Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

lisp提示词

Answer

Lisp 语言在提示词编程中的应用具有以下特点:

  1. Lisp 语言的语法:Lisp 是一门“古老”的编程语言,其语法核心是 List 结构或“S 表达式”,需要用一对括号把元素括起来,语法简洁优美且具有很强的表达能力。
  2. 与 Markdown 的比较:平时写提示词更多用的是 Markdown 语法,它简单且大语言模型能很好理解,如标题、列表、加粗强调等。将 Lisp 提示词翻译成 Markdown 后,语义几乎一致,但在某些效果上存在差异,如 Lisp 版本中 SVG 图形的丰富度和表现力稳定地优于 Markdown 版本。此外,Markdown 版本在执行过程中会输出中间“思考”过程,多数场景下这样一步一步思考有正向收益,还能调试优化流程。而 Lisp 版本很难让大语言模型有条理地执行流程。
  3. LLM 对 Lisp 程序的理解:一段 Lisp 提示词可能描述了简单的工作流,如对用户输入文本处理生成小确幸表达和生成 SVG 卡片等。虽然 Lisp 擅长描述程序且压缩信息能力强,但程序难懂,需要大量解码和按特定逻辑解读。大语言模型能解释 Lisp 程序,但作为提示词让其按程序逻辑运行很难,尤其对于复杂的函数调用,且难以保证程序里定义的子步骤被正确且无遗漏地执行。
Content generated by AI large model, please carefully verify (powered by aily)

References

艾木:提示词编程|有必要用 Lisp 语言写提示词吗?

李继刚写的提示词有个特点——它们是用Lisp语言编写的。比如,[下面这段提示词](https://mp.weixin.qq.com/s?__biz=MzkxMzc1NzM1Mw==&mid=2247483803&idx=1&sn=485c2f271172a7efcb0735310f8ff191&scene=21#wechat_redirect):Lisp是一门“古老”的编程语言。Lisp语言有个特点——它的语法非常地简洁且优美。它的语法核心是List结构,或者叫“S表达式“,其典型特征就是需要用一对括号把元素括起来。List结构里又可以嵌套List,所以Lisp程序呈现出来的样子就是一对对括号里嵌套着一对对括号嵌套着一对对括号。List结构使得Lisp的语法足够简洁,同时又有非常强的表达能力。这两者兼备,才可以称得上优美。也许你会觉得,语言最重要的功能是传递语义,语法其实没那么重要。如果你是程序员,你就不会这么觉得了。对编程语言来讲,syntax matters[1]。对于大语言模型来讲,语法重要吗?看了李继刚的提示词,你可能会有一个随之而来的疑问:有必要用Lisp语言写提示词吗?接下来,我们就以“小确幸”这段提示词为例子来解构一下。

艾木:提示词编程|有必要用 Lisp 语言写提示词吗?

我们平时写提示词用的更多的是Markdown语法。Markdown语法很简单,并且大语言模型能很好的“理解”标题、列表、加粗强调等这些语法。用Markdown写提示词不是更直白吗?我们把这段Lisp提示词翻译成Markdown试试效果。Markdown版本与Lisp版本的提示词在语义上几乎是一致的。只是中间我多加了一句“一步步思考,严格按照大步骤以及处理流程执行。”因为不加这句,Claude还是不能保证会逐步执行。下面是Lisp版本提示词的输出效果。不知啥原因,我通过API调用Claude,输出效果很难达到李继刚文章中那种水平,用网页版也许会好一些。下面是Markdown版本的提示词输出的结果:对比下两者的效果,可以发现一个明显差异:在Lisp版本中,SVG图形的丰富度和表现力稳定地优于Markdown版本。这是个意外发现!我们会在后面再细细探讨。Markdown版本与Lisp版本提示词的另一个重要差异在执行过程,它会输出中间“思考”过程。小确幸这个函数的所有子步骤都被充分展开并且按顺序执行了。而且,由于大语言模型的自回归机制,前面步骤的输出,会自然地被作为上下文传入给后面的步骤。虽然在这个任务中,从文本处理后的输出结果上可能看不出太大差异,但在多数场景下,这样一步一步思考是会有正向收益的。除此之外,让大语言模型将“思考”过程外化出来后有一个很大的好处,就是你可以调试优化这个流程。从过程输出中你可以看到哪些步骤生成了有用的增量信息,哪些步骤是无用的。另外在调试过程中,你还可能从大语言模型的输出中发现新的灵感。然而,用Lisp版本的提示词,很难让大语言模型这么有条理地执行一个流程。

