Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

dify编排框架是什么意思

Answer

Dify 编排框架是一种在 AI 领域中应用的可视化编排框架,例如在 workflow 可视化编排页面中使用(框架:React Flow)。它具有以下特点和优势:

  1. 集各家所长,在用户体验方面表现出色。
  2. 可以人为编排 Workflow 里的子任务,与 AutoGPT 由大模型编排任务的方式不同,这种手动编排方式带来了明显的优化,如在流程中加入人类 Knowhow 以补足模型知识的不足,通过专家测试试跑减少生产环境中的反复无效反思,引入图的概念灵活组织节点、连接各类工具等。
  3. 加入图的概念后,workflow 的天花板变得非常高,可以在流程中任意增加节点和各种类型的节点,不仅能套工具、套其它 agent,还能写代码用硬逻辑处理或接大模型进行判断,能力上限很大程度取决于想象力。
  4. 对于个人开发者构建高质量的 AI 数字人很有帮助,有大量开源工作者维护,集成了各种主流的模型供应商、工具以及算法实现等,可以通过它快速编排出自己的 AI Agent,赋予数字人灵魂。利用其编排和可视化交互能任意修改流程,构造不同的 AI Agent,并实现相对复杂的功能,如知识库搭建、工具使用等,无需任何编码和重新部署工作。同时,Dify 的 API 暴露了 audio-to-text 和 text-to-audio 两个接口,基于这两个接口可将数字人的语音识别和语音生成都交由 Dify 控制。如果有更加高度定制的模型,也可以在 Dify 中接入 XInference 等模型管理平台进行部署。此外,数字人 GUI 工程中仍保留了多个模块,能保持更好的扩展。

在使用 Dify 接口时,需要注意必须在应用编排功能中打开文字转语音和语音转文字功能,否则接口会返回未使能的错误。只有接入了支持 TTS 和 SPEECH2TEXT 的模型供应商,才会在功能板块中展示出来,Dify 的模型供应商图标下标签有展示该供应商支持哪些功能,可自行选择方便使用的。对于 TTS,不同的模型供应商支持的语音人物不同,可以根据个人喜好添加。

Content generated by AI large model, please carefully verify (powered by aily)

References

AI Agent 产品经理血泪史(二)-欲知方圆,则必规矩【Workflow篇】

上图分别是Coze和Dify的workflow可视化编排页面(框架:React Flow),不得不说Coze的确不是最早做编排的,但是集各家之所长,在用户体验上做的的确得人心。再回过头对比一下上节中AutoGPT的实现,我们可能就发现了这个差异:AutoGPT的任务是大模型编排出来的,我们可以理解为自动编排;而Workflow里面的子任务,是我们人为编排的,我们就称为手动编排吧。由此带来的优化也非常明显:1.在流程中加入人类Knowhow,补足模型知识的不足;2.专家测试试跑,减少生产环境中的反复无效反思,至少不会让用户觉得你的Agent真蠢;3.引入图的概念,灵活组织节点,连接各类工具(让你的Agent看起来很牛逼)其实加入了图的概念之后,workflow的天花板也就变得非常高了。因为你可以在这个流程中去任意增加节点,增加各种类型的节点,不仅能套工具,还能套其它agent,你也可以写代码用硬逻辑去处理,你也可以接大模型,让它代替人类进进行判断。能力的上限,很大概率就是你想象力的上限。灵活和可控,把Agent能力的天花板往上顶了一大截。这就是workflow的功劳。我之前评价一个Agent平台好不好用:1看基座模型的function calling能力,2看workflow的灵活性,3看平台创作者的workflow写的牛逼不牛逼哈哈1、2看的是技术能力,其实也没啥门槛

AI Agent 产品经理血泪史(二)-欲知方圆,则必规矩【Workflow篇】

上图分别是Coze和Dify的workflow可视化编排页面(框架:React Flow),不得不说Coze的确不是最早做编排的,但是集各家之所长,在用户体验上做的的确得人心。再回过头对比一下上节中AutoGPT的实现,我们可能就发现了这个差异:AutoGPT的任务是大模型编排出来的,我们可以理解为自动编排;而Workflow里面的子任务,是我们人为编排的,我们就称为手动编排吧。由此带来的优化也非常明显:1.在流程中加入人类Knowhow,补足模型知识的不足;2.专家测试试跑,减少生产环境中的反复无效反思,至少不会让用户觉得你的Agent真蠢;3.引入图的概念,灵活组织节点,连接各类工具(让你的Agent看起来很牛逼)其实加入了图的概念之后,workflow的天花板也就变得非常高了。因为你可以在这个流程中去任意增加节点,增加各种类型的节点,不仅能套工具,还能套其它agent,你也可以写代码用硬逻辑去处理,你也可以接大模型,让它代替人类进进行判断。能力的上限,很大概率就是你想象力的上限。灵活和可控,把Agent能力的天花板往上顶了一大截。这就是workflow的功劳。我之前评价一个Agent平台好不好用:1看基座模型的function calling能力,2看workflow的灵活性,3看平台创作者的workflow写的牛逼不牛逼哈哈1、2看的是技术能力,其实也没啥门槛

