Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

使用O1来控制智能硬件

Answer

O1 是一个完全开源的可以控制家里电脑的 AI 语音智能助手。它能够看到您的屏幕内容,学习使用您常用的应用,无论您身在何处,都能通过按下按钮、讲话让它帮您操作电脑完成任务。其 CAD 文件、电路设计、代码完全开源,有能力的开发者可以直接制作该设备。灵感来自 Andrej Karpathy 的 LLM 操作系统,10 月份他的 LLM 科普视频含金量仍在上升。O1 运行一个代码解释语言模型,并在计算机内核发生特定事件时调用它。项目地址:https://github.com/OpenInterpreter/01

Content generated by AI large model, please carefully verify (powered by aily)

References

AIGC Weekly #64

上周Inflection公司的Mustafa和Karén将离开Inflection,前往微软成立的新部门Microsoft AI,该部门将整合他们在消费者AI方面的工作,以及Copilot、Bing和Edge。新的是首席执行官肖恩-怀特(Sean White)。同时微软已同意向Inflection支付约6.5亿美元,主要是以许可协议的形式,使Inflection的模型可以在软件巨头的Azure云服务上销售。公司的很多人也入职了微软的AI部门,几乎已经把Inflection掏空了,他们的新的定位为"人工智能工作室",帮助其他企业训练和微调人工智能模型,跟收购没啥区别,感觉是为了反垄断?[heading2][Open Interpreter开源O1语音智能助手](https://www.openinte[content]一个完全开源的可以控制家里电脑的AI语音设备O1,介绍视频已翻译。它可以看到你的屏幕内容学习使用你常用的应用,并且你无论在哪都能让它帮你操作电脑完成任务。用户只需按下按钮、讲话,然后系统会思考并回应用户的需求。这个设备的CAD文件、电路设计、代码完全是开源的,有能力的开发者可以直接制作这个设备。灵感来自Andrej Karpathy的LLM操作系统,10月份他的LLM科普视频含金量还在上升。O1运行一个代码解释语言模型,并在计算机内核发生特定事件时调用它。项目地址:https://github.com/OpenInterpreter/01

Others are asking
OpenAI o1、Claude Sonnet 3.7、Gemini 2.0 pro 哪个 AI 搜索能力更强?
OpenAI o1、Claude Sonnet 3.7 和 Gemini 2.0 pro 在不同方面具有各自的优势,难以简单地比较哪个的搜索能力更强。 OpenAI o1 推理能力强,适合作为架构师或算法顾问。 Claude Sonnet 3.7 擅长长上下文任务,在快速生成代码与网页设计方面表现出色。 Gemini 2.0 pro 长上下文支持较好(2M Tokens),适合代码反编译与混淆代码分析。 具体的搜索能力表现还会受到应用场景和具体任务的影响。
2025-03-21
chatgpt o1 o3和4o有什么区别
ChatGPT 的 o1、o3 和 4o 主要有以下区别: 注册和使用方面: 注册账号时,需访问官方网站,如有账号直接登录,没有则点击“注册”。然后填写名字和出生日期(确保年龄在 18 岁以上),点击“Agree”(同意),完成注册后点击“好的,开始吧”进入主页面,可免费使用 ChatGPT 3.5。 知识更新方面: ChatGPT 3.5 的知识更新到 2022 年 1 月,ChatGPT 4o 的知识更新到 2023 年 10 月,而 ChatGPT 4 更新到 2023 年 12 月。 性能和应用方面: 在一些测试中,如在国际数学奥林匹克竞赛(IMO)的资格考试中,GPT4o 正确解决问题的比例与其他模型有所不同。 作为早期模型,o1 还不具备像浏览网页获取信息、上传文件和图像等使 ChatGPT 实用的许多功能。对于网文创作提示词,通用版建议使用 ChatGPT 4o,但其他模型也可以,可能存在不稳定的情况。
