Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

deepseek深度思考的机制

Answer

DeepSeek 的深度思考机制包括以下方面:

  • 在案例方面,如为李世民创作独白时,会综合考虑各种元素,包括正当化理由、文学修辞、时间设定、历史语境、人物性格和处境等,经过细腻、严谨、自洽、深刻的思考后输出结果。
  • 性能监测体系方面,包括需求理解准确率(复杂需求首轮响应匹配度)、知识迁移能力(跨领域案例应用的合理性)、思维深度指数(解决方案的因果链条长度)。新一代交互范式建议采用“人机共谋”模式、启动“思维可视化”指令、实施“苏格拉底式对话”,通过将深度思考能力与场景化需求结合,可解锁“认知增强”模式,在商业决策、创新设计、技术攻坚等场景实现思维能效的指数级提升,建议通过 3 轮迭代测试建立个性化交互模式。
  • 在使用技巧方面,先了解其优势和特点,如它是推理型大模型,不需要用户提供详细步骤指令,能理解“人话”表达的需求,进行深度思考,还能模仿不同作家的文风写作。更多提示词技巧可查看集合·DeepSeek 提示词方法论 。同时,还有关于 R1 和 V3 技术报告的相关内容,可通过技术报告解读DeepSeek_R1.pdfDeepSeek_V3.pdf 查看。
Content generated by AI large model, please carefully verify (powered by aily)

References

集合·DeepSeek 提示词方法论

同时,他可能试图为自己的行为找到正当化的理由,比如为了国家安定,避免内乱等。另外,用户可能希望这段独白有一定的文学修辞,比如比喻、对仗、意象等。例如,用“血浸透的朱砂”来象征权力与血腥,用“墨迹蜿蜒如玄武门的血迹”来连接书写与事件本身,增强画面感。还要注意时间的设定,深夜,周围寂静,李世民独自一人,这时候的独白应该比较私密,真实,可能包含对兄弟的歉意,对父亲的愧疚,以及对自己不得不采取行动的无奈。要符合当时的历史语境,同时,要确保内容符合史实,比如李渊的退位,李世民登基后的政策,以及他后来对史书编纂的影响,可能在这段独白中有所暗示。最后,用户可能需要这段独白既有情感深度,又能体现李世民的帝王心术,既有脆弱的一面,也有坚定的决心。因此,在写作时需要平衡这些元素,让独白真实感人,同时符合历史人物的性格和处境。经过以上细腻、严谨、自洽、深刻的思考,DeepSeek在思考8秒之后输出了以下结果——(铺开素绢,狼毫蘸墨时发现指尖残留着未洗净的血痂)回复:子时三刻,太极宫的血腥气飘到了承乾殿。方才在甘露殿,父亲的龙袍下摆沾着建成碎裂的玉冠残片。他问我"可有受伤"时的眼神,与二十年前教我骑射时看我坠马的眼神一般无二。只是这次,他不敢触碰我甲胄上元吉的掌印。砚台里新研的朱砂太艳了,艳得像元吉咽气前抓着我的那只手。他总说我箭囊上的豹纹绣得歪斜,可今日我射穿他护心镜的那支白羽箭,准得连尉迟恭都屏住了呼吸。

集合·DeepSeek 提示词方法论

1.需求理解准确率:复杂需求首轮响应匹配度2.知识迁移能力:跨领域案例应用的合理性3.思维深度指数:解决方案的因果链条长度新一代交互范式建议:1.采用「人机共谋」模式:先陈述思路梗概,再让AI补充完善"我想从这三个方向切入,你觉得哪个最有潜力?为什么?"2.启动「思维可视化」指令:"用思维导图形式展示当前推理过程"3.实施「苏格拉底式对话」:"连续追问五个'为什么'来挖掘根本原因"通过将深度思考能力与场景化需求结合,可解锁DeepSeek的「认知增强」模式,在商业决策、创新设计、技术攻坚等场景实现思维能效的指数级提升。建议通过3轮迭代测试(需求表达→深度追问→方案优化)建立个性化交互模式。[heading1]R1带来的提示词使用新步骤[content]首先明确场景和任务其次选择模型类型之后再写提示词以下是一份针对DeepSeek-R1提示词系统的结构化教程,包含基础操作、进阶技巧和实战案例

详解:DeepSeek深度推理+联网搜索 目前断档第一

