Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

视频生成人物动作不准确

Answer

目前在视频生成人物动作方面存在不准确的情况。例如,使用 Midjourney 生成时,过多角色(甚至可能是 2 个)的生成效果不佳,对于拟人角色的需求较难满足。像小龙喷火到小兔子举着礼物盒这样的场景,难以生成满意的效果。在让角色做出较大动作(如转头、掉眼泪、抬手等)或更生动的表情变化时,现有技术有限,还需更先进的技术、丰富的数据和强大的计算能力。

解决策略方面,应尽量规避制作需要大动作表现的视频。若无法避免,可尝试制作只涉及小动作的场景,并通过加入台词和场景描述来补充细节和深度,帮助观众更好地理解场景背景和角色心理,增强表现力,以弥补视觉上的不足。

相关技术如 LivePortrait 可以精确控制眼睛和嘴唇的动作,还能无缝拼接多个肖像,将不同人物特征合并成一个视频,确保过渡自然流畅。其使用了不同于主流扩散方法的隐式关键点框架,在计算效率和可控性之间取得平衡,生成的动画质量优于现有的非扩散和扩散模型方法,在 RTX 4090 GPU 上生成速度为每帧 12.8 毫秒。

工作流与模型地址:

  • https://pan.baidu.com/s/1Fk-GTXLmM0Ofynz04NfCaQ?pwd=cycy
  • https://pan.quark.cn/s/8dfd7ace4f05

内容依技术发展更新,请以文档为准:https://xiaobot.net/post/74238a84-d273-4b2c-a195-ed2858b24ffe

Content generated by AI large model, please carefully verify (powered by aily)

References

Comfyui LivePortrait

LivePortrait可以精确控制眼睛和嘴唇的动作,还能无缝拼接多个肖像,将不同人物特征合并成一个视频,确保过渡自然流畅。因为使用了一种不同于主流扩散方法的隐式关键点框架。该框架在计算效率和可控性之间取得了有效的平衡。LivePortrait生成的动画质量优于现有的非扩散和扩散模型方法。在RTX 4090 GPU上,生成速度为每帧12.8毫秒,效率显著高于现有的扩散模型。静态肖像变得生动的视频生成技术,控制非常精准。这项技术对AI视频生成中的人物表演和数字人具有很大帮助。支持各种风格的图片,常见的动物面部迁移,并可以微调面部运动幅度工作流与模型地址https://pan.baidu.com/s/1Fk-GTXLmM0Ofynz04NfCaQ?pwd=cycyhttps://pan.quark.cn/s/8dfd7ace4f05内容依技术发展更新,请以文档为准https://xiaobot.net/post/74238a84-d273-4b2c-a195-ed2858b24ffe

大雷:2 天爆肝3 分半AI动画短片的制作复盘-踩过的坑与解决方法

发现Midjourney在生成的时候,最好不要生成过多角色。这里的过多甚至可能是2个。做人、做动物还好,但是像我这种有拟人角色的需求,简直就是和要靠买彩票暴富一样。比如那张小龙喷火到小兔子举着的礼物盒上,这个看似简单的需求,MJ硬是生成不出让我满意的。(这些图出来我真的无力吐槽...)要不是动物不拟人了,要不就是龙的体型超大。当然我可以理解的是,龙,尤其是中国龙的数据样本真的很少。这对于用MJ的我来说,想要做个符合要求的小白龙的图真的很有挑战性。至于视频生成,如果想让角色做出一些比较大的动作,比如转头、掉眼泪、抬手,或是更生动的表情变化,现有的技术还有点捉襟见肘,还需要更先进的技术、更丰富的数据和更强大的计算能力。我的策略是,尽量规避制作那些需要大动作表现的视频。如果实在避免不了,那就尝试制作一些只涉及小动作的场景,然后通过以下几种方法来尽可能地增强表现力。这样,虽然不能完全弥补大动作的缺失,但至少能在视觉和叙事上做到不那么突兀。[heading3]文字的补充[content]通过加入台词和场景描述,可以有效补充AI生成图像无法达到的细节和深度。这种方法能够帮助观众更好地理解场景背景和角色心理,弥补视觉上的不足。

