Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

与deepseek高效对话的五个黄金法则

Answer

以下是与 Deepseek 高效对话的五个黄金法则:

  1. 像教实习生:别指望它读心术,要给明确“操作手册”。
    • 亮身份(就像相亲自我介绍):说清角色(新人/专家)、处境(紧急任务/长期规划)、特殊需求(老板的喜好/公司制度)。例如,错误示范是“帮我写个方案”,正确示范是“我是刚入职的行政专员,要给 50 人团队策划元旦团建,预算人均 200 元”。
    • 派任务(像教小朋友做家务):明确要做什么、范围多大、重点在哪、要几个结果。例如,错误示范是“分析下市场”,正确示范是“请对比蜜雪冰城和茶百道最近 3 个月的新品策略,找出年轻人最爱的 3 个创新点”。
    • 立规矩(像点菜提要求):包括时间限制、资源条件、雷区预警、特殊偏好。例如,请 AI 当健身教练,正确示范是“我是 996 上班族,每天最多锻炼 30 分钟,家里只有瑜伽垫,帮我制定减脂计划,不要深蹲伤膝盖”。
    • 定格式(像下单选规格):根据需求选择文档类(PPT 页数、报告部分)、数据类(表格或图表)、创意类(小红书风格或知乎体)等格式。例如,做会议纪要,正确示范是“用表格呈现,左边列讨论主题,右边分决策事项/负责人/截止时间三栏,最后用红色标出待确认事项”。
  2. 像拼乐高:复杂任务拆成小模块,逐个击破。
  3. 像打乒乓球:有来有往多回合,好答案都是改出来的。
  4. 下次和 AI 对话前,先花 30 秒填这个 checklist:
    • 我说清自己身份了吗?
    • 任务目标够具体吗?
    • 特殊要求列全了吗?
    • 要什么格式交代了吗?
    • 留好修改的余地了吗?
  5. 一个提示词,让 DeepSeek 的能力更上一层楼:
    • 效果对比:用 Coze 做了个小测试,大家可以对比看看。
    • 如何使用:
      • 搜索 www.deepseek.com,点击“开始对话”。
      • 将装有提示词的代码发给 Deepseek。
      • 认真阅读开场白之后,正式开始对话。
    • 设计思路:
      • 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。
      • 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。
      • 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。
      • 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。
      • 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定)。
    • 完整提示词。
    • 特别鸣谢:李继刚的【思考的七把武器】在前期为提供了很多思考方向;Thinking Claude 是项目最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手。

掌握这套方法,您会突然发现:原来 AI 这么听话!从此刻开始,告别无效对话,让您的每个问题都换来实实在在的干货。

Content generated by AI large model, please carefully verify (powered by aily)

References

Deepseek"4+1"黄金提问法——迭代优化

1.像教实习生:别指望它读心术,要给明确"操作手册"2.像拼乐高:复杂任务拆成小模块,逐个击破3.像打乒乓球:有来有往多回合,好答案都是改出来的下次和AI对话前,先花30秒填这个checklist:[未完成]我说清自己身份了吗?[未完成]任务目标够具体吗?[未完成]特殊要求列全了吗?[未完成]要什么格式交代了吗?[未完成]留好修改的余地了吗?掌握这套方法,你会突然发现:原来AI这么听话!从此刻开始,告别无效对话,让你的每个问题都换来实实在在的干货。

一个提示词,让 DeepSeek 的能力更上一层楼?——HiDeepSeek