[技术报告解读](https://waytoagi.feishu.cn/wiki/ZXnkwKXr8ipW2YkgFTKcxlXpnHc)[DeepSeek_R1.pdf](https://bytedance.feishu.cn/space/api/box/stream/download/all/STbLbIvl9oAUAgxYgE3c1lpUnoe?allow_redirect=1)[DeepSeek_V3.pdf](https://bytedance.feishu.cn/space/api/box/stream/download/all/GdOObWZP4ovWezxuYIjc0UtQnZd?allow_redirect=1)[heading1]使用技巧[content]先了解下优势和特点[heading2]DeepSeek的特点与优势[content]推理型大模型:DeepSeek的核心是推理型大模型,与指令型大模型不同,它不需要用户提供详细的步骤指令,而是通过理解用户的真实需求和场景来提供答案。更懂人话:DeepSeek能够理解用户用“人话”表达的需求,而不需要用户学习和使用特定的提示词模板。深度思考:DeepSeek在回答问题时能够进行深度思考,而不是简单地罗列信息。文风转换器:DeepSeek可以模仿不同作家的文风进行写作,适用于多种文体和场景。更多提示词技巧请查看[集合·DeepSeek提示词方法论](https://waytoagi.feishu.cn/wiki/ISVZwe05Tio9hEkFSF5cIjZ7nVf)

Others are asking
deepseek官方教程
以下是关于 DeepSeek 的官方教程相关信息: 火山方舟 DeepSeek 申请免费额度教程,包含多种 API 使用方式,如飞书多维表格调用、Coze 智能体调用、浏览器插件调用。可以使用邀请码 D3H5G9QA,通过邀请链接 https://www.volcengine.com/activity/deepseek?utm_term=202502dsinvite&ac=DSASUQY5&rc=D3H5G9QA 邀请可拿 3000 万 tokens,畅享 671B DeepSeek R1,活动截止至北京时间 20250218 23:59:59。同时,火山方舟大模型服务平台的模型服务计费文档有更新,DeepSeekR1、V3 模型分别提供了 50 万免费额度和 API 半价活动。 有关于一线教师的 AI 需求与高效工具推荐,如让模型创作诗歌、生成宣传标语、提示库(https://apidocs.deepseek.com/zhcn/promptlibrary)、代码解释、内容分类、角色扮演(自定义人设)、散文写作、文案大纲生成、模型提示词生成等。 2 月 14 日的社区动态中,有《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》《羊毛快薅|字节火山上线了 DeepSeek 系列模型并悄悄更改了模型服务价格...》等内容,还附上了飞书多维表格、Coze 的接入使用方法等。此外,还有关于 DeepSeek 关键 9 篇论文及创新点的讲解,以及 DeepSeek 官方发布的 R1 模型推荐设置。
2025-04-15
我想让DEEPSEEK帮我写一篇论文,题目已经定好了,怎么给他输入指令
以下是给 DeepSeek 输入指令以帮助您写论文的一些建议: 1. 采用结构化提示词: 优先保留专业领域术语和技术词汇,这些术语通常具有高信息价值。 对不同类型的信息设置权重,按优先级排序:任务定义>关键约束>专业术语>定量信息>方法论>背景。 以完整语义单元为基本保留单位,而非单个词语,确保压缩后的内容仍保持语义完整性。 避免详细指导思考过程,让模型自主生成思维链。 2. 高阶能力调用: 文风转换矩阵:例如“用鲁迅杂文风格写职场 PUA 现象”“将产品说明书改写成《史记》列传格式”“把这篇论文摘要翻译成菜市场大妈能听懂的话”。 领域穿透技术:如行业黑话破解“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 场景化实战策略: 创意内容生成。 技术方案论证。 4. 效能增强技巧: 对话记忆管理:包括上下文锚定(如“记住当前讨论的芯片型号是麒麟 9010”)、信息回溯(如“请复述之前确认的三个设计原则”)、焦点重置(如“回到最初讨论的供应链问题”)。 输出质量控制:针对过度抽象、信息过载、风格偏移等问题,使用相应的修正指令。 5. 特殊场景解决方案: 长文本创作:可采用分段接力法,如“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。 敏感内容处理:使用概念脱敏法(如“用经济学原理类比说明网络审查机制”)或场景移植法(如“假设在火星殖民地讨论该议题”)。 在输入指令时,您需要清晰明确地描述论文的题目、研究目的、主要论点、关键论据、期望的结构和风格等重要信息,以便 DeepSeek 能够为您生成符合要求的内容。