大雷:2 天爆肝3 分半AI动画短片的制作复盘-踩过的坑与解决方法

发现Midjourney在生成的时候,最好不要生成过多角色。这里的过多甚至可能是2个。做人、做动物还好,但是像我这种有拟人角色的需求,简直就是和要靠买彩票暴富一样。比如那张小龙喷火到小兔子举着的礼物盒上,这个看似简单的需求,MJ硬是生成不出让我满意的。(这些图出来我真的无力吐槽...)要不是动物不拟人了,要不就是龙的体型超大。当然我可以理解的是,龙,尤其是中国龙的数据样本真的很少。这对于用MJ的我来说,想要做个符合要求的小白龙的图真的很有挑战性。至于视频生成,如果想让角色做出一些比较大的动作,比如转头、掉眼泪、抬手,或是更生动的表情变化,现有的技术还有点捉襟见肘,还需要更先进的技术、更丰富的数据和更强大的计算能力。我的策略是,尽量规避制作那些需要大动作表现的视频。如果实在避免不了,那就尝试制作一些只涉及小动作的场景,然后通过以下几种方法来尽可能地增强表现力。这样,虽然不能完全弥补大动作的缺失,但至少能在视觉和叙事上做到不那么突兀。[heading3]文字的补充[content]通过加入台词和场景描述,可以有效补充AI生成图像无法达到的细节和深度。这种方法能够帮助观众更好地理解场景背景和角色心理,弥补视觉上的不足。