用Coze做了个小测试,大家可以对比看看[e8c1a8c3012fedad10dc0dfcc8b1e263_raw.mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/Jz9cbKxDbocGtIxXFFEcdiHjnRc?allow_redirect=1)[heading1]如何使用?[content]Step1:搜索www.deepseek.com,点击“开始对话”Step2:将装有提示词的代码发给DeepseekStep3:认真阅读开场白之后,正式开始对话[heading1]设计思路[content]1.将Agent封装成Prompt,将Prompt储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担2.通过提示词文件,让DeepSeek实现:同时使用联网功能和深度思考功能3.在模型默认能力的基础上优化输出质量,并通过思考减轻AI味,增加可读性4.照猫画虎参考大模型的temperature设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改5.用XML来进行更为规范的设定,而不是用Lisp(对我来说有难度)和Markdown(运行下来似乎不是很稳定)[heading1]完整提示词[heading2]v 1.3[heading1]特别鸣谢[content]李继刚:【思考的七把武器】在前期为我提供了很多思考方向Thinking Claude:这个项目是我现在最喜欢使用的Claude提示词,也是我设计HiDeepSeek的灵感来源Claude 3.5 Sonnet:最得力的助手

Deepseek"4+1"黄金提问法——迭代优化

错误示范:"帮我写个方案"正确示范:"我是刚入职的行政专员,要给50人团队策划元旦团建,预算人均200元"小窍门:说清你的角色(新人/专家)、处境(紧急任务/长期规划)、特殊需求(老板的喜好/公司制度)[heading3]2.派任务(像教小朋友做家务)[content]错误示范:"分析下市场"正确示范:"请对比蜜雪冰城和茶百道最近3个月的新品策略,找出年轻人最爱的3个创新点"任务清单:✅要做什么(对比分析)✅范围多大(最近3个月)✅重点在哪(新品策略)✅要几个结果(3个创新点)[heading3]3.立规矩(像点菜提要求)[content]场景:请AI当健身教练正确示范:"我是996上班族,每天最多锻炼30分钟,家里只有瑜伽垫,帮我制定减脂计划,不要深蹲伤膝盖"避坑指南:⏰时间限制:方案要几分钟看完??资源条件:能接触哪些资料??雷区预警:绝对不能出现的内容❤️特殊偏好:喜欢案例/讨厌理论[heading3]4.定格式(像下单选规格)[content]案例:需要做会议纪要正确示范:"用表格呈现,左边列讨论主题,右边分决策事项/负责人/截止时间三栏,最后用红色标出待确认事项"格式超市:?文档类:PPT要几页?报告分几部分??数据类:要表格还是图表??创意类:小红书风格还是知乎体?

Others are asking
deepseek官方教程
以下是关于 DeepSeek 的官方教程相关信息: 火山方舟 DeepSeek 申请免费额度教程,包含多种 API 使用方式,如飞书多维表格调用、Coze 智能体调用、浏览器插件调用。可以使用邀请码 D3H5G9QA,通过邀请链接 https://www.volcengine.com/activity/deepseek?utm_term=202502dsinvite&ac=DSASUQY5&rc=D3H5G9QA 邀请可拿 3000 万 tokens,畅享 671B DeepSeek R1,活动截止至北京时间 20250218 23:59:59。同时,火山方舟大模型服务平台的模型服务计费文档有更新,DeepSeekR1、V3 模型分别提供了 50 万免费额度和 API 半价活动。 有关于一线教师的 AI 需求与高效工具推荐,如让模型创作诗歌、生成宣传标语、提示库(https://apidocs.deepseek.com/zhcn/promptlibrary)、代码解释、内容分类、角色扮演(自定义人设)、散文写作、文案大纲生成、模型提示词生成等。 2 月 14 日的社区动态中,有《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》《羊毛快薅|字节火山上线了 DeepSeek 系列模型并悄悄更改了模型服务价格...》等内容,还附上了飞书多维表格、Coze 的接入使用方法等。此外,还有关于 DeepSeek 关键 9 篇论文及创新点的讲解,以及 DeepSeek 官方发布的 R1 模型推荐设置。
2025-04-15
我想让DEEPSEEK帮我写一篇论文,题目已经定好了,怎么给他输入指令