2025-04-14
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
Deepseek自动生成网站前端页面
以下是关于 DeepSeek 自动生成网站前端页面的相关内容: DeepSeek v3 能力更新后虽能生成炫目的前端页面,但多为静态且实用性有限。可结合飞书多维表格将生成的漂亮前端变为真实的系统,如【智能作业分发系统】。 该系统整体包括用户登陆(可加飞书调查表二维码实现注册)、作业类型、作业详情(含连连看游戏、AI 智能问答、考试系统)。其实现逻辑为用户登陆系统后进入页面看到老师分配的作业分类,选择分类进入作业详情页面,详情页有学习单词发音及三个模块。 对于小白,可用飞书作数据源,通过飞书 API 接口获取内容,用 DeepSeek v3 制作前端+后端(用 Trae 更方便)。获取请求参数时,测试成功后的示例代码中有完整的请求参数和请求体可直接复制使用。创建前后端时,若用 DeepSeek 官网搭建需按代码目录结构创建对应文件(用 Trae 可省略),首次运行可能遇到飞书 API 未正确配置 CORS 导致浏览器拦截请求的问题,V3 会给出修改意见。 此外,Same dev 能像素级复制任意 UI 界面并生成前端代码,支持多种文件格式和技术栈代码,但免费额度消耗快,网站被谷歌标记。360 智脑复现了 DeepSeek 强化学习效果并发布开源模型 LightR114BDS。 AI 时代生存法则:会提需求比会写代码更重要,会开脑洞比会复制粘贴更值钱,真正的大佬都是让 AI 当乙方!
2025-04-13
deepseek写论文
以下是关于 DeepSeek 在不同方面应用的相关信息: 应用场景:包括脑爆活动方案、会议纪要、批量处理客户评论、分析总结复盘内容、生成专业软件使用过程、写小说框架、写论文、写文案、写小红书笔记、写周报、做设计头脑风暴、做网站、分析感情问题等。 优势与不足:在写文方面全面领先,但长文可能太发散、文风用力过猛导致审美疲劳,且模型多样性不够,相同 prompt 提问多次答案雷同。 应对策略:写理性文章时,可先与 DeepSeek 讨论思路,再用 Cloud 3.5 批量生成;用 O1 模型对创作的字数控制有一定效果,也可通过多轮对话让 AI 增删改查来调整字数。 创作相关:模仿特定小说家的文学方式创作小说,需在提示词中描述文风特征;邀请大家在腾讯频道发布用 AI 写的小说并鉴赏。 发展历程:DeepSeek 历时 647 天在大语言模型(LLM)领域取得突破,发布 13 篇论文。谷歌 CEO 坦言 Deep Seek 的突破标志着 AI 的全球化进程。
2025-04-13
使用Deepseek写论文有哪些固定指令模板
以下是使用 DeepSeek 写论文的一些指令模板: 1. 进阶控制技巧: 思维链引导: 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 知识库调用: 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 多模态输出 2. 高级调试策略: 模糊指令优化: 问题类型:宽泛需求 修正方案:添加维度约束 示例对比:原句:“写小说”→修正:“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构” 问题类型:主观表述 修正方案:量化标准 示例对比:原句:“写得专业些”→修正:“符合 IEEE 论文格式,包含 5 项以上行业数据引用” 迭代优化法: 首轮生成:获取基础内容 特征强化:请加强第三段的技术细节描述 风格调整:改用学术会议报告语气,添加结论部分 最终校验:检查时间逻辑一致性,列出可能的事实性错误 3. 