Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我想找一些关于多头自注意力机制的文章

Answer

以下是为您找到的关于多头自注意力机制的文章:

  1. 《Transformer 模型的原理》:介绍了 Transformer 模型使用自注意力机制,能够同时考虑输入序列中所有位置的信息。其中多头注意力机制可以并行地学习多个注意力表示,从不同的子空间中学习不同的特征表示。
  2. 《图解自注意力机制(Self-Attention)》:来自清华大学数据软件团队,详细解释了自注意力机制的概念和原理,包括单个输出的计算和矩阵形式的表示,以及多头自注意力和位置编码的应用。
  3. 【AI 学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐):提到 Transformer 有自注意力机制和位置编码,编码器和解码器都有多头注意力层,且解码器与编码器的多头注意力层不一样,并介绍了 Transformer 的一些变种。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:Transformer模型的原理是

1.自注意力机制(Self-Attention Mechanism):Transformer模型使用了自注意力机制,能够同时考虑输入序列中所有位置的信息,而不是像循环神经网络(RNN)或卷积神经网络(CNN)一样逐个位置处理。通过自注意力机制,模型可以根据输入序列中不同位置的重要程度,动态地分配注意力权重,从而更好地捕捉序列中的关系和依赖。2.位置编码(Positional Encoding):由于自注意力机制不考虑输入序列的位置信息,为了使模型能够区分不同位置的词语,Transformer模型引入了位置编码。位置编码是一种特殊的向量,与输入词向量相加,用于表示词语在序列中的位置信息。位置编码通常是基于正弦和余弦函数计算得到的固定向量,可以帮助模型学习到位置信息的表示。3.多头注意力机制(Multi-Head Attention):Transformer模型通过引入多头注意力机制,可以并行地学习多个注意力表示,从不同的子空间中学习不同的特征表示。每个注意力头都是通过将输入序列线性变换成查询(Query)、键(Key)和值(Value)向量,并计算注意力分数,然后将多个头的输出拼接在一起得到最终的注意力表示。4.残差连接(Residual Connection)和层归一化(Layer Normalization):在每个子层(Self-Attention层和前馈神经网络层)的输入和输出之间都引入了残差连接,并对输出进行层归一化。残差连接可以缓解梯度消失和梯度爆炸问题,使得模型更容易训练和优化;层归一化可以加速训练过程,并提高模型的泛化能力。5.位置感知前馈网络(Position-wise Feed-Forward Networks):在每个注意力子层之后,Transformer模型还包含了位置感知前馈网络,它是一个两层的全连接前馈神经网络,用于对注意力表示进行非线性转换和映射。位置感知前馈网络在每个位置独立地进行计算,提高了模型的并行性和计算效率。

2024 年历史更新(归档)

《[汤森路透:专业人士未来报告-亚洲及新兴市场版](https://waytoagi.feishu.cn/record/F3iSrcKmgeNTIRcapWicjNa6nTb)》这份报告探讨了人工智能如何赋能目标导向型专业人士,并预测AI将对职业产生重大影响。报告指出,64%的受访者认为AI在未来五年内将变革或显著影响其职业,尤其在提高生产力和运营效率方面。然而,专业人士也对AI的伦理使用、失业问题和治理框架的不完善表示担忧。《[图解自注意力机制(Self-Attention)](https://mp.weixin.qq.com/s/Yke_VpZzkqxJqiqBnZw55A)》来自清华大学数据软件团队,本文介绍了自注意力机制(Self-Attention)的概念和原理。自注意力机制是一种用于解决神经网络在处理多个相关输入时无法充分发挥关系的问题的方法。通过自注意力机制,神经网络可以注意到输入中不同部分之间的相关性,从而更好地处理文本任务。文章详细解释了Self-Attention的计算过程,包括单个输出的计算和矩阵形式的表示,以及Multi-head Self-Attention和Positional Encoding的应用。《[第七讲:如何打造用户热爱的产品-和用户谈恋爱](https://mp.weixin.qq.com/s/FSHv6dBMmtpmMf_D9GQoQA)》本文是关于YC斯坦福经典创业课程的第七讲,主要讲述了如何打造用户热爱的产品。讲师Kevin Hale以“和用户谈恋爱”的比喻,探讨了获取新用户如同约会、现有用户如同婚姻的观点。他强调了产品的第一印象的重要性,并通过日本概念“迷人的品质”来强调产品吸引力。最后,通过一些例子说明了如何通过产品设计和用户体验来创造令人难忘的第一印象。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