以下是给 DeepSeek 输入指令以帮助您写论文的一些建议: 1. 采用结构化提示词: 优先保留专业领域术语和技术词汇,这些术语通常具有高信息价值。 对不同类型的信息设置权重,按优先级排序:任务定义>关键约束>专业术语>定量信息>方法论>背景。 以完整语义单元为基本保留单位,而非单个词语,确保压缩后的内容仍保持语义完整性。 避免详细指导思考过程,让模型自主生成思维链。 2. 高阶能力调用: 文风转换矩阵:例如“用鲁迅杂文风格写职场 PUA 现象”“将产品说明书改写成《史记》列传格式”“把这篇论文摘要翻译成菜市场大妈能听懂的话”。 领域穿透技术:如行业黑话破解“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 场景化实战策略: 创意内容生成。 技术方案论证。 4. 效能增强技巧: 对话记忆管理:包括上下文锚定(如“记住当前讨论的芯片型号是麒麟 9010”)、信息回溯(如“请复述之前确认的三个设计原则”)、焦点重置(如“回到最初讨论的供应链问题”)。 输出质量控制:针对过度抽象、信息过载、风格偏移等问题,使用相应的修正指令。 5. 特殊场景解决方案: 长文本创作:可采用分段接力法,如“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。 敏感内容处理:使用概念脱敏法(如“用经济学原理类比说明网络审查机制”)或场景移植法(如“假设在火星殖民地讨论该议题”)。 在输入指令时,您需要清晰明确地描述论文的题目、研究目的、主要论点、关键论据、期望的结构和风格等重要信息,以便 DeepSeek 能够为您生成符合要求的内容。
2025-04-14
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
Deepseek自动生成网站前端页面
以下是关于 DeepSeek 自动生成网站前端页面的相关内容: DeepSeek v3 能力更新后虽能生成炫目的前端页面,但多为静态且实用性有限。可结合飞书多维表格将生成的漂亮前端变为真实的系统,如【智能作业分发系统】。 该系统整体包括用户登陆(可加飞书调查表二维码实现注册)、作业类型、作业详情(含连连看游戏、AI 智能问答、考试系统)。其实现逻辑为用户登陆系统后进入页面看到老师分配的作业分类,选择分类进入作业详情页面,详情页有学习单词发音及三个模块。 对于小白,可用飞书作数据源,通过飞书 API 接口获取内容,用 DeepSeek v3 制作前端+后端(用 Trae 更方便)。获取请求参数时,测试成功后的示例代码中有完整的请求参数和请求体可直接复制使用。创建前后端时,若用 DeepSeek 官网搭建需按代码目录结构创建对应文件(用 Trae 可省略),首次运行可能遇到飞书 API 未正确配置 CORS 导致浏览器拦截请求的问题,V3 会给出修改意见。 此外,Same dev 能像素级复制任意 UI 界面并生成前端代码,支持多种文件格式和技术栈代码,但免费额度消耗快,网站被谷歌标记。360 智脑复现了 DeepSeek 强化学习效果并发布开源模型 LightR114BDS。 AI 时代生存法则:会提需求比会写代码更重要,会开脑洞比会复制粘贴更值钱,真正的大佬都是让 AI 当乙方!
2025-04-13
deepseek写论文
以下是关于 DeepSeek 在不同方面应用的相关信息: 应用场景:包括脑爆活动方案、会议纪要、批量处理客户评论、分析总结复盘内容、生成专业软件使用过程、写小说框架、写论文、写文案、写小红书笔记、写周报、做设计头脑风暴、做网站、分析感情问题等。 优势与不足:在写文方面全面领先,但长文可能太发散、文风用力过猛导致审美疲劳,且模型多样性不够,相同 prompt 提问多次答案雷同。 应对策略:写理性文章时,可先与 DeepSeek 讨论思路,再用 Cloud 3.5 批量生成;用 O1 模型对创作的字数控制有一定效果,也可通过多轮对话让 AI 增删改查来调整字数。 创作相关:模仿特定小说家的文学方式创作小说,需在提示词中描述文风特征;邀请大家在腾讯频道发布用 AI 写的小说并鉴赏。 发展历程:DeepSeek 历时 647 天在大语言模型(LLM)领域取得突破,发布 13 篇论文。谷歌 CEO 坦言 Deep Seek 的突破标志着 AI 的全球化进程。
2025-04-13
使用Deepseek写论文有哪些固定指令模板