核心原理认知: AI 特性定位: 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 8K tokens 上下文窗口,换算成汉字是 4000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 系统响应机制: 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 4. 基础指令框架: 四要素模板 格式控制语法: 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 5. 高阶能力调用: 文风转换矩阵: 作家风格移植:“用鲁迅杂文风格写职场 PUA 现象” 文体杂交:“将产品说明书改写成《史记》列传格式” 学术口语化:“把这篇论文摘要翻译成菜市场大妈能听懂的话” 领域穿透技术:行业黑话破解→“解释 Web3 领域的‘胖协议瘦应用’理论” 商业决策支持 6. 场景化实战策略: 创意内容生成 技术方案论证 7. 效能增强技巧: 对话记忆管理: 上下文锚定:“记住当前讨论的芯片型号是麒麟 9010” 信息回溯:“请复述之前确认的三个设计原则” 焦点重置:“回到最初讨论的供应链问题” 输出质量控制: 问题类型:过度抽象 修正指令:“请具体说明第三步操作中的温度控制参数” 问题类型:信息过载 修正指令:“用电梯演讲格式重新组织结论” 问题类型:风格偏移 修正指令:“回归商务报告语气,删除比喻修辞” 8. 特殊场景解决方案: 长文本创作: 分段接力法:“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应” 敏感内容处理: 概念脱敏法:“用经济学原理类比说明网络审查机制” 场景移植法:“假设在火星殖民地讨论该议题”
2025-04-13
如果你是一个AI领域的专家,我有个问题关于应用AI来学习的:假设我有一个网上的课程,然后我把这个网上的课程全部视频都下载下来,然后输入给AI,让AI来学习,如果以后我问AI关于这方面的问题的话,AI能像课程老师一样思考,来回答我的问题吗
以下是关于您提问的相关内容: AI 的学习方式与人类有相似之处,也有不同之处。在医疗保健领域,为产生真正的改变,AI 应像人类一样学习。成为某个领域顶尖人才通常从多年密集信息输入开始,如正规学校教育和学徒实践,通过面对面学习获取书本外的信息。对于 AI 来说,当前学习方式及技术人员对待方式存在问题,应通过堆叠模型训练,而非仅依靠大量数据和生成模型。例如先训练生物学、化学模型,再添加特定数据点。开发具有潜在空间层次结构的堆叠 AI 模型,能反映对基本元素的理解和预测能力,可能会平行于人类教育范例发展,也可能专门发展出新型专业知识。创建特定领域的专家 AI 可能比全能 AI 更容易,且需要多个专家 AI 提供多样意见。同时,应让 AI 接触现实世界互动,避免复制危险偏见。但不能因恐惧传播人类偏见而限制探索 AI 帮助民主化人类专家知识的意愿。 然而,您所提到的将网上课程视频全部下载输入给 AI 让其学习,然后期望它像课程老师一样回答问题,目前的技术和情况还不能完全保证实现。AI 的学习和回答能力取决于其训练数据、模型结构和算法等多种因素。
2025-04-13
我是一名AI古诗词视频创作者,我想教大家如果用AI软件将古诗词的内容用视频形式表现出来,请帮我写一个教学文档,要求内容丰富,从简单到复杂,从入门到深层思考和学习,包括提示词怎么写,提示词模板,提示词举例等
以下是一份关于如何用 AI 软件将古诗词内容以视频形式表现出来的教学文档: 一、简单入门 如果是简单的图,找原图直接写提示词即可。 二、复杂图片处理 1. 图片分模块 对于复杂部分的图,把长图分多个模块。例如,将一张图分成 4 个模块。 2. 抠出背景图 智能抠图。用工具把要动的内容去除掉,用 AI 生成图片部分。如果有水印,可以把图片向下拓展一部分,然后截掉。 3. 绿幕处理前景图 将要拿来动起来的部分抠出,放在绿幕背景里或者画的背景颜色,导出图片。 4. 前景图动态生成视频 用 AI 视频生成工具写入提示词让图片动起来。有很多工具可供选择,如即梦、海螺、混元等。不停尝试抽卡即可。 5. 生成视频去掉背景 用剪映把抽卡合格的视频放在去掉内容的背景图片上,视频的背景用色度抠图调整去掉。多个视频放在背景图片,一起动即可。 三、提示词相关 1. 