AI 数字人-定义数字世界中的你

上述种种,如果都要自建代码实现各模块,开发工作量巨大,迭代难度也很高,对于个人开发者来讲不现实。因此我们推荐借助开源社区的力量,现在开源社区已经有了像dify、fastgpt等等成熟的高质量AI编排框架,它们有大量的开源工作者维护,集成各种主流的模型供应商、工具以及算法实现等等。我们可以通过这些框架快速编排出自己的AI Agent,赋予数字人灵魂。在笔者的开源项目中,使用了dify的框架,利用其编排和可视化交互任意修改流程,构造不同的AI Agent,并且实现相对复杂的功能,比如知识库的搭建、工具的使用等都无需任何的编码和重新部署工作。同时Dify的API暴露了audio-to-text和text-to-audio两个接口,基于这个两个接口就可以将数字人的语音识别和语音生成都交由Dify控制,从而低门槛做出来自己高度定制化的数字人(如下图),具体的部署过程参考B站视频:https://www.bilibili.com/video/BV1kZWvesE25。如果有更加高度定制的模型,也可以在Dify中接入XInference等模型管理平台,然后部署自己的模型。此外,数字人GUI工程中仍然保留了LLM、ASR、TTS、Agent等多个模块,能够保持更好的扩展,比如实现更加真实性感的语音转换、或者如果有更加Geek的Agent实现也可以选择直接后端编码扩展实现。上述Dify接口使用注意事项:1.使必须在应用编排功能中打开文字转语音和语音转文字功能,否则接口会返回未使能的错误。2.只有接入了支持TTS和SPEECH2TEXT的模型供应商,才会在功能板块中展示出来,Dify的模型供应商图标下标签有展示该供应商支持哪些功能,这里可以自行选择自己方便使用的。对于TTS,不同的模型供应商支持的语音人物不同,可以根据个人喜好添加。

Others are asking
什么是Dify
Dify 是一个开源的大模型应用开发平台。它融合了后端即服务和 LLMOps 的理念,为用户提供直观界面,能快速构建和部署生产级别的生成式 AI 应用。 该平台具有以下特点: 1. 强大的工作流构建工具。 2. 支持广泛的模型集成。 3. 提供功能丰富的提示词 IDE。 4. 拥有全面的 RAG Pipeline 用于文档处理和检索。 5. 允许用户定义 Agent 智能体。 6. 通过 LLMOps 功能持续监控和优化应用程序性能。 Dify 提供云服务和本地部署选项,满足不同用户需求。其开源特性确保对数据的完全控制和快速产品迭代。设计理念注重简单性、克制和快速迭代,能帮助用户将 AI 应用创意快速转化为现实。无论是创业团队构建 MVP、企业集成 LLM 增强现有应用能力,还是技术爱好者探索 LLM 潜力,Dify 都提供相应支持和工具。 Dify 官方手册:https://docs.dify.ai/v/zhhans 。一般来说,如果是个人研究,推荐单独使用 Dify;如果是企业级落地项目,推荐使用多种框架结合,效果更好。
2025-04-13
哪里可以搜到dify的相关学习资料
以下是一些可以搜到 Dify 相关学习资料的途径: 1. 您可以通过以下链接获取相关学习资料:https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose 。这些命令通常在宝塔面板的终端安装,若想了解命令的含义,可直接询问 AI 。 2. 微信文章: ,该文章介绍了如何在几分钟内使用 Dify 平台快速定制网站的 AI 智能客服,即使是非技术人员也能操作。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-10
dify工作流中agent节点怎么使用
在 Dify 工作流中使用 Agent 节点的步骤如下: 1. 搭建工作流框架: 进入 Coze,点击「个人空间工作流创建工作流」,打开创建工作流的弹窗。 根据弹窗要求自定义工作流信息,点击确认完成新建。 左侧「选择节点」模块中,根据子任务需要,实际用上的有插件(提供能力工具拓展 Agent 能力边界)、大模型(调用 LLM 实现文本内容生成)、代码(支持编写简单脚本处理数据)。 按照流程图在编辑面板中拖入对应的 LLM 大模型、插件、代码节点完成框架搭建。 2. 测试 Agent 节点功能: 完成任何一个节点的配置后,都需要进行试运行测试以验证节点的运行效果。 步骤一:点击「测试该节点」。 步骤二:按格式要求输入待测试的输入内容,如果是 array 等其他格式,请自行对话 AI 或搜索网络确认格式要求。 步骤三:点击「展开运行结果」,检查输入、输出项是否有误。如果有误,请依次检查“测试输入内容”、“节点配置”是否有误,以及优化“提示词”以提升对生成内容的约束力。当多次测试时输入与输出都符合预期,就可以进入下一个子任务的配置。