以下是使用 DeepSeek 写论文的一些指令模板: 1. 进阶控制技巧: 思维链引导: 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 知识库调用: 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 多模态输出 2. 高级调试策略: 模糊指令优化: 问题类型:宽泛需求 修正方案:添加维度约束 示例对比:原句:“写小说”→修正:“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构” 问题类型:主观表述 修正方案:量化标准 示例对比:原句:“写得专业些”→修正:“符合 IEEE 论文格式,包含 5 项以上行业数据引用” 迭代优化法: 首轮生成:获取基础内容 特征强化:请加强第三段的技术细节描述 风格调整:改用学术会议报告语气,添加结论部分 最终校验:检查时间逻辑一致性,列出可能的事实性错误 3. 核心原理认知: AI 特性定位: 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 8K tokens 上下文窗口,换算成汉字是 4000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 系统响应机制: 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 4. 基础指令框架: 四要素模板 格式控制语法: 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 5. 高阶能力调用: 文风转换矩阵: 作家风格移植:“用鲁迅杂文风格写职场 PUA 现象” 文体杂交:“将产品说明书改写成《史记》列传格式” 学术口语化:“把这篇论文摘要翻译成菜市场大妈能听懂的话” 领域穿透技术:行业黑话破解→“解释 Web3 领域的‘胖协议瘦应用’理论” 商业决策支持 6. 场景化实战策略: 创意内容生成 技术方案论证 7. 效能增强技巧: 对话记忆管理: 上下文锚定:“记住当前讨论的芯片型号是麒麟 9010” 信息回溯:“请复述之前确认的三个设计原则” 焦点重置:“回到最初讨论的供应链问题” 输出质量控制: 问题类型:过度抽象 修正指令:“请具体说明第三步操作中的温度控制参数” 问题类型:信息过载 修正指令:“用电梯演讲格式重新组织结论” 问题类型:风格偏移 修正指令:“回归商务报告语气,删除比喻修辞” 8. 特殊场景解决方案: 长文本创作: 分段接力法:“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应” 敏感内容处理: 概念脱敏法:“用经济学原理类比说明网络审查机制” 场景移植法:“假设在火星殖民地讨论该议题”
2025-04-13
AI高效沟通的黄金法则
以下是关于 AI 高效沟通的一些黄金法则: 1. 像教实习生:别指望它读心术,要给明确“操作手册”。 2. 像拼乐高:复杂任务拆成小模块,逐个击破。 3. 像打乒乓球:有来有往多回合,好答案都是改出来的。 在与 AI 对话前,先花 30 秒填写以下 checklist: 我说清自己身份了吗? 任务目标够具体吗? 特殊要求列全了吗? 要什么格式交代了吗? 留好修改的余地了吗? 此外,还有以下策略有助于实现高效沟通: 将复杂任务分解为更简单的子任务,复杂任务通常比简单任务更容易出错,可将其重新定义为一系列简单任务的工作流程,每个任务的输出作为下一个任务的输入。 使用意图分类识别用户查询中最相关的指令,根据用户意图选择最相关的指令集。 对于需要很长对话的应用,总结或过滤之前的对话内容,避免超出模型的上下文窗口大小限制。 将长文档分段总结,并递归构建完整摘要,逐步总结长文档的内容。 给予模型“思考”时间,指导模型在得出结论之前先尝试给出自己的解决方案,避免受到用户提供的错误解决方案的干扰。使用“内心独白”或一系列查询来隐藏模型的推理过程,避免在某些应用场景中泄露答案。询问模型是否在之前的回答中遗漏了什么,确保信息的完整性。 以中考英语辅导为例,在与 AI 沟通时,遵循上述原则和方法,比如明确给出题目、指令,解答问题并给出依据,有助于提高辅导效果。
2025-03-09
5W2H法则