Others are asking
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
需要做一个自动化出视频的工作流
以下是一个关于自动化出视频工作流的详细介绍: 优势: 全自动化处理,解放双手。 40 秒快速出片,效率提升。 成本低廉,每条仅需 0.0x 元。 输出质量稳定专业。 DeepseekR1 保证文案质量。 还能改进,例如可以加入配套 BGM,让视频更有感染力;增加更丰富的画面内容和转场效果;使用免费节点替代付费插件,进一步降低成本;优化模板样式,支持更多展示形式;增加自动化程度,支持批量处理。 工作流程: 1. 可以在扣子商店体验,建议自己搭建。 2. 工作流调试完成后,加入到智能体中,可以选择工作流绑定卡片数据,智能体则通过卡片回复。 3. 选择发布渠道,重点如飞书多维表格,填写上架信息(为了快速审核,选择仅自己可用),确认发布等待审核,审核通过后即可在多维表格中使用。 4. 创建飞书多维表格,添加相关字段,配置选择“自动更新”,输入相关字段后,“文案视频自动化”字段捷径会自动调用工作流,生成视频。 5. 表单分享,实现“填写表单,自动创建文案短视频”的效果。 6. 全自动视频合成使用多视频融合插件,一键导出成品。但需注意节点产生的视频是异步生成,可能无法马上展现,需耐心等待几秒。 如果您还有其他疑问或需要进一步的帮助,请随时联系。
2025-04-14
生成提示词的提示词
以下是关于生成提示词的相关内容: 生成提示词的思路和方法: 可以根据效果好的图片中的高频提示词去反推效果,结合不同字体效果的描述,打包到一组提示词中。提示词给到 AI 后,AI 会根据给定文字的文义,判断适合的情绪风格,然后给出适合情绪的字体和风格描述、情感氛围等,加上一些质量/品质词,形成输出提示词结构。为了让 AI 更能描述清晰风格,可以先给定多种参照举例。 具体操作步骤: 打开 AI 工具的对话框,将相关提示词完整复制粘贴到对话框。推荐使用 ChatGPT 4o。 当 AI 回复后,发送您想要设计的文字。可以仅发送想要的文字,也可以发送图片(适合有多模态的 AI)让 AI 识别和反推。 将 AI 回复的提示词部分的内容复制到即梦 AI。 对生成提示词的一些观点: 提示词生成提示词并非必要,不一定能生成最好的 Prompt 框架,修改过程可能耗时且不一定能修改好,不如花钱找人写。 一句话生成完整符合需求的 Prompt 非常困难,只能大概给出框架和构思,需要更低成本地调整需求和修改 Prompt。 不同生图工具生成提示词的特点: 即使是简短的描述,生成的提示词也非常细节、专业。 会解析需求,找出核心要点和潜在的诠释点,并给出不同的提示词方案。 提示词构建更多在于增强,而不是发散,生成的内容更符合期望。 同时生成中、英双版本,国内外工具通用无压力。 14 款 AI 生图工具实测对比: 本次实测用到的工具包括国内版的即梦 3.0(https://jimeng.jianying.com/aitool/home)、WHEE(https://www.whee.com)、豆包(https://www.doubao.com/chat)、可灵(https://app.klingai.com/cn/texttoimage/new)、通义万相(https://tongyi.aliyun.com/wanxiang/creation)、星流(https://www.xingliu.art)、LibiblibAI(https://www.liblib.art),以及国外版的相关工具。
2025-04-20
有没有能根据描述,生成对应的word模板的ai
目前有一些可以根据描述生成特定内容的 AI 应用和方法。例如: 在法律领域,您可以提供【案情描述】,按照给定的法律意见书模板生成法律意见书。例如针对商业贿赂等刑事案件,模拟不同辩护策略下的量刑结果,对比并推荐最佳辩护策略,或者为商业合同纠纷案件设计诉讼策略等。 在 AI 视频生成方面,有结构化的提示词模板,包括镜头语言(景别、运动、节奏等)、主体强化(动态描述、反常组合等)、细节层次(近景、中景、远景等)、背景氛围(超现实天气、空间异常等),以及增强电影感的技巧(加入时间变化、强调物理规则、设计视觉焦点转移等)。 一泽 Eze 提出的样例驱动的渐进式引导法,可利用 AI 高效设计提示词生成预期内容。先评估样例,与 AI 对话让其理解需求,提炼初始模板,通过多轮反馈直至达到预期,再用例测试看 AI 是否真正理解。 但需要注意的是,不同的场景和需求可能需要对提示词和模板进行针对性的调整和优化,以获得更符合期望的 word 模板。
2025-04-18
如何自动生成文案