LTSM(长短期记忆网络)是RNN的改良版本——但也没有解决传统RNN无法并行计算的问题。这时Transformer踏着七彩祥云出现了,在处理每个词的时候,会注意输入序列里所有其他的词,给予每个词不一样的注意力权重,从而捕获依赖关系和相关性。Transformer有自注意力机制和位置编码(语言的顺序很重要)序列:按照特定顺序排列的元素位置编码:包含位置向量和词向量注:编码器和解码器都不只一个而是N个,且都有多头注意力层(且解码器与编码器的多头注意力层不一样——带掩码的多头自注意力)。(这个图有点复杂,仅个人存档用)解码器还包含线性层和Softmax层,它们俩加一块的作用是把解码器的输出转化为词汇表的概率分布(代表下一个被生成token的概率)。后续出现的变种:1)仅编码器——如BRET模型,用于理解语言,比如掩码语言建模、情感分析等;2)仅解码器——如文本生成3)编码器-解码器——如T5、BART模型,比如翻译、总结等4、其他概念科普1)SFT模型——监督微调(Supervised Fine-tuning)2)奖励模型——基于3H原则打分。3)小样本提示——提示词给出样例样本4)思维链——谷歌在2022年一篇论文提到思维链可以显著提升大语言模型在复杂推理的能力(即有推理步骤),即使不用小样本提示,也可以在问题后面加一句【请你分步骤思考】