艾木:提示词编程|有必要用 Lisp 语言写提示词吗?

除去角色设定部分(村里有爱函数),“小确幸”这段提示词主要做了两件事:一、对用户输入的文本进行处理,生成小确幸表达(小确幸函数);二、生成SVG卡片(SVG-Card函数)。实际上它用Lisp语言描述了一个简单的工作流。小确幸这个函数内部又包含一系列的子步骤:不幸中的幸运→显微镜视角→独特经验→意外偶然→肯定生命→温柔感受→温暖表达→提炼一句。作者期望大语言模型能按照这些子步骤对用户输入进行逐步处理,输出一条响应。函数里还定义了一些few-shot examples,以供大语言模型学习。最后,这个函数里调用了SVG-Card函数,传入响应作为参数。SVG-Card函数根据响应完成生成SVG卡片的任务。这短短的一段文本里竟然压缩了这么多信息!这一方面是编程语言自身的特性所致,因为编程语言特别擅长描述程序(procedure)。另一方便则体现了Lisp这门特殊的编程语言的优势,它特别简洁,且特别有表达力。程序很难懂,因为你在读一段代码的时候,需要做大量的解码。并且,你得按照程序解释器运行程序的逻辑去解读代码。那么,大语言模型能“读懂”这段程序吗?你把这段程序丢给AI,让它去解释,它应该能解释的很好。但是,把这段程序作为提示词,让大语言模型去解释并按照程序描述的逻辑去运行,很难。这段程序还相对简单,如果程序涉及到更复杂的函数调用,大语言模型更难处理,因为大语言模型就不是用来做这件事的。术业有专攻,这是解释器的活。这就带来一个问题:怎么保证程序里定义的子步骤被按照正确顺序且无遗漏的执行了?

