Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

few shot 和 one shot等最初是由什么论文提出的?

Answer

Few shot 和 One shot 等概念的相关研究在自然语言处理领域有较多的文献提及。

Zero Shot Prompting(零样本提示):是一种让模型在没有额外训练数据的情况下对之前未见过的数据进行预测的技术。传统机器学习通常需大量标记训练数据来准确预测,而在提示工程中,零样本学习可用于生成自然语言文本,无需显式编程或预定义模板,创造更多样化和动态的文本生成模型,使机器能在训练中没见过某些对象时仍能识别和分类。

One Shot Prompting(一样本提示):通过有限的输入数据(如单个示例或模板)来生成自然语言文本,可与对话管理和上下文建模等自然语言处理技术结合,创造更复杂、有效的文本生成系统。在提示工程中,只需提供有限输入数据,如单个示例或模板,有助于从大型语言模型中创建可预测的输出。

Few Shot Prompting(少样本提示):将少量示例(通常为两到五个)提供给模型,以便快速适应新对象的例子。在提示工程中,少样本学习可用于创建自然语言文本,只需提供有限的输入数据,能创造更灵活和适应性强的文本生成模型。

零样本、一样本和少样本提示的区别在于:零样本提示是模型在没有额外训练的情况下进行预测;一样本提示需要提供一个示例或模板;而少样本提示则需要提供更少的数据,通常是两到五个示例。

这些提示工程技术能提供更灵活和可控的方式从自然语言生成模型中输出文本,充分利用模型强大能力,创造更准确、多样和吸引人的输出,满足应用程序需求。

Content generated by AI large model, please carefully verify (powered by aily)

References

子瞻:Prompt框架

Zero Shot Prompting(零样本提示):这是一种让模型在没有额外训练数据的情况下对之前未见过的数据进行预测的技术。传统的机器学习技术通常需要大量标记的训练数据来进行准确的预测。在提示工程的背景下,零样本学习可用于生成自然语言文本,无需显式编程或预定义模板,从而创造更多样化和动态的文本生成模型。它使得机器可以在训练过程中没有见过某些对象的情况下,识别和分类这些对象。One Shot Prompting(一样本提示):使用一样本提示可以通过有限的输入数据(如单个示例或模板)来生成自然语言文本。它可以与对话管理和上下文建模等自然语言处理技术相结合,创造更复杂、更有效的文本生成系统。在提示工程的背景下,一样本学习可用于生成自然语言文本,只需提供有限的输入数据,例如单个示例或模板。这有助于从大型语言模型中创建可预测的输出。Few Shot Prompting(少样本提示):这是一种技术,将少量示例(通常为两到五个)提供给模型,以便快速适应之前见过的新对象的例子。在提示工程的背景下,少样本学习可用于创建自然语言文本,只需提供有限的输入数据。虽然需要较少的数据,但这种技术使得可以创造更加灵活和适应性强的文本生成模型。零样本、一样本和少样本提示的区别:零样本提示是模型在没有额外训练的情况下进行预测;一样本提示需要提供一个示例或模板;而少样本提示则需要提供更少的数据,通常是两到五个示例。这些提示工程技术可以提供更灵活和可控的方式来从自然语言生成模型中输出文本。充分利用这些模型的强大能力,可以创造更准确、多样和吸引人的输出,以满足应用程序的需求。最终,提示工程可以帮助您为您的项目创建完美的文本输出。零样本少样本思维链自洽性