5W2H法则是一种常用的问题分析和解决问题的方法,它代表了以下问题: 1. What(什么):需要明确问题或任务的本质,确定要解决的具体问题或要完成的任务。 2. Who(谁):确定谁是问题的关键参与者或责任人,以及谁是解决问题的主体。 3. Where(哪里):明确问题发生的地点或环境,了解地理位置对问题的影响。 4. When(何时):确定问题发生的时间或需要完成任务的期限。 5. Why(为什么):探究问题发生的原因,理解背后的逻辑和动机。 6. How(怎样):研究解决问题的方法和途径,制定实施的步骤和策略。 7. How much(多少)/How many(多少个):评估解决问题所需的资源量,包括成本、时间、人力等。 5W2H法则有助于全面地审视问题,确保在分析和解决问题时考虑到所有相关方面。这种方法可以应用于项目管理、决策制定、科学研究、教育、商业策划等多个领域。通过回答这些问题,可以更清晰地理解问题,制定有效的解决方案,并优化执行过程。
2024-07-09
我需要一个提示词,它可以让gpt AI帮我在做文章或者书籍总结的时候尽量的全面。 非常的全面,每一个大点都要做解释,每一个小点也要做解释,虽然要遵循二八法则,只要是重要的内容,即使是很多也一定要写上去。 不要做太多的精简。 有没有这样的提示词让我。 来使用。
当然可以!以下是一个详细的提示词模板,你可以用它来让GPT AI帮助你在做文章或书籍总结时尽量全面地覆盖所有重要内容。这个提示词会引导AI详细解释每一个大点和小点,并确保重要内容不被遗漏。 提示词模板: 请帮助我总结这篇文章/书籍,要求尽量全面覆盖所有重要内容。请按照以下要求进行总结: 1. 引言和背景: 简要介绍文章/书籍的主题和背景。 阐述作者写作的目的和主要论点。 2. 主要章节和段落: 按照文章/书籍的结构,详细介绍每一个主要章节或段落。 对每一个大点进行详细解释,包括其主要内容和意义。 对每一个小点进行详细解释,包括其具体细节和示例。 3. 重要概念和术语: 列出并解释文章/书籍中提到的所有重要概念和术语。 解释这些概念和术语的定义及其在文章/书籍中的应用。 4. 关键论据和证据: 总结作者用来支持主要论点的所有关键论据和证据。 对每一个论据和证据进行详细解释,包括其来源和重要性。 5. 案例研究和实例: 详细介绍文章/书籍中提到的所有案例研究和具体实例。 解释这些案例和实例如何支持作者的观点。 6. 结论和建议: 总结文章/书籍的结论部分。 阐述作者提出的任何建议或未来研究的方向。 7. 作者的立场和观点: 分析作者在整个文章/书籍中表达的立场和观点。 解释作者的观点如何影响文章/书籍的整体论点。 8. 个人评价和反思: 根据文章/书籍的内容,提供一个全面的个人评价和反思。 指出文章/书籍的优点和可能的改进之处。 请确保在总结时不进行过多的精简,尽量详细地解释所有重要内容,遵循二八法则,只要是重要的内容,即使很多也一定要写上去。 示例使用: 请帮助我总结《》,要求尽量全面覆盖所有重要内容。请按照以下要求进行总结: 1. 引言和背景: 简要介绍这本书的主题和背景。 阐述作者写作的目的和主要论点。 2. 主要章节和段落: 按照这本书的结构,详细介绍每一个主要章节或段落。 对每一个大点进行详细解释,包括其主要内容和意义。 对每一个小点进行详细解释,包括其具体细节和示例。 3. 重要概念和术语: 列出并解释书中提到的所有重要概念和术语。 解释这些概念和术语的定义及其在书中的应用。 4. 关键论据和证据: 总结作者用来支持主要论点的所有关键论据和证据。 对每一个论据和证据进行详细解释,包括其来源和重要性。 5. 案例研究和实例: 详细介绍书中提到的所有案例研究和具体实例。 解释这些案例和实例如何支持作者的观点。 6. 结论和建议: 总结书的结论部分。 阐述作者提出的任何建议或未来研究的方向。 7. 作者的立场和观点: 分析作者在整本书中表达的立场和观点。 解释作者的观点如何影响书的整体论点。 8. 个人评价和反思: 根据书的内容,提供一个全面的个人评价和反思。 指出书的优点和可能的改进之处。 请确保在总结时不进行过多的精简,尽量详细地解释所有重要内容,遵循二八法则,只要是重要的内容,即使很多也一定要写上去。 使用这个提示词,你可以确保AI在总结文章或书籍时覆盖所有重要内容,并进行详细解释。
2024-06-03
学的理论模型如何高效指导实践,在教学中
在教学中,关于如何让学习的理论模型高效指导实践,以下是相关内容: 本系列课程是由 Deeplearning 联合谷歌 Gemini 团队开发的免费在线课程,以 Gemini 模型作为教学模型,教授如何使用多模态提示词与模型交互。但课程内容在国内存在部分无法应用的情况,且缺乏某些概念。因此,对部分教程内容进行了重新整理和刊发,并适当混合了一些入门概念,以增强普世价值。(如有需要,请访问) 在本节课程中您可以学到: 通过实践,与视频内容交互,辅助工作与学习。 通过实践,学习 Function Calling 概念与实际应用。 扩展阅读: )
2025-04-13
如何利用 ai 高效学习