文案生成 工具:DeepSeek 操作:打开 DeepSeek 网站(https://chat.deepseek.com/ ),输入提示词。例如:“让 XX 用现代口语化的表达、生气骂人的口吻吐槽 XXXX(例如:吐槽现代人),XXX 目的(例如:推广 XXX 吸引游客来旅游),输出 3 条 60 字左右的毒舌文案,每条里面都要有‘回答我!Look in my eyes!Tell me!why?baby!why?’”可以根据自己的内容自行调整文案和字数要求。点击生成,等待 DeepSeek 输出 3 条文案。从中挑选最满意的一条(或多条)保存备用。 2. 准备人物形象图 工具:即梦 AI 操作:打开即梦 AI 网站(https://jimeng.jianying.com/aitool/image/generate ),输入提示词,即梦已经接入了 DeepSeek,可以直接用它来生成绘图提示词。调整生成参数(如风格、细节等),点击生成。预览生成的人物图,不满意可调整提示词重新生成,直到满意为止。下载最终的人物形象图。 四、其他注意事项 1. 指定视觉细节 包括颜色、照明、相机角度和风格等任何视觉元素的描述。提供的细节越多,输出就越接近您的愿景。 2. 提及所需长度和格式 如果您对特定的长度(以秒或分钟为单位)或格式(宽高比、分辨率)有想法,请提及。这对于 AI 生成符合您要求的内容至关重要。 3. 概述音频偏好 如果您的视频需要特定的音频元素,如背景音乐、旁白或音效,请详细描述。指定您是希望 AI 生成这些元素还是您自己提供。 4. 考虑道德和版权准则 确保您的提示符合道德标准和版权法。避免请求侵犯版权或涉及没有适当背景的敏感主题的内容。 请根据您的具体需求和所使用的视频 AI 工具的能力调整模板和示例。记住,输出的质量在很大程度上取决于您通过提示传达愿景的效果。
2025-04-08
我们是搜索团队的产品经理,团队定位倾向于“对于插件的建设与调用”定位,现在要做AI相关的产品规划,请以通俗易懂的方式对以下问题做出回答 1、请通过流程图的方式,介绍【插件/工具】能力在大模型生态架构中的环节、定位、实现流程是什么 2、调研下对于我们搜索团队而言,插件应该做什么,可以做什么 3、思考对于大模型来说,有哪些(通用或垂类)的模块/功能/插件是无法绕开的,或高频使用的,作为我们团队后续争取的发力点(如搜索推荐对于传统综合搜索结果页)
以下是为您提供的关于 AI 相关产品规划的回答: 一、插件/工具能力在大模型生态架构中的环节、定位、实现流程 从 2023 年 3 月份 OpenAI 宣布插件计划开始,到 5 月份上线,其中包括联网、代码、画图三个插件。其实现流程大致为: 1. 经过对模型的微调,检测何时需要调用函数(取决于用户的输入)。 2. 使用符合函数签名的 JSON 进行响应。 3. 在接口层面声明可调用的工具。 4. 使用函数和用户输入调用模型。 5. 使用模型响应调用 API。 6. 将响应发送回模型进行汇总。 二、对于搜索团队,插件可以做和应该做的事 目前没有直接针对搜索团队插件具体可做和应做事项的明确内容,但可以参考 OpenAI 的插件计划,例如开发与搜索相关的特定功能插件,或者探索如何将现有的搜索推荐功能与大模型更好地结合。 三、对于大模型无法绕开或高频使用的模块/功能/插件 目前没有直接指出对于大模型无法绕开或高频使用的具体模块、功能或插件。但从相关信息中可以推测,例如与数据获取和处理相关的插件(如联网)、与技术开发相关的插件(如代码)以及与内容生成相关的插件(如画图)可能是较为重要和高频使用的。对于搜索团队来说,可以考虑在这些方向上寻找发力点,结合搜索推荐等传统功能,开发出更具竞争力的插件。
2025-04-08
ai如何思考你提出的问题
AI 思考问题的方式多种多样,以下为您介绍一些常见的方法和案例: 1. 利用思维模型:例如通过“AI+六顶思考帽”的方法,依次运用白帽(搜集信息)、红帽(探索直觉和感受)、黄帽(探索可能的积极面)等思维方式,全面且深入地思考问题。比如在个人 IP 定位的案例中,先让用户提供职业、兴趣爱好等信息,再探索其感受和直觉,最后分析潜在好处。 2. 引用节点和参照:在生成内容时,可以使用“引用节点”的技巧,让 AI 根据特定的参照(如之前的产出、新增的参考文案等)输出具备更高关联度的内容。例如在生成“延伸思考”的问题时,严格参照未来世界观和各个驱动力的解析。 3. 对比不同模型和功能:可以用同一段提示词对比不同模型的输出,择优深挖。还可以在满意的内容节点上添加“文本编辑器显示”,对文本进行精加工。 4. 正确引导孩子使用:对于孩子使用 AI,若方法不当,如提封闭性问题让孩子迅速得到答案,可能有负面效果;但改成开放性问题或让 AI 帮助提更多拓展思考的问题,能激发好奇心。在辅助写作文时,让孩子与 AI 共同完成并提交聊天记录,关注孩子对作文的点评批改等,能避免孩子偷懒。