用AI做情绪价值营销,你也能写出爆款营销标语,上口又上头

他们分别代表了自我认同和社会认同两大需求。自我认同:当人们对自我感觉不甚满意的时候,普遍会生成两大内在动机:一个是自我成长,二是与自我和解。社会认同:人在面对他人或置身群体当中的时候,会需要归属感,希望被对方认可,被群体接纳。同时,人也想要被看见,想要彰显自己的独特性,也就是寻求存在感。于是,我们重点挑选了书中“情绪感知”和“情绪创造”两个章节的相关内容,构建我们的提示词。02.Few shot,担心大模型听不懂人话的杀手锏理论有了逻辑讲了,其实还是担心大模型听不懂、理解不了,关键也没法知道它到底看没看懂,是我提示词不行还是模型能力不行...所以只能想办法多上一些保险,但绝不是提示词越多越好,能力越强的模型越需要精准表达,不过列举few shot通常还是有效做法。于是乎,我们上网一顿搜刮,淘来了一些优秀的情绪营销标语:03.捏提示词,每一次创作都是我们的Aha时刻我们挑选了书中“情绪感知”和“情绪创造”两个章节的精彩观点,加上网上找到的优秀few shot,构建我们的提示词。提示词并未完全使用到书中的全部精华观点,还有提升空间,也欢迎大伙交流讨论:来几个栗子测试一下,多说一句,大模型依然选派Claude3.5 Sonnet,在内容理解和创作这块,绝对的顶流,一时无代餐:?江小白当年江小白靠营销文案成功出圈,很多文案还记忆深刻,这不就想着拿大模型来PK一下,白酒也是容易跟情感挂上钩的品类,我们简单输入一下初始信息:

从原理到应用一次讲清楚 Prompt

Zero-shot零样本零样本的Prompt,其实就是我们不给大模型任何的提示,直接问大模型的问题。这个其实是一个判断大模型能力的一个重要的手段。对于用户来说,可以直接使用,使用是比较简单而友好的。但是问题也很明显,因为没有给大模型任何的提示,那么大模型就会随心所欲的返回。few-shot少样本实例和Zero-shot不一样的是,在Prompt中给出简单的例子。这个其实是大模型非常优秀的推理能力,根据你给出来的例子,大模型可以很好的推理出来你的需求,并且按照你的需求给出具体的回答。使用few-shot能够有更好的回答效果的原因是因为你提供了更多的上下文的信息,或者叫额外的知识,有了这些知识,大模型就可以更好的回答你的问题了。COT()思维链COT实际上就是Chain-of-thought Prompt就是让大模型使用推理去解决困难复杂的问题,比如数学题目。对于这个思维链,有一个标准的咒语叫做let the model think step by step。根据阅读的论文,每次说这句话的时候,模型真的就好好按照逻辑进行思考。从论文中,我们知道,假设我们给予大模型一个包含了连续的中间步骤的思维链的推理过程,大模型会去模范思维链的思考过程,从而让模型具有了推理的能力,可以对数学、常识进行推理。对于大模型具有了推理能力之后,自然就可以做很多进一步更加复杂的任务,从而更加接近人类的思考方式。