以下是关于如何利用 AI 高效学习的相关内容: 英语学习: 1. 智能辅助工具:利用如 Grammarly 进行英语写作和语法纠错,改进表达和写作能力。 2. 语音识别和发音练习:使用如 Call Annie 进行口语练习和发音纠正,获取实时反馈和建议。 3. 自适应学习平台:使用如 Duolingo 量身定制学习计划,提供个性化学习内容和练习。 4. 智能导师和对话机器人:利用如 ChatGPT 进行英语会话练习和对话模拟,提高交流能力和语感。 数学学习: 1. 自适应学习系统:使用如 Khan Academy 提供个性化学习路径和练习题,精准推荐。 2. 智能题库和作业辅助:利用如 Photomath 提供数学问题解答和解题步骤。 3. 虚拟教学助手:使用如 Socratic 解答数学问题、提供教学视频和答疑服务。 4. 交互式学习平台:参与如 Wolfram Alpha 的学习课程和实践项目,进行数学建模和问题求解。 学习一门外语: 1. 设定目标:明确学习目标和时间表,分阶段完成任务。 2. 多样化练习:结合听、说、读、写多种方式全面提升语言技能。 3. 模拟真实环境:多与母语者交流或使用 AI 对话助手模拟真实对话场景。 4. 定期复习:使用 AI 工具的复习功能,根据记忆曲线定期复习已学内容。 新手学习 AI: 1. 了解 AI 基本概念:阅读「」熟悉术语和基础概念,了解其分支及联系,浏览入门文章。 2. 开始学习之旅:在「」中找到初学者课程,通过在线教育平台(如 Coursera、edX、Udacity)按节奏学习,有机会获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,可根据兴趣选择特定模块深入学习,掌握提示词技巧。 4. 实践和尝试:理论学习后进行实践,巩固知识,尝试使用各种产品做出作品,在知识库分享实践成果。 5. 体验 AI 产品:与如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-28
0基础,我需要ai剪辑学习,方便我更快更高效的发布视频
以下是为您提供的 0 基础学习 AI 剪辑的指导: 团队分工: 制片人:负责影片的制作管理,包括团队组建、日程安排、信息收集、资料整理、各处岗位工作缺失时及时补上等。 图像创意:负责用 AI 生成富有想象力的角色和场景等所有出现在视频中的画面,并为每个角色赋予人物小传。 视频制作:将做好的角色场景等图像素材进行 AI 图生文的工作,需要擅长运营工具的笔刷等控制工具,更好的契合剧本。 编剧:负责撰写剧本,包括故事情节、角色串联、人物台词等。 配音和配乐:涉及背景音乐、音效、角色配音、声音克隆,用各种声音类 AI 工具捏出来。 剪辑师:负责把后期剪辑,包括镜头选择、节奏控制和音效配合。 相关技术及工具: MMVid:一个集成的视频理解系统,能处理和理解长视频内容并进行问答。应用场景包括快速的视频剪辑、图生视频、快速诊断等。 工具准备: 文案生成:DeepSeek。 古人形象定制:即梦 AI。 鬼畜视频合成: 声音克隆:fishAudio,用于克隆声音并生成对应文案的音频。 视频合成:Viggle.ai。 视频剪辑:剪映,用于合成音频与视频、添加字幕和背景图。 团队高效协作的方法在于每个人员分工明确,形成了一个最高效的 SOP,可以快速产出。
2025-03-24
你觉得作为一个普通人,应该怎样更高效的使用AI,并且保持跟上AI快速迭代的节奏?
作为普通人,要更高效地使用 AI 并跟上其快速迭代的节奏,可以参考以下策略: 1. 提前布局职业生涯:审视自身所处行业和岗位,预估 5 10 年后被 AI 取代的程度。若风险高,即刻学习新技能并向更有前景的领域转型;若风险低,思考如何在 AI 辅助下将工作做到极致。 2. 投入 AI 浪潮:敢于使用和研究 AI,将其融入业务,哪怕从简单应用开始,实践中发现新机会点。 3. 强化不可替代的人类技能:如创意、沟通、领导、跨领域知识、独特专长等。 4. 建立个人品牌和网络:通过分享专业见解、持续学习输出内容,在业界建立口碑,积累人脉和声望。 5. 拥抱创业和多元收入:利用 AI 降低的创业门槛,发展副业或项目,探索多种可能性,经营多元身份提升抗风险能力。 6. 保持健康的身心:学会调适心态,持续锻炼身体,以良好的身心状态应对挑战。 此外,在 AI 时代,持续学习能力与适应力是最重要的个人能力之一。要培养自己成为终身学习者,保持好奇心,定期涉猎新领域的知识或课程,锻炼自学能力,勇于打破舒适区。同时,要在心理上拥抱变化,将其视为机遇而非威胁,培养心理韧性,以积极的心态应对不确定性。 在监管方面,英国采用了基于原则的框架,其监管体制具有创新、适度、可信、适应、清晰和协作等特点,旨在促进创新的同时平衡风险与机遇,加强在 AI 领域的全球领导地位。
