组装成上下文,请求大模型回答,从而提供更好的商品推荐效果。 2. 工作流优化:工作流也可理解为多智能体协作,通过多个智能体的组装解决复杂场景的搜索问题。例如给新产品取名,涉及多个步骤和检测,人工操作费时,而 AI 搜索与 Workflow 模式可有效解决,通过定义多个完成不同功能的智能体,并由调度中枢协调工作和决策。 3. 品牌卖点提炼:AI 在逻辑推理、数据分析、内容理解和输出上有独特优势,可搭建品牌卖点提炼助手。但在搭建前需明确 AI 的能力边界,如对公司产品、独特之处、核心渠道等了解有限。AI 更适合做引导型助手,在寻找卖点陷入停滞时提供更多思考维度。实际搭建时,除遵循营销管理流程保证输出合理,还需根据公司业态调整智能体提示词以提升信息准确度。对于电商产品,需考虑线上线下不同触点和人员等因素。
2024-12-19
AI智能体在电商领域营销助手应用
AI 智能体在电商领域营销助手方面有以下应用: 1. 品牌卖点提炼: 智能体的构建中,理解和控制结构最为重要,其本质是办公助手,能为有营销思维的团队提供思路,提高效率。 实际搭建要根据公司业态调整,给智能体更多提示词提升分析合理性。例如电商产品,线上触点有淘系、京东系等电商平台和抖音、小红书等兴趣电商内容平台,线下触点包括产品包装、包裹等,人员触点有销售人员等;线下实体服务行业,线上触点有大众点评/美团等,线下触点有门店展示等。 遵循营销管理流程构建智能体可保证输出准确,调整提示词能提升某部分助手信息准确度,但注意营销管理结构化提示词中不要依赖举例,以免限制 AI 创造性思维。 2. 电商导购: 以“什么值得买”智能体为例,用户输入“我想买个笔记本电脑”,智能体会提取关键词,通过 API 检索商品信息,与提示词组装后请求大模型回答,成为电商导购类垂直搜索应用,提升商品推荐效果。 工作流 Workflow 可理解为多智能体协作,通过多个智能体组装解决复杂场景搜索问题,如新产品取名,涉及多个步骤和智能体,还需调度中枢协调工作和决策。 3. 搭建智能体提炼品牌卖点: AI 在逻辑推理、数据分析等方面有强项,可用于品牌卖点提炼,搭建品牌卖点提炼助手。 搭建前要明确 AI 能力边界,如 AI 不了解公司产品、独特之处等。 AI 真正的能力是逻辑推理、处理分析数据等,确定的智能体更适合做引导型助手,在寻找卖点陷入停滞时提供思考维度。
2024-12-19
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
想要做一节讲如何用智能体做企业数字化转型的课程,如何设计
以下是关于如何设计用智能体做企业数字化转型课程的建议: 一、参考案例 1. 李国宝的相关经验 具有丰富的从业经验,包括通信工程、数据通信网络培训、创业、网络安全解决方案及培训、AI 课程开发与培训等。 开发过面向不同群体的 AI 课程,如《数字化转型实践》面向传统企业数字化、AI 赋能转型。 2. 90 分钟从 0 开始打造你的第一个 Coze 应用课程 从零开始教学做应用界面,先基础教学,再涉及特定应用。 介绍当前承接业务,包括辅导、培训、定制及企业 AI 落地等。 挖掘用户对 AI 应用的功能需求,如对交互界面的需求。 二、课程设计要点 1. 对于企业管理者 AI 辅助决策:在小规模决策中使用 AI 分析工具,以其分析结果作为决策参考。 员工培训计划:制定 AI 工具使用的培训计划,帮助团队成员了解日常工作中如何有效利用 AI。 流程优化:识别公司中可能受益于 AI 自动化的重复性任务,从小流程开始测试 AI 解决方案的效果。 AI 伦理和政策:制定公司的 AI 使用政策,确保 AI 应用符合伦理标准和法律要求。 2. 对于教育工作者 AI 辅助教案设计:尝试使用 AI 帮助设计课程大纲或生成教学材料 ideas,为课程带来新视角。 个性化学习路径:探索使用 AI 分析学生学习数据,为不同学生制定个性化学习计划。 创新教学方法:考虑将 AI 工具整合到课堂活动中,如使用 AI 生成的案例研究或模拟场景。 AI 素养教育:开发简单的课程模块,教导学生了解 AI 基础知识、应用领域及其对社会的影响。 三、注意事项 无论面向哪个群体,都应记住:与 AI 协作是一个学习过程。从小处着手,保持好奇心和开放态度,会发现 AI 不仅能提高工作效率,还能激发创造力,开拓新的可能性。最重要的是,始终保持批判性思维,将 AI 视为强大的工具,而不是完全依赖的解决方案。
2025-04-18
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
AI Agents(智能体)
AI 智能体(Agents)是人工智能领域中一个重要的概念: 1. 从 AGI 的发展等级来看,智能体不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 2. 作为大模型的主要发展方向之一,智能体中间的“智能体”其实就是大模型(LLM)。通过为 LLM 增加工具、记忆、行动、规划这四个能力来实现。目前行业里主要用到的是 langchain 框架,它把 LLM 与 LLM 之间以及 LLM 与工具之间通过代码或 prompt 的形式进行串接。 3. 从智能体的起源探究来看,心灵社会理论认为智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,每个层次由多个 Agent 负责,每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务。同时存在专家 Agent、管理 Agent、学习 Agent 等不同类型的 Agent 及其相应功能。从达特茅斯会议开始讨论人工智能,到马文·明斯基引入“Agent”概念,“AI”和“Agent”就彻底聚齐,往后被称之为 AI Agent。
2025-04-15
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15