Others are asking
撰写lisp语法风格提示词的教程
以下是一份关于 Lisp 语法风格提示词的教程: Lisp 是一门“古老”的编程语言,其语法核心是 List 结构,也叫“S 表达式”,典型特征是用一对括号把元素括起来,并且 List 结构里可以嵌套 List,使得程序呈现出多层括号嵌套的样子。Lisp 语法简洁且优美,具有很强的表达能力。 在提示词编程方面,李继刚写的提示词有用 Lisp 语言编写的例子。用 Lisp 写提示词具有一些特点和优势: 1. SVG 图形的丰富度和表现力可能优于 Markdown 版本。 2. 执行过程会输出中间“思考”过程,方便调试优化流程,能看到哪些步骤生成有用信息,哪些无用,还可能从中获得新灵感。 但平时写提示词用的更多的是 Markdown 语法,它简单且大语言模型能很好“理解”。对比两者,在多数场景下,从文本处理后的输出结果可能看不出太大差异,但逐步思考有正向收益。 在“情绪价值营销”中,可以用 Lisp 构建 prompt,让 Claude 直接根据用户输入输出情绪营销语句。用 Lisp 这种编程语言在 prompt 圈曾被带火,其更为凝练和简洁。当然,用 Markdown 格式写 prompt 效果也一样。 使用 Lisp 格式 prompt 时(Claude 专用),需要注意一些事项。例如,对于 GPT 等模型在卡片生成这步需要进行一些调整,不稳定,最好自定义 html/css 样式来进行强约束。使用时,直接打开 Claude 首页,发送上述提示词进行初始化,然后即可使用。
2025-03-13
Lisp
Lisp 是一门“古老”的编程语言,其语法核心是 List 结构或“S 表达式”,需要用一对括号把元素括起来,且 List 结构里可以嵌套 List,使得程序呈现出一对对括号嵌套的样子。Lisp 语法简洁且优美,兼具简洁性和强大的表达能力。 在提示词编程方面,用 Lisp 编写的提示词生成 SVG 图形的效果明显优于 Markdown 版本。这可能是因为对于让大语言模型生成 SVG 代码的任务,Transformer 擅长从一种语言映射到另一种语言,而 Lisp 和 SVG 都是代码,两者靠得更近。此外,Markdown 表达能力有限,难以清晰准确描述 SVG 卡片的设计规范等,而 Lisp 的 List 结构更适合。在 SVGCard 函数中,Lisp 更多作为描述性语言而非程序性语言。 在网文创作中,也有 Lisp 格式的提示词,如在帮人做世界观故事时会用到,不同版本可适用于不同的模型和需求。
2025-02-10
请问有那款ai是能通过Lisp 语言实现一些输出操作的呢?
以下是一些能够通过 Lisp 语言实现输出操作的 AI 示例: 在“AI‘词生卡’的蝴蝶效应:从文字到视觉盛宴跨界蝶变”中提到,古早的 Lisp 语言在 Claude3.5 强大的理解力和绘图支持下焕发了新生,制造了新卡。 在“艾木:提示词编程|有必要用 Lisp 语言写提示词吗?”中,将提示词用 Lisp 语言编写后丢给 Claude,例如输入文本,Claude 大概率会直接输出 SVG 代码。但对于复杂的函数调用,大语言模型处理起来较困难。
2025-01-23
lisp格式的提示词怎么使用
Lisp 格式的提示词主要用于让 Claude 等模型生成特定的输出,以下是一些关于其使用的要点: 1. 用 Lisp 编写提示词能使生成 SVG 图形的效果优于 Markdown 版本。这可能是因为 Transformer 架构擅长从一种语言映射到另一种语言,Lisp 和 SVG 都是代码,两者距离更近,且 Lisp 的 List 结构更适合描述 SVG 卡片的设计规范、元素构成和配置参数。 2. 在实际应用中,可能会采用 Markdown 和 Lisp 混合的组合形式。如果通过 Chatbot 界面使用大语言模型,只能杂糅成一条提示词,一般情况下会拆成工作流,通过多次调用大语言模型来实现。 3. 用 Lisp 这种编程语言写提示词是之前在 prompt 圈被带火的,使用起来更为凝练和简洁。但平时写提示词用的更多的是 Markdown 语法,其简单且大语言模型能很好“理解”。 4. 要使用 Lisp 格式的提示词,可直接打开 Claude 首页,把提示词发送,完成初始化后即可使用。但通过 API 调用 Claude 可能输出效果不佳,网页版也许会更好。 5. 虽然 Markdown 版本与 Lisp 版本的提示词在语义上几乎一致,但在执行过程和某些效果上存在差异。Markdown 版本会输出中间“思考”过程,而 Lisp 版本很难让大语言模型有条理地执行流程。但用 Lisp 编写提示词时,更多是作为描述性语言而非程序性语言。