2025-04-01
为什么ai能够“思考”
AI 能够“思考”主要基于以下几个方面: 1. 以 AlphaGo 为例,它在对战围棋传奇李世石时展示了超越简单模式模仿、真正“思考”的能力。在预训练时,它不仅模仿人类专家决策,还会在作答前“停下来思考”,通过模拟多个未来可能的棋局,评估得分并选择最优应对方式。随着推理时间增加,表现逐步提升并超过人类。但将此概念移植到大规模语言模型(LLM)上存在构建价值函数的难点,如在评估文章初稿、制定旅行计划等较为开放领域的打分问题。 2. 人类的思维过程分为快速、直觉的“系统 1”和缓慢、深思熟虑的“系统 2”。研究人员认为,如果有足够大、接近人脑的人工神经网络,就可能实现人脑的“思考”工作。 3. 像 HiDeepSeek 这样的工具,旨在让 AI 像人类交流时那样展示思考过程,通过特别的规则要求 AI 在思考时自然地提出疑问、修正错误等,使 AI 的回答不再是冰冷的结论,而是可跟踪、可理解的思考过程。虽然这种“思维”是模拟的,但有助于更好地理解和使用 AI 。
2025-03-23
1、Puzzle 选择一个你(们)感兴趣的社会问题或者现象。 “赛博信仰”指在网络环境下衍生的一系列超现实、寄托心理期许的新兴文化现象。这种现象反映了人们在数字化时代中对精神寄托、心理安慰和未来预测的需求。赛博信仰不仅是一种文化现象,也反映了现代社会中人们对科技、信仰和现实之间关系的重新思考。 2、Facts 关于这个问题/现象,都有哪些基本事实? 比如有人购买电子形式的马克思、爱因斯坦的脑子,象征着对智慧的渴望;借助塔罗测试程序、deepseek算命等AI工具,尝试预知命运;夸赞鹿童、转发锦鲤
关于“赛博信仰”这一现象,目前所了解到的基本事实包括:有人购买电子形式的马克思、爱因斯坦的脑子以象征对智慧的渴望;借助塔罗测试程序、deepseek 算命等 AI 工具尝试预知命运;夸赞鹿童、转发锦鲤等。但目前掌握的相关事实相对有限,还需要进一步的研究和观察来更全面地了解这一现象。
2025-03-13
如果面试AI产品经理岗位,我的简历应该如何介绍对应的AI项目?目前我在做的是一个AI深度解读的功能,用户通过报告页面进行深度解读,进入后触发AI与用户的沟通,根据沟通信息,将用户的一些情况写在病历信息中,最终发给医生
以下是为您提供的一些参考,帮助您在面试 AI 产品经理岗位时介绍对应的 AI 项目: 在您所做的 AI 深度解读功能项目中,可以从以下几个方面进行介绍: 项目背景:阐述开展该项目的原因和目标,例如为了提升医疗服务的效率和准确性,满足用户对深度医疗解读的需求等。 项目职责:详细说明您在项目中的具体职责,如需求分析、产品规划、与开发团队协作、与用户沟通获取反馈等。 技术实现:描述项目中所运用的关键技术,如触发 AI 与用户沟通的机制、如何将用户信息写入病历等。 用户体验优化:提及为提升用户体验所采取的措施,比如优化报告页面的设计、提高 AI 沟通的自然度和准确性等。 成果与效益:展示项目取得的成果,如提高了医生的诊断效率、提升了用户满意度等。 此外,您还可以参考以下其他相关人员的项目经验: 秦超作为 AI 2C 项目负责人,在产品落地服务方面具有丰富的经验,包括产品、技术架构以及项目管理等。 Cici?在 AI 算法开发领域,将宠物与 AI 结合,具备 AI 产品研发和创业经验。 11 鸭鸭呀作为产品经理,在智能写作产品方面有 Prompt 撰写和 AI 应用的经验。 枫 share 作为产品经理,熟悉 ChatGPT,写过 prompt,使用过多种 AI 创作工具,并正在寻找 AI 方向的产品岗位。 行远作为产品经理,熟悉 prompt,部署过多种绘图项目,使用过多款 AI 创作工具,期待学习和实战案例应用。 希望以上内容对您有所帮助,祝您面试成功!