2025-02-09
chatgpt o1和4o有什么区别
ChatGPT 的 o1 推理模型和 GPT4o 主要有以下区别: 1. 回答速度:GPT4o 能够快速返回答案,而 o1 模型在给出最终结果前会反复推演和验证,因此耗时更长。 2. 准确性和纠错能力:GPT4o 可能给出错误答案且无法自动纠错,而 o1 支持回溯推理,结果更准确。 3. 复杂问题处理能力:o1 Pro 的计算时间更长,推理能力更强,更适合处理复杂问题。例如,o1 Pro 成功完成了《纽约时报》“Connections”文字游戏,这是 GPT4o 无法解决的任务。 在应用方面,对于许多常见情况,GPT4o 在短期内更有能力。但对于复杂的推理任务,o1 系列是重大进步,代表了 AI 能力的新水平。
2025-02-09
如何可以使用到chatgpto1大模型
目前 ChatGPT 没有 ChatGPT1 这个大模型。ChatGPT 有多个版本,如 ChatGPT3、ChatGPT3.5、ChatGPT4 等。您可以通过以下方式使用 ChatGPT 相关模型: 1. 访问 OpenAI 的官方网站,按照其指引进行注册和使用。 2. 部分应用和平台可能集成了 ChatGPT 的接口,您可以在这些应用中体验其功能。 需要注意的是,使用 ChatGPT 时应遵循相关的使用规则和法律法规。
2024-11-16
GPT O1强在哪里
GPT O1 的强大之处主要体现在以下几个方面: 1. 在推理方面,与 4o 相比具有显著优势,各项得分结果均超越 4o。 2. 在 GPQA diamond 这一困难的智力基准测试中,表现超越了拥有博士学位的专家,成为首个在该基准测试上达到此成就的模型。 3. 在物理、化学、生物、数学和编程等领域的挑战性任务上,表现出色,如同博士生一样优秀,甚至在 IMO 和 Codeforces 竞赛中取得高分。 4. 具有更聪明的思考方式,会花更多时间思考问题,尝试不同策略,甚至能意识到自身错误。 5. 在遵循指令方面能力较强,且在“后训练”阶段可能存在增强指令遵循能力的环节,极大增强了逻辑推理类的指令遵循数据比例,进一步加强了基座模型的逻辑推理能力。 虽然目前暂时缺少像 ChatGPT 那样的网络浏览和文件上传功能,但在复杂推理任务上已经非常强大。
2024-09-27
openAI新出的o1是什么
OpenAI 于北京时间 9 月 13 号凌晨 1 点多宣布推出模型 o1perview 与 o1mini(真正的 o1 版本将在后续开放),拥有 Plus 版本的用户会陆续收到新模型权限,并可在 Web 客户端中尝鲜体验。 在评估结果方面: o1 在 2024 美国数学奥林匹克竞赛(AIME)资格赛中跻身美国前 500 名学生之列。 o1 在竞争性编程问题(Codeforces)中排名第 89 个百分位(这个版本的模型还没发布),而 o1perview 拿到了 62 个百分位。 在物理、生物和化学问题的基准(GPQA),o1 与 o1perview 都超过了人类博士水平的准确性。 关于“超过人类博士水平”的测试,OpenAI 在新 page 中答复:“我们还在 GPQA diamond 上评估了 o1,这是一个困难的智力基准测试,用于测试化学、物理和生物学方面的专业知识。为了将模型与人类进行比较,我们招募了拥有博士学位的专家来回答 GPQAdiamond 的问题。我们发现 o1 的表现超越了这些人类专家,成为第一个在这个基准测试上做到这一点的模型。”但 OpenAI 也表示“这些结果并不意味着 o1 在所有方面都比博士更有能力——只是说明该模型在解决一些预期博士能够解决的问题上更加熟练。