以下是几种自动生成文案的方法: 1. 基于其它博主开源的视频生成工作流进行优化: 功能:通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。 涉及工具:Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程)。 大体路径:通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频;发布 coze 智能体到飞书多维表格;在多维表格中使用字段捷径,引用该智能体;在多维表格中创建自动化流程,推送消息给指定飞书用户。 2. 生成有趣的《图文短句》: 实现原理: 先看工作流:包括第一个大模型生成标题、通过“代码节点”从多个标题中获取其中一个(可略过)、通过选出的标题生成简介、通过简介生成和标题生成文案、将文案进行归纳总结、将归纳总结后的文案描述传递给图像流。 再看图像流:包括提示词优化、典型的文生图。 最终的 Bot 制作以及预览和调试。 3. 腾讯运营使用 ChatGPT 生成文案: 步骤:通过 ChatGPT 生成文案,将这些文案复制到支持 AI 文字转视频的工具内,从而实现短视频的自动生成。市面上一些手机剪辑软件也支持文字转视频,系统匹配的素材不符合要求时可以手动替换。例如腾讯智影的数字人播报功能、手机版剪映的图文成片功能。这类 AI 视频制作工具让普罗大众生产视频变得更轻松上手。
2025-04-15
如何通过输入一些观点,生成精彩的口播文案
以下是通过输入观点生成精彩口播文案的方法: 1. 基于其它博主开源的视频生成工作流进行功能优化,实现视频全自动创建。 效果展示:可查看。 功能:通过表单输入主题观点,提交后自动创建文案短视频,并将创建完成的视频链接推送至飞书消息。 涉及工具:Coze平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程)。 大体路径: 通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频。 发布 coze 智能体到飞书多维表格。 在多维表格中使用字段捷径,引用该智能体。 在多维表格中创建自动化流程,推送消息给指定飞书用户。 2. 智能体发布到飞书多维表格: 工作流调试完成后,加入到智能体中,可以选择工作流绑定卡片数据,智能体则通过卡片回复。 选择发布渠道,重点是飞书多维表格,填写上架信息(为快速审核,选择仅自己可用),等待审核通过后即可在多维表格中使用。 3. 多维表格的字段捷径使用: 创建飞书多维表格,添加相关字段,配置后使用字段捷径功能,使用自己创建的 Coze 智能体。 表单分享,实现填写表单自动创建文案短视频的效果。 4. 自动化推送:点击多维表格右上角的“自动化”,创建所需的自动化流程。 另外,伊登的最新 Deepseek+coze 实现新闻播报自动化工作流如下: 第一步是内容获取,只需输入新闻链接,系统自动提取核心内容。开始节点入参包括新闻链接和视频合成插件 api_key,添加网页图片链接提取插件,获取网页里的图片,以 1ai.net 的资讯为例,添加图片链接提取节点,提取新闻主图,调整图片格式,利用链接读取节点提取文字内容,使用大模型节点重写新闻成为口播稿子,可使用 Deepseek R1 模型生成有吸引力的口播内容,若想加上自己的特征,可在提示词里添加个性化台词。
2025-04-15
小红书图文批量生成
以下是关于小红书图文批量生成的详细内容: 流量密码!小红书万赞英语视频用扣子一键批量生产,这是一个保姆级教程,小白都能看得懂。 原理分析: 决定搞之后,思考生成这种视频的底层逻辑,进行逆推。这种视频由多张带文字图片和音频合成,带文字图片由文字和图片生成,文字和图片都可由 AI 生成,音频由文字生成,文字来源于图片,也就是说,关键是把图片和文字搞出来。 逻辑理清后,先找好看的模版,未找到好看的视频模版,最后看到一个卡片模版,先把图片搞出来,才有资格继续思考如何把图片变成视频,搞不出来的话,大不了不发视频,先发图片,反正图片在小红书也很火。 拆模版: 要抄这种图片,搞过扣子的第一反应可能是用画板节点 1:1 去撸一个,但扣子的画板节点很难用,Pass 掉。用 PS 不行,太死板不灵活,html 网页代码可以,非常灵活。经过 2 个多小时和 AI 的 battle,用 html 代码把图片搞出来了。这里不讲代码怎么写,直接抄就行。要抄,首先要学会拆,不管用什么方式批量生成这样的图片,都必须搞清楚里面有哪些是可以变化的参数,也就是【变量】,如主题、主题英文、阶段、单词数、图片、正文、翻译、普通单词、重点单词等。 想方法: 大概知道批量生成这样的图片需要搞清楚哪些参数,图片用 html 代码搞出来了。但问题是视频怎么搞,这种视频由多张不同的【带文字的图片】生成,比如读到哪句,哪句就高亮起来,图片也可以随着读到的句子变更。最后,视频就是用这样的图片一张张拼起来的。