2025-04-01
基于深度学习的商代食器分类研究 明确详细的研究意义
基于深度学习的商代食器分类研究具有多方面的重要意义。首先,它有助于深入了解商代的饮食文化和社会生活。通过对食器的准确分类,可以揭示当时人们的饮食习惯、烹饪方式以及社交礼仪等方面的信息。 其次,为考古学研究提供新的方法和视角。利用深度学习技术能够更高效、更准确地处理和分析大量的商代食器数据,突破传统研究方法的局限。 再者,有助于文物保护和管理。精确的分类有助于制定更有针对性的保护策略,确保这些珍贵的文化遗产得到妥善保存。 最后,促进跨学科研究的发展。将深度学习与考古学相结合,能够吸引更多不同领域的学者参与,推动相关研究的创新和进步。
2025-03-27
深度学习模型架构有哪些
深度学习模型架构主要包括以下几种: 1. Transformer 模型: 由编码器(Encoder)和解码器(Decoder)两大部分组成。 每个部分由多个相同的层堆叠而成,每层包含多头注意力机制(Multihead Attention)和位置全连接前馈网络。 编码器将自然语言转换成向量文本,解码器基于编码器的输出和之前生成的输出逐步生成目标序列。 2. DiT 架构:结合扩散模型和 Transformer 的架构,用于高质量图像生成。 3. 存算一体架构: 是未来 AI 硬件的发展趋势。 运行几百亿个参数的大模型时具有优势,可避免数据搬运。 此外,在端到端算法的时代,有观点认为不应继续使用冯诺依曼架构,且在存算一体的芯片之上,有望诞生全新的算法。在将大模型与私域知识结合方面,有重新训练、微调、RAG、关键词工程、加长 Context 等方法,其中长 Context 和 RAG 被认为较有希望。
2025-03-22
懂编程但是不了解大模型的工程师如何系统的学习深度学习?
对于懂编程但不了解大模型的工程师,系统学习深度学习可以参考以下路径: 1. 掌握深度学习和自然语言处理基础: 学习机器学习、深度学习、神经网络等基础理论。 掌握自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程推荐吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: 熟悉 Transformer 模型架构及自注意力机制原理。 掌握 BERT 的预训练和微调方法。 阅读相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 进行大规模文本语料预处理。 熟悉 LLM 预训练框架,如 PyTorch、TensorFlow 等。 学会微调 LLM 模型进行特定任务迁移。 参考相关资源,如 HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 掌握模型压缩、蒸馏、并行等优化技术。 了解模型评估和可解释性。 熟悉模型服务化、在线推理、多语言支持等。 运用相关开源工具,如 ONNX、TVM、BentoML 等。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 此外,为了更好地理解相关技术原理和建立框架,还可以了解以下内容: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务包括聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制来处理序列数据,而不需要依赖于循环神经网络或卷积神经网络。
2025-03-13
帮我完成基于深度学习的草莓目标识别的毕设
很抱歉,目前没有关于基于深度学习的草莓目标识别毕设的具体内容。但我可以为您提供一个大致的指导框架: 首先,您需要收集大量包含草莓的图像数据,并对这些数据进行标注,例如标记出草莓的位置和类别。 然后,选择适合的深度学习模型,如卷积神经网络(CNN),可以考虑使用经典的模型架构如 VGG、ResNet 等,或者根据您的需求进行适当的修改和优化。 在训练模型时,要注意设置合适的超参数,如学习率、迭代次数等,并使用合适的优化算法,如随机梯度下降(SGD)、Adagrad 等。 在模型训练完成后,进行评估和验证,可以使用准确率、召回率、F1 值等指标来衡量模型的性能。 最后,对模型进行优化和改进,以提高识别效果。 希望以上框架对您有所帮助,祝您顺利完成毕业设计!
2025-03-09
我现在需要做我的毕业设计名为“基于深度学习的草莓目标识别系统”,你能告诉我如何制作以及用到这里的哪些ai工具、
对于您的“基于深度学习的草莓目标识别系统”毕业设计,以下是一些制作的步骤和可能用到的 AI 工具: 制作步骤: 1. 数据收集:收集大量包含草莓的图像数据,并对其进行标注,例如标记出草莓的位置和类别。 2. 数据预处理:对收集到的数据进行清洗、增强、裁剪等操作,以提高数据质量和模型的泛化能力。 3. 选择模型架构:可以考虑使用常见的深度学习目标检测模型,如 Faster RCNN、YOLO 等。 4. 训练模型:使用预处理后的数据对选择的模型进行训练。 5. 模型评估:使用测试集对训练好的模型进行评估,如准确率、召回率等指标。 6. 模型优化:根据评估结果对模型进行调整和优化,例如调整超参数、增加数据量、使用更复杂的模型等。 可能用到的 AI 工具: 1. TensorFlow:一个广泛使用的深度学习框架,提供了丰富的模型构建和训练工具。 2. PyTorch:另一个流行的深度学习框架,具有灵活的编程接口和强大的计算能力。 3. OpenCV:用于图像处理和数据预处理。 4. LabelImg:用于图像数据的标注。 希望以上内容对您有所帮助,祝您毕业设计顺利!