在其他几个机器学习基准测试上,o1 改进了最先进的水平。” 推理模型的准确率不断攀升,这意味着 AI 技术可以渗透到更多行业、更多高精尖业务中去。OpenAI 推出的新模型为整个行业注入了强心剂,带来了新的活力和希望。从 OpenAI 提出的通往 AGI(通用人工智能)的分级来看,我们正在从第一级向第二级迈进,未来可能会见证 AI 从单纯的生成工具向真正的智能体转变。此外,4o 模型和 o1 在推理方面差距较大,红色线代表 4o 的得分,绿色线代表 o1 的得分,o1 在各项得分结果上均优于 4o。
2024-09-18
AI硬件
以下是关于 AI 硬件的相关信息: 扣子 AI 工坊 硬件专场 推出全套硬件方案,将 DeepSeek 最新模型接入 AI 硬件,实现 1+1>2。 活动亮点: 硬件实验室:现场设置智能硬件展示,看脑洞大开的产品。 硬件场景分享会:扣子硬件场景最佳实践和 2025 年硬件解决方案分享。 开发者体验营:开发者现场开发 AI 硬件,提供硬件开发板,60 分钟内完成“唤醒交互响应”全链路开发,40 分钟作品现场展示解说,展示作品的开发者可获得扣子周边礼物。 硬件厂商需求墙:与硬件厂商、开发者、扣子官方同学现场交流。 分享嘉宾(排名不分先后):曾德钧(猫王妙播音响创始人/设计师)、刘琰(机智云联合创始人兼 CTO)、颜伟志(扣子开放体系技术负责人) 活动报名:扫描二维码报名,现场有拍立得、音响、扣子周边等礼品。报名时间为即日起至 2025 年 2 月 26 日。 2025 年 AI 指数报告 硬件的进步在推动 AI 发展中起着关键作用。在扩展模型和在更大的数据集上进行训练带来显著性能改进的同时,这些进步在很大程度上得益于硬件的改进,特别是更强大和高效的 GPU(图形处理单元)的发展。GPU 加速复杂计算,允许模型并行处理大量数据并显著减少训练时间。 Will's GenAI 硬件榜 2024 年 8 月 GenAI 硬件的定义:利用了 GenAI 技术,主要是 LLM,包括在音频生成、翻译、视觉采集并解读,和硬件结合,以可穿戴为主,逐步渗透的新品类硬件,以 Meta 雷朋眼镜为代表。 榜单受众:GenAI 硬件创始人、投资人、从业者等。 榜单标的:以北美市场的视角,销量、影响力为主。 榜单初心:随着 Meta 眼镜的成功,GenAI 硬件爆发在即,本榜单每月从多角度围观这一现象,旨在给创业者提供参考。 本次更新(9.19): 更新亚马逊销量、独立站流量、新品发布、融资信息,排序标准以媒体综合指数改为 Tiktok 热度。 完善挂件、戒指、眼镜等分类榜数据。 榜单包括 15 个重要榜单,更多榜单可通过文末“阅读原文”免费访问或直接访问飞书链接。数据来源:google、tiktok、twitter、亚马逊。对于榜单内容有疑问想交流的 GenAI 硬件创始人,或者想合作转载内容的公众号博主,请加微信,或者在本文末留言。
2025-04-15
现在比较好用的AI硬件工具推荐一下,比如鼠标,眼镜,耳机啥的
以下是为您推荐的一些 AI 硬件工具: 1. 对于将 Raspberry Pi 连接到其他设备的配件,您可以参考: 防止过热的散热器 MicroUSB 转 USB 适配器,用于 Logitech 键盘的无线传感器 用于显示器的 MiniHDMI 转 HDMI 适配器 键盘和鼠标:推荐 2. 在可穿戴方面,以 GenAI 硬件为例,Meta 雷朋眼镜是具有代表性的产品。您还可以查看 GenAI 硬件榜单获取更多信息,比如: ,该榜单包含多个分类,数据来源包括 google、tiktok、twitter、亚马逊等。
2025-04-13
本地部署大模型硬件配置