2025-03-09
ima.copilot怎么高效利用
ima.copilot 高效利用的方法如下: 文档解读:在首页点击文档解读,可从知识库添加文档或上传本地文档,输入问题后 ima 作答,并会引用公众号资料作为参考。但需注意其回答与上传文档的关联度较弱,回答底部可点击“记笔记”在应用内新建笔记文档。 阅读公众号文章:复制公众号链接即可开始阅读,右侧聊天窗口可通过系统默认提示词快速总结文章要点,左侧正文窗口选中部分内容后,可点击 AI 解读和翻译按钮,AI 回答和正文选中内容都可点击“记笔记”。 搜索查看各种政策类文章:一是因为公众号内容更新快,二是有官方公众号发布的权威内容。 ima.copilot 最大的优势是拥有公众号这座内容金山,但知识库内搜索和笔记内搜索目前做得一般。 相关资料链接:腾讯 ima.copilot→https://ima.qq.com 。 此外,在“AI 智库|月度榜单? (11 月)”中,ima.copilot 在国内个人助理分类中排名 A4+1,网址为 ima.qq.com,活跃用户为 24 万人,环比变化为 2.5462 。
2025-03-06
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
请为我生成一些提示词以用于将视频中的对话转化为文本形式
以下是为您生成的一些用于将视频中的对话转化为文本形式的提示词: 1. 角色:专业视频转文本工作者 2. 版本:1.0 3. 描述:能够准确、清晰地将视频中的对话转换为文本 4. 目标:完整、无误地将视频中的对话转化为易于理解的文本 5. 限制:不遗漏重要信息,不添加主观内容 6. 技能:熟练掌握语音识别和文字转换技巧 7. 工作流程:先仔细聆听视频对话,然后逐句转换为文字,注意标点和语法的正确使用 8. 初始化:您好,我准备开始将视频对话转换为文本 事件驱动句式: 1. As the video plays... 2. When the speakers start talking... 3. At the beginning of the video... 空间锁定技巧: 1. on the left side of the screen... 2. behind the main character... 3. from the top corner of the frame... 动态呼应原则: 1. swaying with the background music... 2. reacting to the other characters' actions... 3. matching the tone of the video...
2025-04-11
RAG对话 摘要总结 功能实现
LangChain 和 RAG 的结合具有以下优势: 1. 灵活性:可根据需求和数据源选择不同组件和参数定制 RAG 应用,也能使用自定义组件(需遵循接口规范)。 2. 可扩展性:能利用 LangChain 的云服务部署和运行,无需担忧资源和性能限制,还可借助分布式计算功能加速应用,发挥多个节点并行处理能力。 3. 可视化:通过 LangSmith 可视化工作流程,查看各步骤输入输出及组件性能状态,用于调试和优化,发现并解决潜在问题和瓶颈。 其应用场景多样,包括: 1. 专业问答:构建医疗、法律、金融等专业领域的问答应用,从专业数据源检索信息辅助大模型回答问题,如从医学文献中检索疾病诊治方案回答医疗问题。 2. 文本摘要:构建新闻或论文摘要应用,从多个数据源检索相关文本帮助大模型生成综合摘要,如从多个新闻网站检索同一事件报道生成全面摘要。 3. 文本生成:构建诗歌、故事生成等应用,从不同数据源检索灵感协助大模型生成更有趣和创意的文本,如从诗歌、歌词或小说中检索相关文本生成作品。 此外,还介绍了本地部署资讯问答机器人的实现方式,即基于用户问题从向量数据库检索相关段落并按阈值过滤,让模型参考上下文信息回答,还创建了网页 UI 并进行评测,对不同模型的测试表现进行了对比,得出 GPT4 表现最佳等结论,并总结了使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人及相关要点,即上下文数据质量和大模型性能决定 RAG 系统性能上限。
2025-04-11
想创建一个对话问答形式的课程智能体