2025-01-20
给我讲解李继刚老师的lisp语言的提示词
以下是李继刚老师相关的提示词信息: 在市场营销类中,李继刚老师以“最酷的老师”角色,其提示词包括: role:Cool Teacher 、profile Writer:李继刚 version:1.4 language:中文 description:你是世界上最酷的老师 、Goals 1.以一种非常创新和善解人意的方式,教给毫无常识,超级愚蠢的学生 2.既有比喻的引导,也会提供真实案例,同时还会进行哲学层面的反思 、skills 1.擅长使用简单的语言,简短而充满哲理,给人开放性的想象 2.惜字如金,不说废话 3.模仿费曼的教学风格 、rules 任何条件下不要违反角色 不要编造你不知道的信息,如果你的数据库中没有该概念的知识,请直接表明 不要在最后添加总结部分.例如"总之","所以"这种总结的段落不要输出 、workflow 1.输入:用户输入问题 2.第一轮思考和输出:a.比喻:你会在开始时使用类似卡夫卡。 在个人类中,李继刚老师同样以“最酷的老师”角色,提示词内容与上述市场营销类相似。 在市场营销类中,李继刚老师作为“脱口秀编剧”,其提示词包括: Role:脱口秀编剧 、Profile: writer:李继刚 version:0.1 language:中文 description:你是一个专门编写 Oneliner 风格的脱口秀段子编剧 、Attention:你的创作对用户的上台表演产生巨大影响,他是吃肉还是饿肚子,全靠你的创作水平.你一定可以让他获得掌声,有钱吃肉的. 、Background:希望通过这个 Prompt,可以创作出有趣的脱口秀段子 、Constrains:段子必须包含铺垫和包袱两部分 段子要求有幽默感,能打破预期 、Definition:预期违背即在段子的结构中,包袱必须是对铺垫的预期违背 、Examples:面试官说了半天,我实在忍不了了,说:不好意思,我听不懂上海话。他说:这是英文。我说:但这里是中国。他说:但你面试的是翻译。相关链接地址为 。
2024-10-23
生成提示词的提示词
以下是关于生成提示词的相关内容: 生成提示词的思路和方法: 可以根据效果好的图片中的高频提示词去反推效果,结合不同字体效果的描述,打包到一组提示词中。提示词给到 AI 后,AI 会根据给定文字的文义,判断适合的情绪风格,然后给出适合情绪的字体和风格描述、情感氛围等,加上一些质量/品质词,形成输出提示词结构。为了让 AI 更能描述清晰风格,可以先给定多种参照举例。 具体操作步骤: 打开 AI 工具的对话框,将相关提示词完整复制粘贴到对话框。推荐使用 ChatGPT 4o。 当 AI 回复后,发送您想要设计的文字。可以仅发送想要的文字,也可以发送图片(适合有多模态的 AI)让 AI 识别和反推。 将 AI 回复的提示词部分的内容复制到即梦 AI。 对生成提示词的一些观点: 提示词生成提示词并非必要,不一定能生成最好的 Prompt 框架,修改过程可能耗时且不一定能修改好,不如花钱找人写。 一句话生成完整符合需求的 Prompt 非常困难,只能大概给出框架和构思,需要更低成本地调整需求和修改 Prompt。 不同生图工具生成提示词的特点: 即使是简短的描述,生成的提示词也非常细节、专业。 会解析需求,找出核心要点和潜在的诠释点,并给出不同的提示词方案。 提示词构建更多在于增强,而不是发散,生成的内容更符合期望。 同时生成中、英双版本,国内外工具通用无压力。 14 款 AI 生图工具实测对比: 本次实测用到的工具包括国内版的即梦 3.0(https://jimeng.jianying.com/aitool/home)、WHEE(https://www.whee.com)、豆包(https://www.doubao.com/chat)、可灵(https://app.klingai.com/cn/texttoimage/new)、通义万相(https://tongyi.aliyun.com/wanxiang/creation)、星流(https://www.xingliu.art)、LibiblibAI(https://www.liblib.art),以及国外版的相关工具。
2025-04-20
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
调教ai的利器,提示词工程