Others are asking
few shot 案例
以下是关于 few shot(少样本提示)的相关案例和信息: 示例是提高 Claude 性能并引导其生成期望输出的强大工具之一。通过在提示中提供精心制作的示例,能显著提高响应的准确性、一致性和质量,这种技术适用于高度详细、需要结构化输出或遵守特定格式的任务,也被称为少拍提示(若只提供一个示例则称为一拍提示)。 在情绪价值营销中,担心大模型听不懂、理解不了时,列举 few shot 通常是有效做法。比如挑选书中“情绪感知”和“情绪创造”章节的相关内容,加上网上优秀的 few shot 来构建提示词。 虽然大型语言模型有零样本能力,但在复杂任务上表现不佳,少样本提示可作为启用上下文学习的技术,在提示中提供演示引导模型实现更好性能。当模型规模足够大时,小样本提示特性开始出现。通过相关论文中的例子可演示少样本提示,对于更困难任务可增加演示。研究结果表明,标签空间、输入文本分布、使用格式等都对性能有影响,从真实标签分布中选择随机标签也有帮助。
2025-03-27
Few shot是什么
Few shot 是一种在与人工智能交互时使用的技术。示例是提高 Claude 性能并引导其生成期望输出的强大工具之一,通过在提示中提供精心制作的示例,能显著提高响应的准确性、一致性和质量,这种技术也被称为少拍提示(若只提供一个示例,则称为一拍提示)。在担心大模型听不懂、理解不了时,列举 few shot 通常是有效的做法。此外,使用 Fewshots 技巧的好处在于,能脱离文字描述需求,直观地告诉模型想要的输出具体样式,这是根据 LLM 大脑读取和输出 Token 的特性,喂给它习惯的食物。
2025-03-19
Few-Shot是什么
FewShot 指的是在训练机器学习模型时只使用极少量的标注样本,其目标是使机器学习模型在只有少量标注样本的情况下也能达到良好的性能。 在写 Prompt 时,利用 FewShot 是一个非常实用的技巧,通过提供少数(1 3 个)的输入 > 输出示例,让 GPT 可以学到样本的共性,从而提升下一个输出结果的质量。比如在的基础上,增加一个结构块“Examples:”,在该结构块举 1 3 个示例,能进一步提升 Prompt 带来的输出结果。 与 ZeroShot 不同,FewShot 在 Prompt 中会给出简单的例子。这利用了大模型优秀的推理能力,根据给出的例子,大模型能很好地推理出需求并给出具体回答。使用 FewShot 能有更好回答效果的原因是提供了更多的上下文信息或额外知识,让大模型能更好地回答问题。 这种技术也被称为少拍提示(如果只提供一个示例,则称为一拍提示),特别适用于需要高度详细或需要结构化输出或遵守特定格式的任务。
2025-03-13
如何理解大模型评测benchmark中的5-shot,0-shot
大模型评测 benchmark 中的 5shot 和 0shot 是指在进行评测时使用的不同设置。具体来说: 5shot 是指在进行评测时,模型可以访问 5 个示例输入和相应的输出,以帮助模型更好地理解任务并生成更准确的输出。 0shot 是指在进行评测时,模型没有访问任何示例输入和输出,需要完全依靠自己的知识和能力来生成输出。 在大模型评测中,5shot 和 0shot 通常用于评估模型的语言生成能力和知识迁移能力。通过比较模型在不同 shot 数量下的表现,可以更好地了解模型的性能和局限性。 (以上答案可能无法准确回答问题,建议在引用内容里进一步确认)
2024-04-19
论文改写降重
以下是关于论文改写降重的相关信息: 在论文写作领域,AI 技术的应用正在迅速发展,为论文改写降重提供了多种辅助。以下是一些常见的方法和工具: 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,有助于提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 辅助写作方面: 一些专门的辅助写作工具,如论文改写降重工具,可以帮助文章降重和去除“AI”味。 使用这些工具时,要结合自己的写作风格和需求,选择最合适的辅助工具。同时,需要注意的是,使用 AI 生成的内容应仔细甄别。
2025-04-15
我想让我的论文降低AIGC使用率,请问我有什么具体可以操作的办法