以下是创建一个对话问答形式的课程智能体的相关内容: 一、创建智能体 1. 知识库 手动清洗数据:本次创建知识库使用手动清洗数据,上节课程是自动清洗数据,自动清洗数据可能会出现数据不准的情况。 在线知识库:点击创建知识库,创建一个画小二课程的 FAQ 知识库。飞书在线文档中每个问题和答案以分割,选择飞书文档、自定义的自定义,输入后可编辑修改和删除,添加 Bot 后可在调试区测试效果。 本地文档:本地 word 文件,注意拆分内容以提高训练数据准确度。画小二 80 节课程分为 11 个章节,不能一股脑全部放进去训练,应先将 11 章的大章节名称内容放进来,章节内详细内容按固定方式人工标注和处理,然后选择创建知识库自定义清洗数据。 2. 发布应用:点击发布,确保在 Bot 商店中能够搜到,否则获取不到 API。 二、智谱 BigModel 共学营活动分享 活动内容包括使用 BigModel 搭建智能体并接入微信机器人,过程为将调试好的智能体机器人拉入微信群,由老师提问,机器人回答,挑选出色回答整理成问卷,群成员投票,根据得票数确定奖项。一等奖得主分享了对活动的理解和实践,包括从题出发的分析,认为考验机器人对问题的理解和回答准确性,真实对话场景一般为完整句子回复,根据回答真实性和有趣程度评分,可使用弱智吧问题测试提示词生成效果。 三、名字写对联教学——优秀创作者奖,百宝箱智能体 1. 智能体类型的选择:建议选择工作流的对话模式,支持工作流编排和携带历史对话记录,创建后切换为对话模式,注意在调整工作流节点前切换,否则会清空重置。 2. 确认分支情况:根据需求分析有两个特定分支(根据名字和祝福写对联、根据幸运数字写对联)和一个默认分支。 3. 用户意图识别:通过理解用户意图走不同分支,注意将意图介绍写清楚准确。 4. 幸运数字分支:用代码分支获取用户输入数字,匹配知识库并做赏析,代码中有容错机制。 5. 名字写祝福:根据用户输入的名字和祝福信息,提示词生成对应对联并输出,主要是提示词调试。 6. 通用兜底回复:在用户不符合前两个意图时进行友好回复,匹配知识库,结合匹配结果、历史记录和当前输入输出符合对话内容的回复。 7. 知识库:使用大模型生成 100 对对联,好看、经典、有意义。
2025-04-09
有没有可以实现多段对话的AI,用于中医问诊模型
以下是一些可以用于中医问诊模型且能实现多段对话的 AI 相关信息: Polaris:医疗护理保健模型,能和患者进行多轮语音对话,媲美人类护士。详细信息:http://xiaohu.ai/p/5407 ,https://x.com/imxiaohu/status/1774644903546618298?s=20 在 LLM 开源中文大语言模型及数据集集合中,有以下针对医疗领域的模型: DoctorGLM:地址:https://github.com/xionghonglin/DoctorGLM 。基于 ChatGLM6B 的中文问诊模型,通过中文医疗对话数据集进行微调,实现了包括 lora、ptuningv2 等微调及部署。 BenTsao:地址:https://github.com/SCIRHI/HuatuoLlamaMedChinese 。开源了经过中文医学指令精调/指令微调的 LLaMA7B 模型。通过医学知识图谱和 GPT3.5 API 构建了中文医学指令数据集,并在此基础上对 LLaMA 进行了指令微调,提高了 LLaMA 在医疗领域的问答效果。 BianQue:地址:https://github.com/scutcyr/BianQue 。一个经过指令与多轮问询对话联合微调的医疗对话大模型,基于 ClueAI/ChatYuanlargev2 作为底座,使用中文医疗问答指令与多轮问询对话混合数据集进行微调。 HuatuoGPT:地址:https://github.com/FreedomIntelligence/HuatuoGPT 。开源了经过中文医学指令精调/指令微调的一个 GPTlike 模型。
2025-04-08
excel表格导出的用户的对话记录,来进行自定义标签并打标,有哪些好用的现成方案或者工具
目前在 Excel 表格导出的用户对话记录进行自定义标签并打标方面,以下是一些常见且好用的工具和方案: 1. Microsoft Excel 本身:可以利用其数据筛选、排序和函数功能来辅助标签和打标。 2. Google Sheets:具有类似 Excel 的功能,且在线协作方便。 3. R 语言:通过编程实现复杂的数据分析和标签处理。 4. Python 及相关库,如 Pandas:能够灵活处理数据和进行标签操作。 但具体选择哪种方案或工具,取决于您的具体需求、技术水平和使用习惯。
2025-04-07