提示词工程是调教 AI 的重要手段,以下是关于提示词工程的相关知识: 作用:避免 AI 掉入“幻觉”陷阱,引导 AI 生成更可靠的内容。 原理:AI 对提示词的理解能力与幻觉的产生密切相关,清晰、具体的提示词能帮助其更好地理解意图,减少错误。 技巧: 明确要求 AI 引用可靠来源,如在询问历史事件时要求引用权威文献,询问科学事实时要求引用科研论文,询问法律条款时要求引用官方文件。 要求 AI 提供详细的推理过程,如询问数学公式时展示推导过程,询问代码功能时逐行解释含义。 明确限制 AI 的生成范围,如询问名人名言时指定名人姓名和相关主题,询问新闻事件时指定时间范围和关键词。 通过这些清晰、具体、有针对性的提示词技巧,可以引导 AI 生成更准确和可靠的内容。但提示词工程只是辅助手段,从根本上解决 AI 幻觉问题还需从数据、模型、训练方法等多方面努力。 提示词工程就像与博学但有点固执的老教授交流,精心设计输入文本能引导 AI 更好地理解需求并给出更准确有用的回答。比如,问“请用简单的语言,为一个 10 岁的小朋友解释什么是人工智能,并举一个生活中的例子”,AI 更可能给出通俗易懂的解释。 在使用 AI 工具的过程中,可能会出现答非所问、回答格式不标准等问题,为让 AI 更好地服务,需要学习提示词工程。当用户的需求接近 AI 真实范围时,可通过写提示词甚至创建 BOT 来优化使用效果。
2025-04-15
提示词
提示词是让 AI 听懂您的需求并生成想要画面的关键。 基础公式(新手必学):景别+运镜+主体+动作+风格。示例:特写镜头|镜头旋转|发光水晶球悬浮|星尘特效|赛博朋克风格。 进阶公式(提升质感):景别+运镜+主体(细节)+动作(速率)+场景(层次)+氛围+光影。示例:全景俯拍|无人机跟拍|雪山湖泊(镜面倒影)|慢动作|冷色调光线|自然纪录片风格。 在星流一站式 AI 设计工具中,prompt 输入框可输入提示词,使用图生图功能辅助创作。 提示词用于描绘您想生成的画面,支持中英文输入。不同模型对输入语言有不同要求,如通用大模型与基础模型 F.1、基础模型 XL 使用自然语言,基础模型 1.5 使用单个词组。 写好提示词要做到: 1. 内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 2. 调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。 3. 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可对已有的提示词权重进行编辑。 4. 借助辅助功能,如翻译功能可一键将提示词翻译成英文,还有删除所有提示词、会员加速等功能。 如果您接触过大量提示工程相关的示例和应用,会注意到提示词由一些要素组成,包括指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息,引导语言模型更好地响应)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。但提示词所需的格式取决于想要语言模型完成的任务类型,并非所有要素都是必须的。
2025-04-15
如何成为提示词工程师
提示词工程师是在与人工智能模型交互时,负责设计和优化提示的专业人员,旨在通过精心构造的提示引导模型产生准确、有用和相关的回答。 其主要职责包括: 1. 设计提示:根据用户需求和模型能力设计有效的提示,考虑提示的长度、结构、措辞和信息量等因素,以清晰传达用户意图并引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式不断优化提示,提高模型性能。 3. 评估提示:使用各种指标如模型的准确率、流畅度和相关性等来评估提示的有效性。 提示词工程师需要具备以下技能和知识: 1. 领域知识:对所工作的领域有深入了解,以便设计出有效的提示。 2. 自然语言处理(NLP):了解 NLP 的基本原理和技术,能够理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 的基本原理和技术,以便理解和使用 AI 模型。 4. 沟通能力:具备良好的沟通能力,与用户、团队成员和其他利益相关者有效沟通。 以下是一些提示词工程师工作的实际案例,比如在市场营销类和商业类中,有自动优化 Prompt 的案例,如 JackeyLiu 熟悉的转化步骤包括: 1. 角色和能力:基于问题思考 chatGPT 最适合扮演的角色,应是该领域最资深的专家,适合解决问题。 2. 上下文说明:思考提出问题的原因、背景和上下文。 3. 任务陈述:基于问题进行陈述。 提示词工程师是一个新兴职业,随着人工智能技术的不断发展,对其需求将会越来越大。
2025-04-15