2025-04-14
ai如何什么生成表格
AI 生成表格通常可以通过以下技术实现: 1. 利用变分自编码器(VAEs)和序列到序列模型(Seq2Seq)等技术生成表格文件、表格公式,并清理、创建、转换和分析表格中的文本数据,例如表格结构设计、数据分析表、表格自动化等。 2. 借助一些办公软件中的 AI 插件,如飞书中的相关插件,先通过 AI 理解图片中的内容并填充到表格列中,然后利用自带插件总结生成相关指令。 此外,在多模态数据生成中,结构化数据生成包括表格生成,多模态合成数据从大类来看有非结构化数据(图片、视频、语音等)和结构化数据(表格等)两大类。非结构化数据生成包括文本生成、图像生成、音频和语音生成、视频生成、3D 生成、合成数据生成等。
2025-04-14
准确的讲述垂直大模型的概念,国内外的应用现状、场景,发展趋势,最好能附带图片。内容尽量详细、逻辑通顺。
垂直大模型是专注于特定领域的大模型,例如小语种交流、临床医学、AI 蛋白质结构预测等。 在国内,大模型分为通用模型如文心一言、讯飞星火等,处理自然语言;也有垂直模型专注特定领域。 大模型因其强大的语言理解和生成能力,在多个领域和应用场景中表现出色。比较火的应用场景包括: 1. 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。 2. 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。 3. 编程和代码辅助:代码自动补全、bug 修复和代码解释。 4. 翻译和跨语言通信:促进不同语言背景的用户之间的沟通和信息共享。 5. 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。 6. 教育和学习辅助:创建个性化的学习材料、自动回答学生问题和提供语言学习支持。 7. 图像和视频生成:如 DALLE 等模型可以根据文本描述生成相应的图像,甚至在未来可能扩展到视频内容的生成。 8. 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。 9. 医疗和健康咨询:理解和回答医疗相关的问题,提供初步的健康建议和医疗信息查询服务。 10. 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务的门槛。 关于发展趋势,尽管当前市场以基础大模型为主,但将大模型与行业专业知识结合,以满足不同行业的需求,成为未来发展的关键。例如腾讯研究院的《行业大模型调研报告》指出,如何将大模型与行业专业知识结合是重点。同时,在发展过程中也需要注意其在隐私、安全和伦理方面的挑战。 很抱歉,暂时无法为您提供相关图片。
2025-04-11
如何学习准确运用AI提示词
以下是关于如何学习准确运用 AI 提示词的建议: 1. 理解提示词的作用:提示词为模型提供上下文和指示,其质量直接影响模型输出质量。 2. 学习提示词的构建技巧: 明确任务目标,用简洁准确的语言描述。 给予足够的背景信息和示例,帮助模型理解语境。 使用清晰的指令,如“解释”“总结”“创作”等。 对特殊要求应给予明确指示,如输出格式、字数限制等。 3. 参考优秀案例:研究和学习已有的优秀提示词案例,可在领域社区、Github 等资源中查找。 4. 实践、迭代、优化:多与语言模型互动,根据输出提高提示词质量,尝试各种变体,比较分析输出差异,持续优化提示词构建。 5. 活用提示工程工具:目前已有一些提示工程工具可供使用,如 Anthropic 的 Constitutional AI。 6. 跟上前沿研究:提示工程是当前前沿研究领域之一,持续关注最新研究成果和方法论。 对于新手学习 AI,您可以: 1. 了解 AI 基本概念:阅读「」部分,熟悉术语和基础概念,了解其主要分支及联系,浏览入门文章。 2. 开始 AI 学习之旅:在「」中找到为初学者设计的课程,通过在线教育平台按自己节奏学习,推荐李宏毅老师的课程。 3. 选择感兴趣的模块深入学习:AI 领域广泛,可根据兴趣选择特定模块,如掌握提示词技巧。 4. 实践和尝试:理论学习后进行实践,巩固知识,尝试使用各种产品做出作品,在知识库分享实践成果。 5. 体验 AI 产品:与如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 在商业化问答场景中,大语言模型如同全知全能的人,提示词是告诉其角色和专注技能,使其按需求变成“员工”,知识库则是给“员工”的工作手册。例如设定阿里千问模型为“美嘉”角色,放入《爱情公寓》全季剧情作为知识库,当提问“你是谁?你和子乔在台球厅吵架那次是为了什么吵架?”时,能得到相应回复。