2025-04-05
dify
Dify 是一个开源的大模型应用开发平台: 构建知识库的具体步骤: 准备数据:收集文本数据,包括文档、表格等格式,进行清洗、分段等预处理以确保数据质量。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档,并编写良好描述。 配置索引方式:提供三种索引方式(高质量模式、经济模式和 Q&A 分段模式),根据实际需求选择,如追求高准确度可选高质量模式。 集成至应用:将数据集集成到 Dify 的对话型应用中,在应用设置中配置数据集使用方式。 持续优化:收集用户反馈,对知识库内容和索引方式持续优化和迭代,定期更新增加新内容。 平台特点: 结合后端即服务和 LLMOps 理念,提供直观界面快速构建和部署生产级别的生成式 AI 应用。 具备强大工作流构建工具,支持广泛模型集成,提供功能丰富的提示词 IDE 和全面的 RAG Pipeline 用于文档处理和检索。 允许用户定义 Agent 智能体,通过 LLMOps 功能对应用程序性能持续监控和优化。 提供云服务和本地部署选项,满足不同用户需求,开源特性确保对数据完全控制和快速产品迭代。 设计理念注重简单性、克制和快速迭代,为创业团队构建 MVP、企业集成 LLM 等提供支持和工具。 官方手册:https://docs.dify.ai/v/zhhans 。一般来说,个人研究推荐单独使用 Dify,企业级落地项目推荐多种框架结合。
2025-04-01
dify教程
以下是关于 Dify 的教程: Differential Diffusion 教程: 技术适用场景:特别适用于需要保持图像整体一致性和自然感的场景。 软填充技术:用于平滑填补图像空白或损坏部分,同时细微调整周围区域,确保新填充内容与原始图像无缝融合。 强度扇:一种可视化不同编辑强度效果的工具,帮助用户通过可视化方式理解不同编辑强度的效果。 无需训练或微调:操作仅在推理阶段进行,不需要对模型进行额外训练或微调。 与现有扩散模型兼容:可集成到任何现有的扩散模型中,增强编辑和生成能力,适用于 Stable Diffusion XL、Kandinsky 和 DeepFloyd IF 等不同的扩散模型。 主要功能特点: 精细的编辑控制:通过引入变化地图,可对图像每个像素或区域指定不同变化程度,支持离散和连续编辑。 文本驱动的图像修改:通过文本提示指导图像修改方向。 软填充技术:在填补图像空白或修复部分时,能细微调整周围区域确保无缝融合。 Dify 接入企业微信教程: 创建聊天助手应用:在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 下载 Dify on WeChat 项目:下载并安装依赖。 填写配置文件:在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 把基础编排聊天助手接入微信:快速启动测试,扫码登录,进行对话测试,可以选择源码部署或 Docker 部署。 把工作流编排聊天助手接入微信:创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 把 Agent 应用接入微信:创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。 更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat
2025-03-29
dify学习
Dify 是一个开源的大模型应用开发平台: 理念:结合后端即服务和 LLMOps 的理念。 特点:提供直观界面,能快速构建和部署生产级别的生成式 AI 应用。具有强大的工作流构建工具,支持广泛的模型集成,有功能丰富的提示词 IDE 和全面的 RAG Pipeline 用于文档处理和检索。允许用户定义 Agent 智能体,通过 LLMOps 功能对应用程序性能持续监控和优化。 部署选项:提供云服务和本地部署,满足不同用户需求。 开源特性:确保对数据的完全控制和快速产品迭代。 设计理念:注重简单性、克制和快速迭代,旨在帮助用户将 AI 应用的创意快速转化为现实。 推荐使用方式:个人研究推荐单独使用,企业级落地项目推荐多种框架结合。 Dify 官方手册:https://docs.dify.ai/v/zhhans