Others are asking
线性注意力机制与多头潜在注意力机制
线性注意力机制和多头潜在注意力机制是人工智能领域中重要的概念。 线性注意力机制是一种注意力机制的类型,其特点和具体实现方式会因不同的模型和应用场景而有所差异。 多头潜在注意力机制(MLA)在一些模型中得到应用,例如 DeepSeek 模型。DeepSeekV2 就以多头潜在注意力机制架构的创新在硅谷引发了轰动。 在 Transformer 模型中,常见的注意力机制包括自注意力机制、多头注意力机制等。自注意力机制能够同时考虑输入序列中所有位置的信息,通过动态分配注意力权重来捕捉序列中的关系和依赖。位置编码用于使模型能够区分不同位置的词语。多头注意力机制可以并行地学习多个注意力表示,从不同子空间中学习不同特征表示。 DeepSeek 模型在发展过程中,不断应用和创新注意力机制。如 2024 年 5 月发布的 V2 采用了混合专家模型(MoE)和多头潜在注意力机制(MLA)技术,大幅降低了模型训练特别是推理的成本。2024 年 12 月发布的 V3 以低成本实现了高性能,成为其发展的里程碑。
2025-03-28
原生稀疏注意力
原生稀疏注意力(Native Sparse Attention,NSA)是一种高效的超长上下文方案。DeepSeek 最新论文提出了这一机制,它通过压缩、选择和滑动窗口三种机制,提升了计算效率。在训练和推理阶段均有显著效果,前向传播速度提高 9 倍,解码速度提升 11.6 倍。其核心在于聚焦重要信息,优化注意力机制,能够训练出更聪明的模型,甚至在推理任务中表现优异。
2025-02-19
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
请把机器学习相关和大模型相关的知识点形成一个结构化的知识树,包括但是不限于算法、框架、工具、注意力机制等
以下是一个关于机器学习和大模型的结构化知识树: 一、基础数学知识 1. 线性代数 2. 概率论 3. 优化理论 二、机器学习基础 1. 监督学习 分类 回归 2. 无监督学习 聚类 3. 强化学习 三、深度学习 1. 神经网络 卷积网络 递归网络 注意力机制 2. Transformer 模型 四、自然语言处理 1. 语言模型 2. 文本分类 3. 机器翻译 五、计算机视觉 1. 图像分类 2. 目标检测 3. 语义分割 六、前沿领域 1. 大模型 2. 多模态 AI 3. 自监督学习 4. 小样本学习 七、工具与框架 1. TensorFlow 2. PyTorch 八、应用领域 1. 自然语言处理 2. 计算机视觉 3. 推荐系统 九、数据处理 1. 数据采集 2. 数据清洗 3. 特征工程 十、模型部署 1. 模型优化 2. 模型服务 十一、科研实践 1. 论文阅读 2. 模型实现 3. 实验设计 十二、行业实践 1. 项目实战 2. 案例分析
2025-02-11
有关 ai agent 的科普文章
以下是为您提供的关于 AI Agent 的科普内容: AI Agent 是一个融合了多学科精髓的综合实体,包括语言学、心理学、神经学、逻辑学、社会科学和计算机科学等。它不仅有实体形态,还有丰富的概念形态,并具备许多人类特有的属性。 目前,关于 AI Agent 存在一些情况。例如,网络上对其的介绍往往晦涩难懂,让人感觉神秘莫测,其自主性、学习能力、推理能力等核心概念,以及如何规划和执行任务、理解并处理信息等方面,都像是笼罩在一层神秘面纱之下。 另外,以国与国之间的外交为例来解释相关协议。假设每个 AI 智能体(Agent)就是一个小国家,它们各自有自己的语言和规矩。各国大使馆试图互相沟通、做生意、交换情报,但现实中存在诸多问题,如协议各异、要求不同等。 如果您想了解更多关于 AI Agent 的详细内容,可访问: 。
2025-04-15
AI通识科普文章
以下是为您提供的 AI 通识科普相关内容: 对于对 AI 都没太多概念的纯纯小白: 现有常见 AI 工具小白扫盲:(1 小时 32 分开始)。 AI 常见名词、缩写解释: 。 新手学习 AI 的步骤: 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程按照自己的节奏学习,并有机会获得证书。 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。建议一定要掌握提示词的技巧,它上手容易且很有用。 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 入门经典必读:作者为 。文中提到人工智能的研究正在以指数级别的速度增长,对于初学者来说跟上新发布的内容很难,因此分享了一份用于更深入了解现代 AI 的精选资源列表,称为“AI 典藏”,包括对 Transformer 和 Latent Diffusion 模型的介绍、技术学习资源、构建大型语言模型的实用指南、AI 市场的分析以及里程碑式研究成果的参考列表等。
2025-04-14
自媒体文章创作提示词教学