2025-04-10
AI 衡量一个AI任务的指标是不是有准确率 和召回率 分别啥区别
在 AI 任务中,常见的衡量指标包括准确率和召回率。准确率(Accuracy)衡量的是模型预测正确的比例。而召回率主要用于信息检索等任务,衡量的是模型能够正确检索出相关内容的比例。 在摘要任务中,一般用 ROUGE 指标,其中 ROUGE2 是把两个 sequence 按 2gram 的方式做切分做频次统计,然后计算 pred 和 gt 之间的召回率。 对于不同的 AI 任务,还有其他多种指标,如在 NLP 中: 信息检索任务常用 NDCG@K 指标,核心衡量最相关文档是否排序足够靠前。 文本生成任务可用 BitsperByte 指标。 针对二分类任务,一般用 ECE 指标(Expected Calibration Error)来度量模型输出概率 p 时,最终正确率真的为 p 的一致性。 此外,还有一些其他方面的评估指标,如不确定性(Calibration and Uncertainty)、鲁棒性(Robustness,包括 invariance 和 equivariance)、公平性(Fairness)、偏见程度(Bias and stereotypes)、有毒性(Toxicity)等。 传统的 RAG 解决方案在检索效率和准确性上存在问题,Anthropic 通过“上下文嵌入”解决了部分问题,但 RAG 的评估仍待解决,研究人员正在探索新的方法,如 Ragnarök。 在提示词设计方面,Claude 官方手册提出“链式提示”的方法理念,将复杂任务拆解为多个步骤,具有准确率高、清晰性好、可追溯性强等好处。ChatGPT 官方手册也有类似理念,同时还有相关论文如在 ICLR 2023 上发表的提出 LeasttoMost Prompting 提示词策略的论文,在文本理解和生成场景中表现优秀。
2025-04-09
如何更好地进行提问,使得AI回复的准确性更高?
以下是一些能让您更好地进行提问,从而提高 AI 回复准确性的方法: 1. 明确角色和任务:例如,指定 AI 为某一特定领域的专业人士,并明确其需要完成的具体任务。 2. 清晰阐述任务目标:让 AI 清楚了解您期望得到的结果。 3. 提供详细的上下文和背景信息:包括相关的案例、事实等,帮助 AI 理解问题的来龙去脉。 4. 提出具体且详细的需求和细节性信息:使用清晰、具体的语言,避免模糊不清的表述。 5. 明确限制和不需要的内容:避免 AI 给出不必要或不符合要求的回答。 6. 确定回答的语言风格和形式:如简洁明了、逻辑严谨等。 7. 讲清楚背景和目的:在提问时,梳理清楚背景信息和提问目的,使 AI 更好地理解问题上下文。 8. 学会拆解环节、切分流程:将复杂任务分解成更小、更具体的环节,以便 AI 更精确执行。 9. 了解 AI 的工作原理和限制:有助于更好地设计问题,使其能提供有用答案。 在信息检索和回答生成过程中: 1. 系统会对检索器提供的信息进行评估,筛选出最相关和最可信的内容,并对信息的来源、时效性和相关性进行验证。 2. 消除多个文档或数据源中的冗余内容,防止在生成回答时出现重复或相互矛盾的信息。 3. 分析不同信息片段之间的逻辑和事实关系,构建结构化的知识框架,使信息在语义上更连贯。 4. 将筛选和结构化的信息组织成连贯的上下文环境,包括排序、归类和整合。 5. 必要时进行语义融合,合并意义相近但表达不同的信息片段。 6. 最后,将整合好的上下文信息编码成适合生成器处理的格式,传递给大语言模型,由其生成准确和连贯的答案。
2025-04-04
有没有准确的ai论文写作指令
以下是一些准确的 AI 论文写作指令的相关策略和技巧: 1. 清晰明确的指令: 模型无法读心,若输出过长可要求简短回答,过简可要求专业写作,对格式不满可展示期望格式,减少模型猜测以获得期望结果。 在查询中添加详细信息以获取更准确答案。 请求模型扮演特定角色,如以专家口吻或像朋友一样。 使用分隔符清晰区分输入的不同部分,如三重引号、XML 标签或章节标题。 明确指出完成任务需要的步骤,将复杂任务分解为更小步骤。 提供实例作为参考。 明确指定希望输出的长度,如字数、句子数、段落数或要点数量。 2. 提供参考文本: 语言模型有时会编造答案,为其提供参考文本可帮助生成更准确可靠的答案。 指导模型使用参考文本回答问题,将其作为依据。 指导模型使用参考文本中的引用来回答问题,并标注引用来源。 通过运用这些策略和技巧,能够提高 AI 在论文写作方面的辅助效果。
2025-04-01
如何准确用Ai算八字