2025-03-28
AI 自动化和工作流编排有什么好的工具和方案
以下是一些关于 AI 自动化和工作流编排的工具和方案: 1. RPA 软件:很早就出现在工作流编排领域,目标是使基于桌面的业务流程和工作流程实现自动化,现在越来越多的 RPA 软件带上了 LLM。 2. ComfyUI:将开源绘画模型 Stable Diffusion 进行工作流化操作模式,用户在流程编辑器中配置 pipeline,通过不同节点和连线完成模型操作和图片生成,其 DSL 配置文件支持导出导入,提高了流程的可复用性,降低了时间成本。 3. Dify.AI:工作流设计语言与 ComfyUI 有相似之处,定义了一套标准化的 DSL 语言,方便使用导入导出功能进行工作流复用。 4. Large Action Model:采用“通过演示进行模仿”的技术,检查人们与界面的互动并模仿操作,从用户提供的示例中学习。 5. Auto GPT/Agent/Baby AGI:基于 GPT4 语言模型的开源应用程序,用户输入目标后可自主执行任务、递归地开发和调试代码。能用于自动化任务、创建自主的 AI 代理、完成各种任务等,访问地址为: 。 此外,在工作流编排中还涉及到一些概念和技术: 1. 短期记忆和长期记忆:短期记忆将所有的上下文学习看成是利用模型的短期记忆来学习;长期记忆通过外部的向量存储和快速检索来存储和召回信息。 2. 工具:学会调用外部不同类型 API 来获取模型缺少的额外信息、代码执行能力、访问专有信息源等。 3. 动作:大模型结合问句、上下文的规划、各类工具,最终决策出需要执行的动作。 4. Agentic Workflow 可以从提升效率、提高质量、节省时间的角度思考,通过将复杂任务分解成较小步骤,融入更多人类参与到流程中的规划与定义,减少对 Prompt Engineering 和模型推理能力的依赖,提高 LLM 应用面向复杂任务的性能。 但需要注意的是,Agentic Workflow 虽然美好,但使用的用户目前较少,可能是出现周期、工作流使用的上手难度等因素导致,并且在复杂流程上的开发并不是那么稳定可靠。
2025-02-26
智能体编排应用 定义
智能体编排应用是一种将多个应用整合,分工协作完成复杂任务的流程式 AI 应用。它把复杂任务分成多个子任务,通过以下方式实现: 1. 操作方面:点击新应用创建智能体编排,可放入现有应用或创建新智能体,通过不同模型设置智能体组分工协作。 2. 应用组件能力:包含插件管理能力,遵循 open API 3.0.1 规范,可接入阿里云上众多 API 场景,即将上线大批官方插件,也可编辑自定义插件。 3. 应用测评与观测能力:可创建测评任务,观测应用运行情况,有众多值得探索的场景。 4. 智能体群组功能:内置对多个智能体的调度决策,可根据任务规划智能体执行顺序和依赖关系,结果全局共享。 5. 应用引用功能:1 月份将发布已发布应用可被智能体群组或工作流引用的功能,未来还将开放调用外部应用接口。 与单个智能体应用相比,智能体编排具有以下优势: 1. 协作与灵活性:由多个具有自治能力的智能体组成,可相互通信、信息共享和协作,完成复杂任务,在多方协作和多路径并行处理任务的环境中表现出色。 2. 可扩展性与健壮性:可以调整智能体的数量和角色,适应不同任务需求,提高灵活性和适应性。 3. 任务分解与并行处理:能将复杂任务分解为多个子任务,由不同智能体并行处理,提高任务执行效率和速度。 4. 自动规划能力:可根据任务需求自动规划任务执行流程,灵活调度子智能体。 5. 完整的智能体功能:智能体节点依然支持 RAG、插件和流程编排等功能,与单个智能体的功能保持一致。 简单来说,就是把之前创建好的不同角色的智能体应用进行流程化的编排,分好工各司其职。配置完后每个智能体按部就班执行自己的任务,会有前后衔接关系。也可以通过 API 的方式快速调用应用。
2025-02-04
帮我搭建一个工作流编排的智能体
以下是搭建工作流编排智能体的步骤: 1. 逐步搭建 AI 智能体: 创建 Bot。 填写 Bot 介绍。 切换模型为“通义千问”(测试下来,通义对提示词理解、执行效果最好)。 把配置好的工作流添加到 Bot 中。 新增变量{{app_token}}。 添加外层 bot 提示词(可按需求和实际效果优化调整)。完成上述步骤后,在「预览与调试」窗口可与 AI 稍后读智能体对话并使用全部功能。 2. 选择工作流的对话模式: 创建一个工作流对话模式的智能体。 先完成创建,然后切换工作流的模式为对话模式。注意一定要在开始调整工作流节点之前切换模式,因为切换成对话模式会将工作流清空,重置为对话模式默认节点。 3. 确认分支情况: 根据需求分析,确定特定分支(如根据名字和祝福写对联、根据幸运数字写对联)和默认分支,以保证用户其他对话能得到良好回复。 4. 用户意图识别: 通过理解用户意图走不同分支,需将意图介绍写清楚、准确,否则可能导致意图识别不好用。 5. 幸运数字分支: 用代码分支获取用户输入的数字,然后匹配知识库,再对匹配的春联做赏析。代码里有容错机制,返回时加“.0”是为了按指定的幸运数字在知识库里匹配。 6. 名字写祝福: 根据用户输入的名字和祝福信息,通过提示词调试生成对应对联并输出。 7. 通用兜底回复: 在用户不符合前两个意图时进行友好回复。首先匹配知识库,然后让大模型结合匹配结果、历史记录、当前输入,输出符合对话内容的回复。 8. 知识库: 知识库是使用大模型生成的 100 对对联,都比较好看、经典、有意义。