2025-03-09
线性注意力机制与多头潜在注意力机制
线性注意力机制和多头潜在注意力机制是人工智能领域中重要的概念。 线性注意力机制是一种注意力机制的类型,其特点和具体实现方式会因不同的模型和应用场景而有所差异。 多头潜在注意力机制(MLA)在一些模型中得到应用,例如 DeepSeek 模型。DeepSeekV2 就以多头潜在注意力机制架构的创新在硅谷引发了轰动。 在 Transformer 模型中,常见的注意力机制包括自注意力机制、多头注意力机制等。自注意力机制能够同时考虑输入序列中所有位置的信息,通过动态分配注意力权重来捕捉序列中的关系和依赖。位置编码用于使模型能够区分不同位置的词语。多头注意力机制可以并行地学习多个注意力表示,从不同子空间中学习不同特征表示。 DeepSeek 模型在发展过程中,不断应用和创新注意力机制。如 2024 年 5 月发布的 V2 采用了混合专家模型(MoE)和多头潜在注意力机制(MLA)技术,大幅降低了模型训练特别是推理的成本。2024 年 12 月发布的 V3 以低成本实现了高性能,成为其发展的里程碑。
2025-03-28
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
deepseek深度思考的机制和ChatGPT的深度思考有什么不一样
DeepSeek R1 与 ChatGPT 的深度思考机制存在以下不同: 1. 技术路线:DeepSeek R1 与 OpenAI 现在最先进的模型 o1、o3 一样,同属于基于强化学习 RL 的推理模型。而 ChatGPT4 采用预训练+监督微调(SFT)。 2. 思考方式:在回答用户问题前,DeepSeek R1 会先进行“自问自答”式的推理思考,从用户初始问题出发,唤醒解决该问题所需的推理逻辑与知识,对问题进行多步推导,为最终回答提供更加完备的思考准备。而 ChatGPT 在此方面的表现有所不同。 3. 应用场景:DeepSeek R1 适用于高难度数学和编程问题,但计算成本更高。日常查询中,ChatGPT 更快、更适合简单咨询。 4. 优势特点:DeepSeek R1 更加透明,研究细节可复现,权重可下载。
2025-02-17
请把机器学习相关和大模型相关的知识点形成一个结构化的知识树,包括但是不限于算法、框架、工具、注意力机制等
以下是一个关于机器学习和大模型的结构化知识树: 一、基础数学知识 1. 线性代数 2. 概率论 3. 优化理论 二、机器学习基础 1. 监督学习 分类 回归 2. 无监督学习 聚类 3. 强化学习 三、深度学习 1. 神经网络 卷积网络 递归网络 注意力机制 2. Transformer 模型 四、自然语言处理 1. 语言模型 2. 文本分类 3. 机器翻译 五、计算机视觉 1. 图像分类 2. 目标检测 3. 语义分割 六、前沿领域 1. 大模型 2. 多模态 AI 3. 自监督学习 4. 小样本学习 七、工具与框架 1. TensorFlow 2. PyTorch 八、应用领域 1. 自然语言处理 2. 计算机视觉 3. 推荐系统 九、数据处理 1. 数据采集 2. 数据清洗 3. 特征工程 十、模型部署 1. 模型优化 2. 模型服务 十一、科研实践 1. 论文阅读 2. 模型实现 3. 实验设计 十二、行业实践 1. 项目实战 2. 案例分析
2025-02-11
AI应用于教育行业在评估和认证机制的改革方面的问题
AI 应用于教育行业在评估和认证机制的改革方面存在以下问题: 1. 教育体系具有惯性,课程设置、教师资格认证、学术评价体制等均有深厚传统根基,更新和调整需要时间,资源重新配置无法一蹴而就,大规模改革提案的决策流程涉及多方利益博弈,是长期议程。 2. 现有的教育体系追求稳定性和标准化,而非灵活性和快速响应,抵制变动,本质上较为保守,与 AI 引领的教育创新所需的快速试错和持续迭代能力脱节。 3. 教育政策更新滞后,政策制定者对新兴技术理解不足,无法充分预见技术对教育的长远影响,政策调整受预算限制、法规约束和政治周期影响,过程缓慢。 4. 技术与政策的脱节体现在教师的培训和招聘上,多数教师未接受相关培训,不仅要掌握工具操作,还需了解如何与教学目标结合,当前教师培训和专业发展项目在数量和质量上与需求存在差距。 5. 现有评估和认证机制侧重于传统学习方法和结果,学校和教师受其约束,创新的教育实践难以得到认可,甚至可能因偏离既定评价标准而遭质疑。
2025-02-10