以下是关于用 AI 算八字的相关内容: 将千年传承的命理智慧与现代 AI 技术融合,通过代码排盘和 AI 解析八字中的玄机。详细分析报告包括八字基本信息及构成、命理详细分析(个性、事业、财运、婚姻、健康)、运势预测(短期、中期、长期)、人生总论及建议。 提示词方面,实现了精准八字四柱计算和模拟排盘,支持公历日期自动转换以及完整天干地支推算。输入公历年月日时,经过历法转换模块(公历→农历)、天干地支计算(年干支以立春为界、月干支以节气为界、日干支采用经典排盘法、时干支由日干推算),最终输出完整八字命盘。 有人尝试用 GPT4o 算面相,不仅能判断职业,还能对照片拍摄背景进行分析。但也有人认为这可能存在巧合或利用了人物库。 需要注意的是,用 AI 算八字等命理相关内容缺乏科学依据,建议您理性看待。
2025-03-12
国外免费的动作模仿AI
以下为您介绍国外免费的动作模仿 AI: 在 SD 中,ControlNet 是一个强大的插件,包含姿态约束类预处理器。可以使用扩展图片的方法将图片发送到图生图进行处理,还能使用 tile 模型细化。若无法找到满足需求的动作图片,可在【扩展】【加载扩展列表】中搜索【posex】插件,或拷贝插件文件夹至指定目录并重启软件。在 ControlNet 界面,可通过拖动鼠标左键旋转视角、中键缩放视角、右键拖动视角,玩坏了还能重置镜头和动作。 Viggle 是一个有免费额度的 AI 视频工具,其网址为 http://viggle.ai,discord 免费体验地址为 https://discord.com/invite/viggle 。它支持图片+动作视频转视频、图片+文字动作描述转视频、文字转视频,可完成视频换脸。其功能包括/mix、/animate、/ideate、/character、/stylize 等,官方提供了多种动作提示词可供参考,提示词地址为 https://viggle.ai/prompt 。
2025-03-31
如何控制图生图的形象和动作呢
要控制图生图的形象和动作,可以参考以下方法: 1. 使用 ControlNet 插件: 姿态约束类预处理器:包含了所有人物信息的预处理器,可将图片发送到图生图,通过“缩放后留白”和提高重绘幅度改变背景,再次发送到图生图使用 ControlNet 中 tile 模型细化,最后使用 SD 放大插件。 自定义动作骨架:在【扩展】【加载扩展列表】中搜索【posex】安装插件,或将插件文件夹拷贝至指定目录,确保软件是最新版本并重启。重启后点击“将图片发送至 ControlNet”,可通过拖动鼠标左键旋转视角、中键缩放视角、右键拖动视角,玩坏了可点击重置镜头和动作。 2. 参考风格 reference:首先进入文生图,填写提示词生成一张图。然后将图片拖入到 ControlNet 中,预处理器选择 reference only,控制模型选择“均衡”,保真度数值越高对图片的参考越强。可以通过添加关键词的方式来改变人物的服装、表情、动作等。 3. 利用 ControlNet 控制姿势:大模型和关键词正常填写生成想要的小姐姐照片,接着鼠标滑到最下面点击“ControlNet”,上传指定姿势的照片并点击“启用”,在“预处理器”和“模型”里选择“openpose”,点击“预览预处理结果”,最后点击生成照片。
2025-02-28
生成漫画动作参考图
以下是一些生成漫画动作参考图的方法: 1. 喂参考图:先上传喜欢的参考图,复制其链接。在关键词处填写“图片链接+这张图的关键词”,例如“链接图片.png,a Super cute sports girl,wearing a basketball vest,blueshortsbig watery eyes,clean bright basketball court background,super cute boy IP by pop mart,Bright color,mockup blind box toydisney stylefine luster,3D render,octane render,best quality,8k brightfront lightingFace Shot,fine luster,ultra detail,ar 9:16”。还可以通过修改关键词改变服装颜色等细节。 2. 使用 panels 命令:此命令可生成连续的动作和表情设计,将模型设置改为 niji mode 画动漫角色效果更好。例如“a Super cute sports anime girl,style by Miyazaki Hayao,6 panels with different poses 8K”,也可以使用“continuous running”生成更稳定的连续动作,甚至做成 gif 动画。 3. 利用 character sheet 命令:创建一个角色的多角度以及特写细节,例如“a Super cute sports anime girl,style by Miyazaki Hayao,character sheet,full body,8k”。 