本地部署大模型的硬件配置如下: 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型) 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 需要注意的是,最低配置可能运行速度非常慢。对于 SDXL 大模型的本地部署,其分为两个部分,base + refiner 是必须下载的,还有一个配套的 VAE 模型用于调节图片效果和色彩。要在 webUI 中使用 SDXL 的大模型,需在秋叶启动器中将 webUI 的版本升级到 1.5 以上,然后将模型放入对应的文件夹中。对于通义千问的 Qwen2.5 1M 模型的本地部署,使用以下命令启动服务时要根据硬件配置进行设置,如设置 GPU 数量、最大输入序列长度、Chunked Prefill 的块大小、限制并发处理的序列数量等。如果遇到问题,可参考相关的 Troubleshooting 内容。与模型交互可以使用 Curl 或 Python 等方法,对于更高级的使用方式,可以探索如 Qwen Agent 之类的框架。
2025-03-31
coze开发硬件接入ai
如果您想开发硬件接入 Coze 智能体,以下是一些相关信息: 在服务器设置方面,对于 chatgptonwechat(简称 CoW)项目,可点击“Docker”中的“编排模板”中的“添加”按钮。备注说明版可借用“程序员安仔”封装的代码。将编译好的内容复制进来,在“容器编排”中“添加容器编排”,选择在“编排模板”里创建的“coze2openai”,若无法正常启动,可查看文档后面的“常见问题”。 关于计划,包括弄共学、做网页连接 Coze 等,涉及网页、小程序、App、桌面应用、浏览器插件等方面,还提到了硬件相关的工作安排。 在入门 Coze 工作流方面,首先要明确任务目标与执行形式,包括详细描述期望获得的输出内容(如文本、图像、音频等形式的数据,以及具体格式和结构、质量标准),预估任务的可行性,确定任务的执行形式。例如对于一篇文章,可参照特定框架进行微调,评估任务可行性,结合使用习惯确定预期的执行形式。
2025-03-27
AI硬件
以下是关于 AI 硬件的相关信息: 扣子 AI 工坊将于 3 月 1 日在深圳举办硬件专场活动。活动亮点包括硬件实验室、硬件场景分享会、开发者体验营、硬件厂商需求墙等。分享嘉宾有曾德钧、刘琰、颜伟志等。可扫描二维码报名,报名时间为即日起至 2025 年 2 月 26 日,现场有礼品。 Will's GenAI 硬件榜 2024 年 8 月发布,榜单受众为 GenAI 硬件创始人、投资人、从业者等,以北美市场的销量、影响力为主,本次更新完善了相关数据和分类榜,更多榜单可通过链接访问。 峰瑞报告中提到,在 ToP 领域,峰瑞投资的冰鲸科技是一家 AI 智能硬件公司,推出了集成端侧 GPU 的旗舰产品 ZimaCube。ToB 方面,AI 应用进入企业内部可从“独立业务模块”和“通用技能模块”切入。
2025-03-26
有coze硬件的案例吗
以下是一些关于 Coze 硬件的案例: 1. 一泽 Eze:用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力。 分步构建和测试 Agent 功能:首先进入 Coze,点击「个人空间工作流创建工作流」,打开创建工作流的弹窗。根据弹窗要求,自定义工作流信息。点击确认后完成工作流的新建。左侧「选择节点」模块中,实际用上的有插件、大模型、代码。按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。 2. 90 分钟从 0 开始打造你的第一个 Coze 应用:证件照 2025 年 1 月 18 日副本。 智能纪要:Code AI 应用开发教学,背景是智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。 3. 大雨:【场景驱动】企业的哪些重复性任务,最适合用 Coze 循环节点来解决? 案例展示:出海品牌设计师。早起智能体的逻辑通过工作流承载,比如让 AI 出图以后,希望在它的基础上再修改,直到满意为止,这种情况没有循环节点,整个工作流会非常复杂。从这个案例可以明显感受到,在智能体的交互上,循环节点的出现,带来极大的可能性。部分工作流的截图体现出 Coze 在实际业务场景上,具有非常巨大的商业价值。