以下是关于自媒体文章创作提示词教学的相关内容: 一、宝玉日报中的提示词教学 1. 提示词四要素包括指令、上下文、输出格式、角色。明确表达需求,学会结构化 Prompt,能让 AI 效果立竿见影。 2. 相关链接: 二、工具教程:清影中的提示词优化原则 1. 强调关键信息:在提示的不同部分重复或强化关键词有助于提高输出的一致性。 2. 聚焦出现内容:尽量让提示集中在场景中应该出现的内容上。 3. 规避负面效果:在提示词中写明不需要的效果,保障视频生成质量。 写提示词的步骤: 1. 明确场景中的人物和冲突,这是推动场景发展的关键因素。 2. 对场景进行详细描述,包括地点、人物形象、任务动作等细节,使用生动的动词营造动态和戏剧化氛围。 3. 加强镜头语言,常用的镜头运动包括推、拉、摇、移、升、降等,每种镜头运动都有其特定作用和效果。 三、关于律师如何写好提示词用好 AI 1. 第一部分:说清楚本文要解决的问题、问题的背景以及可能导致的损失。 2. 第二部分:以案例引入,案例需改写自【基础材料】的【类案参考】部分,包括案号、案件事实经过、法院裁判结果、关键依据等与文章有关的要点。 3. 第三部分:对案例进行进一步分析,写明需要注意的关键点,分析可改写自【基础材料】的【问答结果及分析】部分,这部分不要给建议。 4. 第四部分:给出具体的操作建议,分为事前应注意事项、事中需要注意留存的证据、事后可以采取的补救措施三个部分,每个部分分别给出三条清晰具体的建议。 5. 第五部分:结语及对于本文作者的宣传。 文章结构要点: 1. 定义身份(边界),整体流程和所需资源描述。 2. 对所需资源及如何使用进行描述。 3. 对最终输出的结果进行描述。 注意事项: 1. 所有结论均应有相对应的案例基础,不能违反法律规定,不能编造。 2. 文字需要简练精准,有足够的信息密度,给出的建议必需具体细致且易于操作。
2025-04-12
文章AI度检测
文章原创度检测通常包括以下两大步骤: 1. 从互联网或文章库中定位相似内容: 将文章细分为小句或段落,便于逐个对照。 从每个细分内容中提炼关键词或词组,在网络或专业数据库中搜寻可能的相似内容。 2. 评估文章与搜索出的内容的相似程度评估原创度。 此外,文中还提到了一种将文章手搓成 Token 炸弹的有趣玩法,包括编码和解码的方法。例如,在特定网站进行操作,将按钮切换到“Decode”可解码,切换到“Encode”可编码,输入隐藏信息并选择表情或字母,然后复制生成的内容。由于 Unicode 的特性,隐藏信息跨平台时不会被格式化,但在微信发送时有 1.5 万个 token 左右的极限值,超过则无法发送。在爬虫和不同系统中也有不同的表现,如在 Windows 系统导出 txt 文件会出现乱码,而在 Mac 系统打开则基本正常。这种 Token 炸弹玩法还可以用于躲避信息审核员、传输信息或当作数字水印。
2025-04-12
文章配图的智能体或者软件
以下是为您整理的关于文章配图的智能体或软件的相关内容: 在《智变时代/全面理解机器智能与生成式 AI 加速的新工业革命》中提到,智能时代,智能应用会从有形界面消失,变成无所不在的助理或智能体,辅助甚至直接完成任务。文中还配有图 2.10:智能代理将改变企业组织架构。 在《XAIR:AI 智能体平台对决:腾讯元器与字节扣子的创新之路》中,个人实操案例部分提到为本篇文章配图的相关情况,但生成结果显示问题描述不够清楚。之后换提示词“那你给我生成搞笑图片吧,让人一看就有继续看下去的动力那种,需要一张公众号封面和一张配图”,得到了相应结果。同样的提示词,元器某应用也有生成。此外,文中还提到在搭建 bot 过程中存在工作流未成功触发导致访谈记录未成功存储入库的问题。
2025-04-11
文章风格提取
以下是关于文章风格提取的相关内容: 该提示词用于抽取不同风格文章的核心要素,抽取到的字段可作为 prompt,结合指定主题进行风格迁移。整体创作思路见文末 PDF。 具体使用方法为:拷贝文章风格提取提示词,输入给任意大模型,随后提供要抽取的文本。 已抽取的一些风格参考包括万维钢风格、史铁生《我与地坛》文风、李娟《我的阿勒泰》文风、许倬云《说中国》文风、鲁迅《狂人日记》文风、王小波《万寿寺》文风、飞书多维表格工作流自动化抽取等。 使用 DeepSeek V3 进行实验时,智能体地址为 https://www.coze.cn/s/VM9pUn9HdmA/ 。初级使用方法是输入公众号文章标题或内容,智能体会自动提取相关信息,默认风格是“炫彩”。高级使用方法需按照要求输入几个要素,如标题、副标题、分享封面、标签、风格等。
2025-04-11
deepseek深度思考的机制和ChatGPT的深度思考有什么不一样
DeepSeek R1 与 ChatGPT 的深度思考机制存在以下不同: 1. 技术路线:DeepSeek R1 与 OpenAI 现在最先进的模型 o1、o3 一样,同属于基于强化学习 RL 的推理模型。而 ChatGPT4 采用预训练+监督微调(SFT)。 2. 思考方式:在回答用户问题前,DeepSeek R1 会先进行“自问自答”式的推理思考,从用户初始问题出发,唤醒解决该问题所需的推理逻辑与知识,对问题进行多步推导,为最终回答提供更加完备的思考准备。而 ChatGPT 在此方面的表现有所不同。 3. 应用场景:DeepSeek R1 适用于高难度数学和编程问题,但计算成本更高。日常查询中,ChatGPT 更快、更适合简单咨询。 4. 优势特点:DeepSeek R1 更加透明,研究细节可复现,权重可下载。
2025-02-17
deepseek深度思考的机制
DeepSeek 的深度思考机制包括以下方面: 在案例方面,如为李世民创作独白时,会综合考虑各种元素,包括正当化理由、文学修辞、时间设定、历史语境、人物性格和处境等,经过细腻、严谨、自洽、深刻的思考后输出结果。 性能监测体系方面,包括需求理解准确率(复杂需求首轮响应匹配度)、知识迁移能力(跨领域案例应用的合理性)、思维深度指数(解决方案的因果链条长度)。新一代交互范式建议采用“人机共谋”模式、启动“思维可视化”指令、实施“苏格拉底式对话”,通过将深度思考能力与场景化需求结合,可解锁“认知增强”模式,在商业决策、创新设计、技术攻坚等场景实现思维能效的指数级提升,建议通过 3 轮迭代测试建立个性化交互模式。 在使用技巧方面,先了解其优势和特点,如它是推理型大模型,不需要用户提供详细步骤指令,能理解“人话”表达的需求,进行深度思考,还能模仿不同作家的文风写作。更多提示词技巧可查看 查看。
2025-02-17