4. 使用 emoji、expression sheet:emoji 代表表情包,expression sheet 代表各种表情组合,可用此核心关键词设计出表情包。例如“图片链接.png a Super cute sports anime girl,style by Miyazaki Hayao,emoji,expression sheet,8k”。 另外,使用 ControlNet 插件也能生成漫画动作参考图。首先进入文生图,填写提示词生成一张图。然后将图片拖入到 ControlNet 中,预处理器选择 reference only,控制模型选择“均衡”,保真度数值越高,对图片的参考越强。可以通过添加关键词的方式给人物换装、更改服装和表情、更改动作和表情、更改姿态、环境和表情等。这个功能在绘制系列插画、漫画、小说插图等工作时,能保持主角形象的统一,也能根据情况实时调整,后期配合 lora 潜力巨大。
2025-02-11
我想知道目前最新、效果最好、代码和模型开源的动作捕捉算法,也叫做人体姿态估计,是哪篇文章
目前最新、效果较好且代码和模型开源的人体姿态估计(动作捕捉算法)相关的研究有以下两篇: 1. 【SD】最强手部识别,controlnet 新预处理器 dw openpose 作者:白马少年|公众号:【白马与少年】 发布时间:20230813 20:00 原文网址:https://mp.weixin.qq.com/s/_RiKxWy9MXt4DUJIKH5w 介绍:在 controlnet 中,手部识别一直使用的是 openpose 预处理器,但复杂手势有时无法识别。新的 dw openpose 预处理器能完美解决手部识别问题,将其放入特定目录即可使用。但需说明的是,目前这个 DW Pose 只是更精确的 openpose 预处理器,未对 ControlNet 的 openpose 模型做改动。 2. YOLONAS Pose:一个开源的实时人体姿态估计模型 应用场景:基于骨骼标记为基础,适用于智慧体育等场景,可对训练过程的姿态、数据、状态等进行统计和管理。 技术类型:视频、AI 学习模型 简介:主要功能是识别图片和视频中人的姿势,能快速处理图像并实时返回姿态数据,适应不同场景和设备。 主要特点: 实时性能:旨在提供实时的姿态估计,适用于需要即时反馈的应用。 高精度:利用神经网络架构搜索(NAS)提高姿态估计的准确性。 优化的网络结构:NAS 自动测试不同网络结构,找到最优模型。
2024-12-31
midjourney中如何结合A图片的人物和B图片的动作和内容
在 Midjourney 中结合 A 图片的人物和 B 图片的动作和内容,可以使用新上线的“Character Reference”(cref)功能。以下是一些关键方法和示例: 1. 锚定细节:您可以掌控姿势、表情、情感、服装、道具、场景、动作等细节。例如:“Jo is a young woman with blue curly hair, pink sunglasses, and a colorful scarf around her neck. She waits in line at the bank. cref https://my.image.host/joisstanding.jpg”。 2. 让 cref 处理大部分工作:提示无需加强标志性细节,只是“操纵”或“定位”角色。例如:“有人正在银行排队等候。 cref https://my.image.host/joisstanding.jpg”。 3. 只提供场景:如果您的 cref 图像已包含想要的姿势和其他细节,您可以仅描述环境、周围环境、背景或情境,Midjourney 将努力将角色融入场景中。但可能会出现不连贯的结果,此时可尝试使用更高值的样式化,如“s 800”。 需要注意的是,此功能在使用 Midjourney 生成的图像人物时效果最佳,不太适用于真实人物或照片。同时,在 Midjourney V6 的 Web Alpha 版本中,您可以通过拖放或粘贴图像到想象栏,并选择相应图标来设置图像为图像提示、风格参考或角色参考。
2024-11-18
视频导出动作的AI
以下是关于视频导出动作的 AI 相关信息: AI 视频导出方面:普通社交媒体分享选 1080P,需放大选 720P,码率越高越好,可自定义最高 5 万。 Move AI 推出的 Move API 能从 2D 视频生成 3D 运动数据,支持多种 3D 文件格式导出,为 AR 应用、游戏开发等提供高质量 3D 运动数据,相关链接为 https://move.ai/api 。
2024-11-05