2025-03-25
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
想要做一节讲如何用智能体做企业数字化转型的课程,如何设计
以下是关于如何设计用智能体做企业数字化转型课程的建议: 一、参考案例 1. 李国宝的相关经验 具有丰富的从业经验,包括通信工程、数据通信网络培训、创业、网络安全解决方案及培训、AI 课程开发与培训等。 开发过面向不同群体的 AI 课程,如《数字化转型实践》面向传统企业数字化、AI 赋能转型。 2. 90 分钟从 0 开始打造你的第一个 Coze 应用课程 从零开始教学做应用界面,先基础教学,再涉及特定应用。 介绍当前承接业务,包括辅导、培训、定制及企业 AI 落地等。 挖掘用户对 AI 应用的功能需求,如对交互界面的需求。 二、课程设计要点 1. 对于企业管理者 AI 辅助决策:在小规模决策中使用 AI 分析工具,以其分析结果作为决策参考。 员工培训计划:制定 AI 工具使用的培训计划,帮助团队成员了解日常工作中如何有效利用 AI。 流程优化:识别公司中可能受益于 AI 自动化的重复性任务,从小流程开始测试 AI 解决方案的效果。 AI 伦理和政策:制定公司的 AI 使用政策,确保 AI 应用符合伦理标准和法律要求。 2. 对于教育工作者 AI 辅助教案设计:尝试使用 AI 帮助设计课程大纲或生成教学材料 ideas,为课程带来新视角。 个性化学习路径:探索使用 AI 分析学生学习数据,为不同学生制定个性化学习计划。 创新教学方法:考虑将 AI 工具整合到课堂活动中,如使用 AI 生成的案例研究或模拟场景。 AI 素养教育:开发简单的课程模块,教导学生了解 AI 基础知识、应用领域及其对社会的影响。 三、注意事项 无论面向哪个群体,都应记住:与 AI 协作是一个学习过程。从小处着手,保持好奇心和开放态度,会发现 AI 不仅能提高工作效率,还能激发创造力,开拓新的可能性。最重要的是,始终保持批判性思维,将 AI 视为强大的工具,而不是完全依赖的解决方案。
2025-04-18
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
AI Agents(智能体)
AI 智能体(Agents)是人工智能领域中一个重要的概念: 1. 从 AGI 的发展等级来看,智能体不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 2. 作为大模型的主要发展方向之一,智能体中间的“智能体”其实就是大模型(LLM)。通过为 LLM 增加工具、记忆、行动、规划这四个能力来实现。目前行业里主要用到的是 langchain 框架,它把 LLM 与 LLM 之间以及 LLM 与工具之间通过代码或 prompt 的形式进行串接。 3. 从智能体的起源探究来看,心灵社会理论认为智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,每个层次由多个 Agent 负责,每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务。同时存在专家 Agent、管理 Agent、学习 Agent 等不同类型的 Agent 及其相应功能。从达特茅斯会议开始讨论人工智能,到马文·明斯基引入“Agent”概念,“AI”和“Agent”就彻底聚齐,往后被称之为 AI Agent。
2025-04-15
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
自动化控制电脑