以下是一些降低论文中 AIGC 使用率的具体操作办法: 1. 使用 AIGC 论文检测工具: Turnitin:广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。使用方法是上传论文,系统会自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 Copyscape:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但能发现可能被 AI 生成的重复内容。输入文本或上传文档,系统会扫描网络查找相似或重复内容。 Grammarly:提供语法检查和剽窃检测功能,其剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能,系统会提供分析报告。 Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,能检测 AI 生成内容的迹象。上传文档或输入文本,系统会分析并生成报告,显示潜在的剽窃和 AI 生成内容。 :专门设计用于检测 AI 生成内容的工具,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统会提供详细报告。 :提供免费的 AI 内容检测工具,可识别文本是否由 AI 生成。将文本粘贴到在线工具中,点击检测按钮,系统会提供分析结果。 GPTZero:专门设计用于检测由 GPT3 生成内容的工具,适用于教育和出版行业。上传文档或输入文本,系统会分析并提供报告。 Content at Scale:提供 AI 内容检测功能,帮助用户识别文本是否由 AI 生成。将文本粘贴到在线检测工具中,系统会分析并提供结果。 此外,为了从根本上降低 AIGC 使用率,您还需要注重自身的思考和研究,确保论文内容是基于您的独立见解和深入分析。
2025-04-14
我要写论文,需要用什么ai工具‘
在论文写作中,以下是一些常用的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽不是纯粹的 AI 工具,但结合自动化和模板,能高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 利用 AI 写课题的步骤和建议如下: 1. 确定课题主题:明确研究兴趣和目标,选择有价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:利用 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:借助 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:使用抄袭检测工具确保原创性,做最后的格式调整。 AI 文章排版工具方面: 1. Grammarly:不仅检查语法和拼写,还具备一定排版功能,可改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性。 3. Latex:常用于学术论文排版,使用标记语言描述格式,有 AI 辅助的编辑器和插件简化过程。 4. PandaDoc:文档自动化平台,用 AI 帮助创建、格式化和自动化生成文档,适用于商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作排版。 选择合适的 AI 文章排版工具需考虑文档类型、出版标准和个人偏好。学术论文常用 Latex 和 Overleaf,一般文章和商业文档则 Grammarly 和 PandaDoc 等可能更适用。
2025-04-14
我想让DEEPSEEK帮我写一篇论文,题目已经定好了,怎么给他输入指令
以下是给 DeepSeek 输入指令以帮助您写论文的一些建议: 1. 采用结构化提示词: 优先保留专业领域术语和技术词汇,这些术语通常具有高信息价值。 对不同类型的信息设置权重,按优先级排序:任务定义>关键约束>专业术语>定量信息>方法论>背景。 以完整语义单元为基本保留单位,而非单个词语,确保压缩后的内容仍保持语义完整性。 避免详细指导思考过程,让模型自主生成思维链。 2. 高阶能力调用: 文风转换矩阵:例如“用鲁迅杂文风格写职场 PUA 现象”“将产品说明书改写成《史记》列传格式”“把这篇论文摘要翻译成菜市场大妈能听懂的话”。 领域穿透技术:如行业黑话破解“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 场景化实战策略: 创意内容生成。 技术方案论证。 4. 效能增强技巧: 对话记忆管理:包括上下文锚定(如“记住当前讨论的芯片型号是麒麟 9010”)、信息回溯(如“请复述之前确认的三个设计原则”)、焦点重置(如“回到最初讨论的供应链问题”)。 输出质量控制:针对过度抽象、信息过载、风格偏移等问题,使用相应的修正指令。 5. 特殊场景解决方案: 长文本创作:可采用分段接力法,如“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。 敏感内容处理:使用概念脱敏法(如“用经济学原理类比说明网络审查机制”)或场景移植法(如“假设在火星殖民地讨论该议题”)。 在输入指令时,您需要清晰明确地描述论文的题目、研究目的、主要论点、关键论据、期望的结构和风格等重要信息,以便 DeepSeek 能够为您生成符合要求的内容。