2025-01-18
市面上有什么开源的智能体编排工具
以下是一些市面上的开源智能体编排工具: 1. Coze:新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具以拓展 Bot 能力边界。 2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景方面表现出色。 此外,还有以下相关的开源项目: 1. AutoGPT:在 GPT4 推出后的几周内受到行业关注,可将目标分解为子任务,调用外部工具执行并评估结果给出完结报告。 2. AgentGPT:用 GPT3.5 和 GPT4 做推理引擎的智能代理工具。 3. BabyAGI:也是以 GPT3.5 和 GPT4 做推理引擎的智能代理工具。 您可以根据自己的需求选择适合的工具进行进一步探索和应用。
2024-09-28
如何编排coze能实现网页自动下载
在Coze平台上编排工作流实现网页自动下载,通常需要以下步骤: 1. 需求分析: 确定要下载的网页类型(如PDF、图片、视频等)。 明确触发下载的条件(定时任务、特定事件触发等)。 2. 创建Bot: 在Coze平台上创建一个新的Bot。 3. 编写提示词: 编写能够触发下载任务的提示词。 4. 编写工作流: 根据需求编排工作流,包括: 网页抓取:使用HTTP请求库(如`requests`)获取网页内容。 内容解析:使用HTML解析库(如`BeautifulSoup`)提取所需资源的链接。 文件下载:实现下载逻辑,将资源保存到指定位置。 5. 集成外部API(如果需要): 如果网页下载需要API支持(如登录验证、Cookies处理等),则需要集成相应的API。 6. 设置定时任务(如果需要): 如果下载任务需要定时执行,设置Cron作业或其他定时机制。 7. 测试工作流: 在Coze平台上测试工作流,确保下载功能按预期工作。 8. 部署Bot: 将编排好的Bot部署到服务器或云平台。 9. 监控和日志记录: 设置监控和日志记录机制,以便跟踪下载任务的状态和性能。 10. 用户界面(可选): 如果需要,可以为Bot创建一个用户界面,让用户能够触发下载或查看下载状态。 11. 安全和权限: 确保下载任务遵守目标网站的使用条款,不违反版权法规。 处理任何涉及的敏感信息,确保用户数据的安全。 请注意,以上步骤是一般性的指导,具体实现可能会根据Coze平台的具体功能和API的变化而有所不同。此外,自动化下载网页内容可能涉及到版权和法律问题,务必确保你的使用符合相关法律法规和网站政策。 由于我的知识截止日期为2023年,关于Coze平台的具体操作和功能,建议查阅最新的官方文档或联系Coze的技术支持获取帮助。
2024-05-26
如何编排coze 能实现百度网盘自动下载
Coze是一个AI Bot开发平台,它允许用户创建工作流来自动化各种任务。然而,根据我的知识截止日期,Coze本身并没有直接提供百度网盘自动下载的功能。不过,你可以尝试以下方法来实现类似的自动化: 1. 使用API:如果百度网盘提供了API接口,你可以在Coze中创建一个工作流,通过API来实现自动下载功能。 2. Webhooks:如果Coze支持Webhooks,你可以设置一个外部服务来监听百度网盘的更新,当有新的文件或更新时,通过Webhook触发Coze的工作流。 3. 定时任务:在Coze中设置定时任务,定期检查百度网盘的特定文件夹或链接,如果发现新的文件或更新,执行下载操作。 4. 第三方集成:如果Coze支持与第三方服务集成,你可以寻找提供百度网盘自动下载服务的第三方工具,并通过Coze与这些工具集成。 5. 编写脚本:如果Coze允许执行自定义脚本,你可以编写一个脚本来实现与百度网盘的交互,并在Coze中运行这个脚本。 6. 利用数据库:如果Coze支持数据库操作,你可以将百度网盘中的文件信息存储在数据库中,然后通过Coze的工作流来管理这些信息,并触发下载。 7. 使用命令行工具:如果百度网盘有命令行工具可用,你可以在Coze中创建一个工作流,通过命令行调用这些工具来实现下载。 请注意,自动化下载百度网盘的文件可能受到百度网盘的服务条款限制,你需要确保遵守所有相关的法律和条款。此外,自动化下载可能涉及到账号安全问题,确保你的账号信息安全,避免使用不安全的自动化方法。 由于Coze的具体功能和百度网盘的API可能会随时间变化,建议查看Coze的最新文档和百度网盘的官方API文档,以获取最新信息和可能的解决方案。如果需要具体的编程指导或自动化方案设计,可能需要咨询专业的开发者或Coze的技术支持。