以下是关于自动化控制电脑的相关信息: Google 正在开发名为“Project Jarvis”的 AI 项目,预计年底亮相。该项目旨在实现 AI 自动化操作 Chrome 浏览器中的任务,借助升级版 Gemini 2.0。“Jarvis”作为 Chrome 扩展短暂曝光,可作为上网伴侣,帮助用户完成自动化任务,通过截图分析屏幕内容,使用 Gemini 2.0 模型决定执行操作,例如预订餐厅或下单,预计将在 Gemini 2.0 发布后上线,可能在下个月。 目前没有更多关于自动化控制电脑的其他详细内容。
2025-04-10
我想学习ai视频ai生图的相关技能,并且我不想速成,我想了解其中的底层原理以便可以更好的控制生成的内容,我应该如何学习
以下是关于学习 AI 视频和生图相关技能的一些建议: 一、基础概念 1. 模型 Checkpoint:生图必需的基础模型,任何生图操作必须选定一个才能开始。 Lora:低阶自适应模型,可视为 Checkpoint 的小插件,用于精细控制面部、材质、物品等细节。 VAE:编码器,功能类似于滤镜,可调整生图的饱和度,一般选择 840000 这个。 2. 提示词 Prompt 提示词:想要 AI 生成的内容,需要花费功夫学习,可从照抄别人开始。 负向提示词 Negative Prompt:想要 AI 避免产生的内容,同样需要学习,可从照抄开始。 3. 其他概念 ControlNet:控制图片中特定图像,如人物姿态、特定文字、艺术化二维码等,属于高阶技能,可后续学习。 ADetailer:面部修复插件,用于治愈脸部崩坏,是高阶技能。 二、参数设置 1. 迭代步数:AI 调整图片内容的次数。步数越多,调整越精密,出图效果理论上更好,但耗时越长,且并非越多越好。 2. 尺寸:图片生成的尺寸大小,需适中选择,太小生成内容有限,太大 AI 可能放飞自我。 3. 生成批次和每批数量:决定重复生成图的批次和每批次同时生成的图片数量。 4. 提示词引导系数:指图像与 prompt 的匹配程度,数字增大图像更接近提示,但过高会使图像质量下降。 5. 随机数种子:固定后可对图片进行“控制变量”操作,首次生成图时无需关注。 6. 重绘幅度:图生图时用到,幅度越大,输出图与输入图差别越大。 在学习过程中,您可以先从熟悉基础模型、提示词和常见参数设置入手,通过实践和参考他人的经验不断积累知识,逐步掌握更高级的技能和工具。
2025-03-24
基于PLC的智能仓储控制系统设计
很抱歉,目前知识库中没有关于“基于 PLC 的智能仓储控制系统设计”的相关内容。但一般来说,设计这样一个系统需要考虑以下几个方面: 1. 需求分析:明确仓储系统的功能要求、存储容量、货物类型和操作流程等。 2. PLC 选型:根据系统规模和控制要求选择合适的 PLC 型号。 3. 传感器和执行器配置:选择合适的传感器来检测货物位置、状态等信息,以及确定执行器如电机、气缸等的类型和数量。 4. 控制程序编写:使用相应的编程软件编写 PLC 控制程序,实现货物的入库、出库、存储位置管理等功能。 5. 人机界面设计:提供直观、易于操作的人机界面,方便操作人员监控和控制系统。 6. 系统调试与优化:对设计好的系统进行调试,优化控制参数,确保系统稳定可靠运行。 希望以上这些通用的思路能对您有所帮助,如果您需要更详细准确的信息,建议查阅相关的专业书籍和技术资料。
2025-03-12
如何控制图生图的形象和动作呢