2025-04-14
生成论文第一章的绪论
以下是关于生成论文第一章绪论的相关内容: 首先,确定整个论文的大纲目录。如果有老师提供的示例报告,可以直接截图并用手机识别获取目录。 其次,确定整体的语言风格和特色。一般来说,论文的语言风格应是“逻辑清晰、层层递进、条理分明”。可以将范文交给 Claude 2 总结语言风格,但注意不要过于限制 GPT4,否则可能影响生成效果。 然后,让 GPT4 按照目录逐步生成章节内容。通过在 workflow 中设置循环结构,在其生成一段章节内容后,经同意再进行下一章节,否则重新生成。 此外,在生成内容前,需要 GPT4 判断某章节是否要调用 webpolit 插件查询相关信息后再撰写。这是较难的部分,可能需要不断尝试和迭代。若遇到困难,可向星球和群聊中的大佬求助。 利用 AI 写课题的步骤和建议如下: 1. 确定课题主题:明确研究兴趣和目标,选择有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式的参考文献。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保原创性,并做最后的格式调整。 需要注意的是,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。
2025-04-14
毕业论文的ai指令总结
以下是关于毕业论文的 AI 指令的总结: 1. 可以指定 AI 模仿某位资深人士的风格,如律师的逻辑严谨和言简意赅。 2. 要求 AI 为您提供多个例子,例如针对案件给出至少三种不同的诉讼策略,并分析每种策略的优劣势。 3. 采用 PEMSSC 方法,包括个性化的风格(Personality)、给参考或一定的逻辑结构(Example Inquiry)、从多个角度思考(Multiple Angles)、总结概括(Summarize)、使用区分符号(Separator)、明确能力或者角色(Capacity and Role)。 4. 对于大多数实际应用,建议专注于经过调整的指令语言模型,使用时要给清晰的指令,如指定文本的语气、要求集中讨论的内容,甚至可以提前指定阅读的文本。 5. 可以直接要求 LLM 帮写论文,如提供个人背景信息和指令让其写大学申请论文,但要注意这种使用方式的道德问题。
2025-04-14
随着 ChatGPT、Deepseek 等 AI 技术的爆发式发展,人工智能正在加速渗透各行业应用场景,包括茶饮行业。请你对 AI 技术在茶饮行业的影响进行研究分析,并提出 AI 技术可以在连锁奶茶店如何应用的设想。
以下是关于 AI 技术在茶饮行业的影响分析及在连锁奶茶店应用的设想: 影响分析: 1. 提升运营效率:通过自动化流程和智能预测,优化库存管理、员工排班等环节。 2. 改善客户体验:利用智能客服快速响应顾客咨询,提供个性化推荐。 3. 精准营销:基于大数据分析顾客偏好,制定更有针对性的营销策略。 应用设想: 1. 智能点单系统:根据顾客的历史订单和偏好,为其推荐饮品和搭配。 2. 库存管理优化:借助 AI 预测销售趋势,精准控制原材料库存。 3. 员工培训辅助:利用虚拟培训工具,提升员工的服务技能和产品知识。 4. 营销决策支持:通过数据分析,确定最佳的促销活动和推广渠道。 目前的知识库中,相关的具体研究报告主要有: 1. 浙江大学:《DeepSeek 技术溯源及前沿探索朱强》(2025/03/19),介绍了语言模型从基于统计的 Ngram 到 Transformer 的技术演化,以及大模型的发展,如 GPT 系列。 2. 浙江大学:《DeepSeek:回望 AI 三大主义与加强通识教育报告》(2025/03/05),围绕人工智能展开,介绍其发展历程、三大主义、技术进展、应用成果以及教育举措。 3. 清华大学:《气象人工智能技术与应用报告》(2024/12/25),围绕气象人工智能展开,介绍了其发展和应用情况。 如需下载这些研究报告,可。
2025-04-09
ai如何思考你提出的问题