2024-05-26
prompt 框架
以下是关于 prompt 框架的相关内容: 格式: 常见的格式包括 Markdown(兼容性强,适用于写公众号文章、百家号文章等)、无序列表、有序列表、表格(更清晰直观,适用于对比数据等)、图片(具有随机性,可搭配生成 PPT)、二维码(将链接以二维码图片展示)、Latex 公式(面对数学问题时使用,能渲染出美观的公式,但目前官网对于行内公式的渲染不稳定)、代码(适合程序员指定需要撰写的代码,也方便复制内容)、JSON 格式(ChatGPT 可以以结构化数据形式输出信息,方便应用程序处理和解析,常用于程序员开发应用程序调用 API 时)。 关键框架: ICIO 框架:包括指令(执行的具体任务)、背景信息(提供执行任务的背景和上下文)、输入信息(大模型需要用到的信息)、输出信息(明确输出的具体要求,如字数、风格、格式)。 BROKE 框架:通过 GPT 的设计提示提升整体反馈效率,包括提供足够背景信息、角色设定、目标明确、结果定义、调整。 CRISPIE 框架:包括能力和角色(期望大模型扮演的角色洞察,提供幕后洞察力、背景信息和上下文)、声明(简洁明了的说明希望完成的任务)、个性(回应的风格、个性或者方式)、实验(提供多个回答的示例)。 律师使用 Prompt 的建议框架及格式: CRISPE 框架: Capacity and Role(能力与角色):例如,你是一名专注于民商事法律领域的律师,擅长案例研究、法律条文检索以及案件策略分析。 Insight(洞察):提供背景信息和上下文,如处理一起复杂的合同纠纷案件,向 AI 提供案件的关键事实、相关法律以及案件涉及的背景。 Statement(陈述):直接明确期望 AI 完成的任务,如要求 AI 总结此案件中双方的诉求、检索法条、预测可能的判决结果。 Personality(个性):明确希望 AI 以什么风格或方式回答。 Experiment(举例)。 零样本思维链(Zero Shot Chain of Thought,ZeroshotCoT):研究了 CoT prompting 的后续发展,引入了一种简单的零样本提示方法。在问题结尾添加相关提示词,能让大语言模型生成回答问题的思维链,并从中提取出更准确的答案。
2025-04-10
分析程序员在AI能力上的不同维度,比如AI框架,AIPrompt等
以下是对程序员在 AI 能力上不同维度的分析,包括 AI 框架和 AI Prompt 等方面: AI 框架: PromptPal:专为 AI 领域中的初创公司和个人开发者设计的提示管理工具,是一个集中化平台,便于在 AI 项目中管理提示,实现协作和工作流程优化。具有本地部署和云原生、简易设置、数据库支持、SDK 支持、提示跟踪与分析、协作工具等特点。开发指向: ChainForge:开源的可视化编程环境,专门用于测试大型语言模型(LLMs)的提示。允许用户进行快速而有效的提示想法测试和变化,具有多模型测试、响应质量比较、评估指标设置、多对话管理等特点。开发指向: AI Prompt: Promptknit:为 AI Prompts 测试提供服务的平台,可能提供工具和资源来帮助用户设计、测试和优化 AI 模型的提示。网站: 对于律师等法律人写好 Prompt 的建议: 明确 Prompt 是给人工智能(AI)系统提供的信息或问题,用来引导其产生特定回答或执行特定任务。 建议框架及格式:CRISPE 包括 Capacity and Role(能力与角色)、Insight(洞察)、Statement(陈述)、Personality(个性)、Experiment(举例)。例如,在处理合同纠纷案件时,为 AI 赋予角色和能力,提供背景信息和上下文,明确期望其完成的任务,设定回答风格等。
2025-04-09
提示词框架