要控制图生图的形象和动作,可以参考以下方法: 1. 使用 ControlNet 插件: 姿态约束类预处理器:包含了所有人物信息的预处理器,可将图片发送到图生图,通过“缩放后留白”和提高重绘幅度改变背景,再次发送到图生图使用 ControlNet 中 tile 模型细化,最后使用 SD 放大插件。 自定义动作骨架:在【扩展】【加载扩展列表】中搜索【posex】安装插件,或将插件文件夹拷贝至指定目录,确保软件是最新版本并重启。重启后点击“将图片发送至 ControlNet”,可通过拖动鼠标左键旋转视角、中键缩放视角、右键拖动视角,玩坏了可点击重置镜头和动作。 2. 参考风格 reference:首先进入文生图,填写提示词生成一张图。然后将图片拖入到 ControlNet 中,预处理器选择 reference only,控制模型选择“均衡”,保真度数值越高对图片的参考越强。可以通过添加关键词的方式来改变人物的服装、表情、动作等。 3. 利用 ControlNet 控制姿势:大模型和关键词正常填写生成想要的小姐姐照片,接着鼠标滑到最下面点击“ControlNet”,上传指定姿势的照片并点击“启用”,在“预处理器”和“模型”里选择“openpose”,点击“预览预处理结果”,最后点击生成照片。
2025-02-28
生成视频不受提示词控制怎么办
如果生成视频不受提示词控制,可以考虑以下方法: 1. 向提示添加其他描述符,以便更好地控制生成的视频内容,例如: 电影摄影术语,如浅景深、胶片拍摄和电影。 构图术语,如广角、特写、从上方拍摄和从下方拍摄。 照明术语,如背光、柔光和硬光等。 颜色分级术语,如饱和色、高对比度以及暖色调或冷色调。 情绪或语气术语,如 somber、tense、euphoric 和 mysterious。 摄像机移动术语,如向右或向左平移、向上或向下倾斜以及推拉或向外移动。 2. 对于海螺 AI: MiniMax 视频模型不仅可以准确识别用户上传的图片,并确保所生成视频在形象保持上与原输入图像高度一致,且光影、色调完美嵌入新场景的设定,为创作者提供连贯、深度创作的空间。 在指令响应方面,还能理解超出图片内容之外的文本,解构指令框架和深层语义并在视频生成中整合,实现“所写即所见”。 只依靠模型综合能力,就能实现最顶级的影视特效。 人物表情控制力强,5 秒钟内实现从开怀大笑到掩面哭泣,让视频表达更能深入人心。 近期,海螺 AI 视频同步上线了提示词优化功能,即使在大家对特定的构图、氛围、动作或运镜没有特殊指定要求时,建议开启此功能,聪明的海螺 AI 会结合原始 Prompt 扩展视频的美学呈现。同时,对于更专业的创作者,开放 2000 字的提示词空间,让创作更加精准。 3. 使用 Camera Motion 时: 点击“AddImage”上传图片。 在“Prompt”中输入提示词。 选择您想要的运镜方向,输入。 运动幅度和画面主体运动幅度有关,与运镜大小无关,可以设置成您想要的任意值。 选择好种子(seed),是否高清(HD Quality),是否去除水印(Remove Watermark)。 点击“create”,生成视频。
2025-02-18
控制模特的姿势
以下是关于控制模特姿势的方法: 在使用相关 AI 工具时,如 Stable Diffusion 等,有以下几种控制模特姿势的方式: 1. 使用蒙版和提示词:输入相关提示词,如“蓝色毛衣”,处理蒙版区域内容为“填充”,调整尺寸与图像一致,重绘幅度为 1。但可能会出现衔接问题,此时可降低重绘幅度或添加 openpose 来控制人物身体,获得正确姿势。 2. 利用 ControlNet 功能: 正常填写大模型和关键词生成照片。 鼠标滑到最下面,点击“ControlNet”。 点击空白处上传指定姿势的照片,并点击“启用”。 在“预处理器”和“模型”里选择“openpose”,用于让计算机识别人物姿势。 点击“预览预处理结果”,最后点击生成照片,即可得到指定姿势的照片。 在 ControlNet 参数配置方面: tile 用于对整体画面的控制,可选择分块+固定颜色+锐化,以保证颜色统一降低后续闪烁,不需要全过程引导,仅在开始时固定画面。 lineart 用于提取人物线条,保证人物整体不跑偏,权重给到 0.6 以控制整体画面输出稳定。 openpose 用于控制人物的姿态、表情和动作,推荐使用 DWpose 处理器,其对面部和手部的识别效果较好。
2025-01-17