AI 思考问题的方式多种多样,以下为您介绍一些常见的方法和案例: 1. 利用思维模型:例如通过“AI+六顶思考帽”的方法,依次运用白帽(搜集信息)、红帽(探索直觉和感受)、黄帽(探索可能的积极面)等思维方式,全面且深入地思考问题。比如在个人 IP 定位的案例中,先让用户提供职业、兴趣爱好等信息,再探索其感受和直觉,最后分析潜在好处。 2. 引用节点和参照:在生成内容时,可以使用“引用节点”的技巧,让 AI 根据特定的参照(如之前的产出、新增的参考文案等)输出具备更高关联度的内容。例如在生成“延伸思考”的问题时,严格参照未来世界观和各个驱动力的解析。 3. 对比不同模型和功能:可以用同一段提示词对比不同模型的输出,择优深挖。还可以在满意的内容节点上添加“文本编辑器显示”,对文本进行精加工。 4. 正确引导孩子使用:对于孩子使用 AI,若方法不当,如提封闭性问题让孩子迅速得到答案,可能有负面效果;但改成开放性问题或让 AI 帮助提更多拓展思考的问题,能激发好奇心。在辅助写作文时,让孩子与 AI 共同完成并提交聊天记录,关注孩子对作文的点评批改等,能避免孩子偷懒。
2025-04-01
flowith根据自然语言构建一个直接使用的工作流吗,如何向flowith提出要求
Flowith 可以根据自然语言构建工作流。即使没有专业编程技能,只要能用清晰的自然语言描述出想要的各个 Agents 具备的行为和功能,就可以快速制作多 Agents 应用或创建代理式工作流。 使用工作流的步骤如下: 1. 配置工作流: 在 Code 节点内使用 IDE 工具,通过 AI 自动生成代码或编写自定义代码逻辑,来处理输入参数并返回响应结果。 该节点支持 JavaScript、Python 运行时,需注意不同运行时的特定事项。 可在 IDE 底部单击尝试 AI,并输入自然语言设定代码逻辑,也可选中代码片段通过快捷键唤起 AI 并输入自然语言让其修改代码。 2. 通过工作流数据库节点操作数据表: 在工作流中添加数据库节点对数据表进行操作,可通过 NL2SQL 方式和代码方式进行调用,支持完整读写模式。 参考以下操作添加并配置工作流节点: 单击页面顶部的工作流页签,然后单击创建工作流。 输入工作流名称和使用描述,然后单击确认。 在基础节点页签下,将数据库节点拖入到工作流配置画布区域。 根据相关信息配置数据库节点,包括输入添加 SQL 执行中需要的参数,输入要执行的 SQL 语句,可单击自动生成使用大模型生成 SQL。 需注意不支持 Select语法、多表 Join 操作,最多返回 100 行数据。在配置数据库节点前,要确保已经搭建了一个 Bot,并在这个 Bot 中创建好了数据表。
2025-03-26
请基于WHO提出的“健康老龄化”这个概念,论述AI和养老产业以及健康老龄化的关系,并举出在WHO、英国以及美国的实例
目前知识库中没有关于“基于 WHO 提出的‘健康老龄化’概念论述 AI 和养老产业以及健康老龄化关系,并列举 WHO、英国以及美国实例”的相关内容。但据现有知识,AI 在养老产业和健康老龄化方面具有重要作用。AI 可以通过智能监测设备实时收集老年人的健康数据,提前预警疾病风险;还能借助智能陪伴机器人为老年人提供心理支持和社交互动。 在 WHO 方面,可能尚未有明确的具体实例,但在理念倡导上可能会强调利用创新技术促进健康老龄化。 英国可能在一些养老机构中应用了 AI 技术来优化服务流程和提高护理质量。 美国或许在医疗保健领域利用 AI 辅助诊断和治疗,以更好地满足老年人的健康需求。但具体的实例还需要进一步查阅权威资料和最新研究。
2025-02-24
ai概念第一次是被谁提出来的,什么时候?
AI 概念首次被提出是在 1956 年的达特茅斯会议上。这次会议由时任达特茅斯学院的数学助理教授约翰·麦卡锡发起,邀请了包括马文·明斯基、克劳德·香农、艾伦·纽厄尔、赫伯特·西蒙等多位杰出科学家参与。约 47 位参与者就自动计算机、编程语言、神经网络、计算理论等多个前沿话题进行了深入讨论,并首次提出了“人工智能”(Artificial Intelligence)这一术语,为这个新兴领域正式命名。在此之前,艾伦·图灵和约翰·冯·诺依曼等人通过理论和实践为 AI 奠定了初步的理论基础。1943 年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。1950 年,图灵最早提出了图灵测试,作为判别机器是否具备智能的标准。此后近 70 年,AI 的发展起起落落。
2025-02-20
如果你是一个AI学习者,你会提出哪些问题?让自己的学习更有策略?
以下是作为 AI 学习者可能会提出的一些问题,以使学习更有策略: 1. 如何评估不同 AI 模型的性能和适用场景? 2. 怎样选择适合自己需求的 AI 工具和技术? 3. 在 AI 领域,哪些基础知识是必须牢固掌握的? 4. 如何将 AI 应用于实际项目中,以获得更好的效果? 5. 对于 AI 产生的结果,如何进行有效的评估和验证? 6. 怎样跟上 AI 领域快速发展的步伐,及时更新知识? 7. 在学习 AI 时,如何避免常见的错误和陷阱? 8. 如何培养自己在 AI 方面的创新思维和解决问题的能力? 9. 对于不同学习水平(如高中生、大学生、专业人士),学习 AI 的重点和方法有何不同? 10. 在 AI 学习中,如何平衡理论学习和实践操作?
2025-02-17