以下是关于提示词框架的相关内容: 一、Vidu Prompt 基本构成 1. 提示词基础架构 主体/场景 场景描述 环境描述 艺术风格/媒介 调整句式和语序,避免主体物过多/复杂、主体物分散的句式描述。 避免模糊的术语表达,尽可能准确。 使用更加流畅准确的口语化措辞,避免过度文学化的叙述。 丰富、准确和完整的描述才能生成特定艺术风格、满足需求的视频。 2. 提示词与画面联想程度的说明 为了帮助更好地理解,使用单帧图像作为例子介绍提示词与画面联想的关系。 基础词:玻璃桌上的咖啡杯,杯子外面写着单词 LOVE。 适度联想扩充:花园里(具体的位置描述)的透明(材质描述)玻璃桌上的咖啡杯,杯子外面写着单词 LOVE,周围满是盛开的鲜花(具体的位置描述/环境描述),和煦的阳光洒满整个花园(环境描述),Claude Monet(艺术家风格),印象派风格(艺术流派风格)。 联想关键点: 具体详实的位置描述/环境描述:笼统来讲就是在进行构图,可以帮助构建画面的基本呈现效果。 艺术风格描述:进一步提升效果和氛围,统一画面风格。 二、小七姐:Prompt 喂饭级系列教程小白学习指南(二) 如果拿到由四个词语组成的提示词框架无从下手,可以这样做: 恭喜你,写出了第一个提示词,它是: 请告诉我如何用下列四个词编写一个框架性的提示词(prompt)? 情境: 任务: 行动: 结果: 请回忆写出这条提示词的过程。 最后复习本节课的三步走: 1. 懂原理 2. 找需求 3. 用框架 下课啦~ 我是 prompt 学习者和实践者小七姐,欢迎链接我交流 prompt 相关知识:se7en319
2025-04-01
形成指令让AI根据我的论文框架写论文
以下是为您提供的让 AI 根据论文框架写论文的相关指导: 1. 提供详细的背景信息:如您的个人经历、研究主题等,类似于“我来自西班牙巴塞罗那。尽管我的童年经历了一些创伤性事件,比如我 6 岁时父亲去世,但我仍然认为我有一个相当快乐的童年……”这样具体且全面的描述。 2. 结构化组织内容:使用编号、子标题和列表来使论文条理清晰,例如规定概述内容解读结语的结构,或者分标题阐述不同部分。 3. 明确文章结构:包括开门见山且能引起目标群体悬念的标题,说清楚要解决的问题及背景、可能导致的损失的第一部分,以案例引入的第二部分,对案例进一步分析的第三部分,以及给出具体操作建议的第四部分。 4. 丰富细化内容:先让 AI 写故事概要和角色背景介绍并做修改,然后一段一段进行细节描写,可采用让 AI 以表格形式输出细节描述的技巧,确保内容具体且前后一致。 5. 注意语言风格:可以自己定义,也可以根据文章生成对应语言风格关键词让 AI 遵循。 6. 遵循相关要求:比如某些比赛对作品的字数、修改限制等。 需要注意的是,虽然可以利用 AI 辅助写作,但并非提倡这是道德的使用方式。同时,如果是接收方,最好为组织准备好迎接各种 AI 生成的内容。
2025-03-30
问题定义: 1. 核心问题陈述:创作一份个人参赛的、以光伏业务中财务工作与AI结合进行业务赋能为主题的展示类参赛方案框架。 2. 关键上下文信息:公司举办AI创新大赛,个人参赛,主题方向为工作和AI结合限定在业务赋能,公司业务是光伏领域。 3. 问题的具体范围界定:聚焦光伏业务中财务工作与AI结合进行业务赋能的展示方案框架创作。 答案要求: 1. 内容范围: - 必须包含:整体参赛方案思路、光伏财务业务与AI结合的具体方向、展示方案大致框架。
很抱歉,您提供的知识库内容中没有与光伏业务中财务工作与 AI 结合进行业务赋能的参赛方案框架相关的信息。但以下是为您生成的一个可能的参赛方案框架示例: 一、整体参赛方案思路 本次参赛方案旨在探索如何将 AI 技术应用于光伏业务中的财务工作,以实现更高效、精准和智能化的业务赋能。通过深入分析光伏行业的特点和财务工作的需求,结合先进的 AI 技术,提出创新的解决方案,提升财务工作的效率和质量,为公司的光伏业务发展提供有力支持。 二、光伏财务业务与 AI 结合的具体方向 1. 财务预测与分析 利用机器学习算法对光伏项目的成本、收益进行预测,为投资决策提供数据支持。 分析市场趋势和政策变化对财务状况的影响,提前制定应对策略。 2. 风险评估与管理 运用大数据和人工智能技术,对光伏项目的风险进行实时监测和评估。 建立风险预警模型,及时发现潜在的财务风险。 3. 成本优化与控制 通过智能算法优化供应链管理,降低采购成本。 分析生产过程中的能耗数据,实现成本的精细化控制。 4. 财务报表自动化生成与审计 利用自然语言处理技术自动生成财务报表,提高工作效率。 运用 AI 辅助审计,提高审计的准确性和效率。 三、展示方案大致框架 1. 项目背景与目标 介绍光伏行业的发展现状和公司的业务情况。 阐述将财务工作与 AI 结合的目标和意义。 2. 技术方案与实现 详细介绍所采用的 AI 技术和算法。 展示技术方案的实现过程和关键步骤。 3. 应用案例与效果 分享实际应用案例,展示 AI 在财务工作中的具体应用场景。 分析应用效果,如成本降低、效率提升、风险控制等方面的成果。 4. 未来展望与挑战 展望 AI 在光伏财务领域的未来发展趋势。 探讨可能面临的挑战及应对策略。 5. 总结与结论 总结方案的核心内容和创新点。 强调对公司光伏业务的价值和贡献。 以上框架仅供参考,您可以根据实际情况进行进一步的细化和完善。
2025-03-28
详细讲解一下ragflow框架,同时对比一下ragflow与常规知识库有什么优势,在graphrag的实现方面ragflow又是怎么做的?
RAG(检索增强生成)是一种有效的解决方案,下面为您详细讲解: RAG 工作流程: 1. 检索(Retrieval):如同在图书馆中,系统会从知识库或文档集合中找出与用户问题相关的内容。 2. 增强(Augmented):对检索到的信息进行筛选和优化,挑出最相关和有用的部分。 3. 生成(Generation):将整合的信息生成自然流畅、易于理解的回答。 RAG 类似于一个超级智能的图书馆员,综合起来: 1. 检索:从庞大知识库中找到相关信息。 2. 增强:筛选优化确保找到最相关部分。 3. 生成:整合信息给出连贯回答。 RAG 的优势: 1. 成本效益:相比训练和维护大型专有模型,实现成本更低。 2. 灵活性:能利用多种数据源,包括结构化和非结构化数据,迅速适应不同领域和变化的数据。 3. 可扩展性:随时增加或更新知识库内容,无需重新训练模型。 RAG 与常规知识库的对比优势: 常规知识库可能存在知识更新不及时、数据来源单一等问题。而 RAG 能够从多种数据源获取信息,并且可以根据用户的实时需求进行检索和优化,生成更贴合需求的回答。 在 GraphRAG 的实现方面,目前提供的内容中未明确提及相关具体实现方式。 同时需要注意的是,RAG 也存在一些缺点,比如相比于专有模型的方案,回答准确性可能不够。
2025-03-28
AGI是什么意思
AGI 指通用人工智能。在公众传播层面,部分人觉得大语言模型(LLM)具有 AGI 潜力,但也有人反对。通用人工智能被定义为一种能够完成任何聪明人类所能完成的智力任务的人工智能。例如,OpenAI 原计划在 2027 年发布的 Q2025(GPT8)将实现完全的 AGI,但由于一些原因被推迟。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步。
2025-04-10
agi是什么意思
AGI 即通用人工智能(Artificial General Intelligence),通常指一种能够完成任何聪明人类所能完成的智力任务的人工智能系统,能够在许多领域内以人类水平应对日益复杂的问题。例如,OpenAI 致力于实现 AGI,其研发的 ChatGPT 是朝着 AGI 迈出的巨大一步。Sam Altman 认为确保 AGI 造福全人类是使命,人工通用智能是人类进步脚手架上的另一个工具,可能带来治愈所有疾病、有更多时间与家人共享、充分发挥创造潜力等美好前景。
2025-04-10
API是什么意思有什么用
API 是应用程序编程接口(Application Programming Interface)的缩写。它是软件之间进行交互和数据交换的接口,使得开发者能够访问和使用另一个程序或服务的功能,而无需了解其内部实现的详细信息。 API 就像是一个信差,接受一端的请求,告诉那边的系统您想要做的事情,然后把返回的信息发回给您。 APIKey 是一种实现对 API 访问控制的方法,通常是一串字符串,用于身份验证和访问控制。当开发者或应用程序尝试通过 API 与另一个程序或服务交互时,APIKey 作为请求的一部分被发送,以证明请求者具有调用该 API 的权限。APIKey 帮助服务提供商识别调用者身份,监控和控制 API 的使用情况,以及防止未经授权的访问。 要使用 API,通常需要去官网寻找 API 文档,API 的规则一般会写在网站的开发者相关页面或 API 文档里。例如,TMDB 的搜索电影 API 文档的网址是:https://developer.themoviedb.org/reference/searchmovie 。在 API 文档中,会详细告知如何使用相应的 API,包括请求方法、所需的查询参数等。您可以在文档中进行相关配置和操作。 登录网站寻找 Apikeys 创建新的密钥(记得保存好、不要泄露)。使用 APIKEY 可能需要单独充值,一共有两种模式可以使用: 1. 使用官方的 key 网站:https://platform.openai.com/apikeys 创建好您的 key 后记得复制保存。 2. 如果觉得充值比较麻烦可以考虑用第三方的网站:https://www.gptapi.us/register?aff=WLkA ,这个充值起来方便一些,模型选择也可以多一些。
2025-03-29
agi 是什么意思
AGI 指通用人工智能(Artificial General Intelligence),是一种能够像人类一样思考、学习和执行多种任务的人工智能系统。 部分人认为大语言模型(LLM)具有 AGI 潜力,例如 ChatGPT 背后的技术,而 LeCun 反对这一观点。 OpenAI 曾有关于实现 AGI 的计划,如原计划在 2026 年发布的 Q下一阶段(最初被称为 GPT6,后重新命名为 GPT7)因埃隆·马斯克的诉讼而被暂停。 在公众传播层面,AIGC 指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容;LLM 指 NLP 领域的大语言模型;GenAI 是生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了 LLM 和 AIGC。
2025-03-26
AI infra是什么意思?
AI Infra 通常指的是人工智能基础设施。随着越来越多的 AI 模型和产品的出现,AI Infra 所涵盖的工具变得愈发重要,这些工具能够帮助构建、改进和监控 AI 模型及产品。 例如,硅基流动致力于打造大模型时代的 AI 基础设施平台,通过算法、系统与硬件的协同创新,跨数量级降低 AI 应用的开发和使用门槛,加速 AGI 普惠人类。 在一些相关的产品和服务中,如 EdenAI 帮助 AI 创作者为其产品选择合适的 AI API 并在它们之间切换,Langdoc 能快速创建和部署 LLM 插件或应用程序,Langfuse 可追踪和调试复杂的 LLM 应用程序,这些都属于 AI Infra 的范畴。
2025-03-26
agi是什么意思
AGI 即通用人工智能(Artificial General Intelligence),指的是一种能够完成任何聪明人类所能完成的智力任务的人工智能系统。能够像人类一样思考、学习和执行多种任务,在许多领域内以人类水平应对日益复杂的问题。例如,OpenAI 致力于实现 AGI,其研发的 GPT 系列模型在某种程度上是朝着 AGI 迈出的巨大一步。像 ChatGPT 这样的产品就是由致力于 AGI 的 OpenAI 研发的。同时,Sam Altman 也认为确保 AGI 造福全人类是重要使命,AGI 可以被看作是人类进步脚手架上的另一个工具,可能带来治愈所有疾病、有更多时间与家人共享、充分发挥创造潜力等美好前景。
2025-03-22