Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

学习大模型请给我一张知识图谱

Answer

以下是为您提供的大模型知识图谱:

  1. 非技术背景,一文读懂大模型
    • 整体架构
      • 基础层:为大模型提供硬件支撑,数据支持等,例如 A100、数据服务器等。
      • 数据层:企业根据自身特性维护的垂域数据,分为静态的知识库和动态的三方数据集。
      • 模型层:LLm 或多模态模型,LLm 即大语言模型,如 GPT,一般使用 transformer 算法实现;多模态模型包括文生图、图生图等,训练所用数据与 llm 不同,用的是图文或声音等多模态的数据集。
      • 平台层:模型与应用间的平台部分,如大模型的评测体系,或者 langchain 平台等。
      • 表现层:也就是应用层,用户实际看到的地方。
  2. AI Agent 系列(二):Brain 模块探究
    • 知识
      • 内置知识
        • 常识知识:包括日常生活中广泛认可的事实和逻辑规则,帮助智能体具备泛化能力。
        • 专业知识:涉及深入特定领域的详细信息,如医学、法律、科技、艺术等领域的专有概念和操作方法。
        • 语言知识:包括语法规则、句型结构、语境含义以及文化背景等,还涉及非文字部分如语调、停顿和强调等。
  3. 大模型入门指南
    • 通俗定义:输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。
    • 类比学习过程
      • 找学校:训练 LLM 需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练大模型。
      • 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。
      • 找老师:用算法讲述“书本”中的内容,让大模型能够更好理解 Token 之间的关系。
      • 就业指导:为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导。
      • 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。
    • Token:被视为模型处理和生成的文本单位,可代表单个字符、单词、子单词等,在将输入进行分词时,会对其进行数字化,形成词汇表。
Content generated by AI large model, please carefully verify (powered by aily)

References

非技术背景,一文读懂大模型(长文)

首先为方便大家对大模型有一个整体的认知,我们先从大模型的整体架构着手,来看看大模型的组成是怎么样的。下面是我大致分的个层。从整体分层的角度来看,目前大模型整体架构可以分为以下几层:[heading3]1.基础层:为大模型提供硬件支撑,数据支持等[content]例如A100、数据服务器等等。[heading3]2.数据层[content]这里的数据层指的不是用于基层模型训练的数据基集,而是企业根据自己的特性,维护的垂域数据。分为静态的知识库,和动态的三方数据集[heading3]3.模型层:LLm或多模态模型[content]LLm这个大家应该都知道,large-language-model,也就是大语言模型,例如GPT,一般使用transformer算法来实现。多模态模型即市面上的文生图、图生图等的模型,训练所用的数据与llm不同,用的是图文或声音等多模态的数据集[heading3]4.平台层:模型与应用间的平台部分[content]比如大模型的评测体系,或者langchain平台等,提供模型与应用间的组成部分[heading3]5.表现层:也就是应用层,用户实际看到的地方[content]这个就很好理解了,就不用我多作解释了吧

AI Agent系列(二):Brain模块探究

所以在深入讨论Brain模块的其他功能之前,我们首先需要了解大模型中所蕴含的知识类型。训练大模型其本质上就是将知识进行压缩,没有这些知识,模型是无法进行进一步推理、规划、反思的。[heading3]4.1内置知识[content]知识在大模型中通常被分为两大类。第一类是内置知识,这类知识在模型训练阶段就已经被整合进模型中。我们可以将内置知识进一步细分为三个主要类别:1.常识知识:常识知识包括了日常生活中广泛认可的事实和逻辑规则。这些信息帮助智能体具备了强大的泛化能力,使其在不进行特殊指导下也能进行基本的推理和判断。例如,它包括季节变化、物体的基本物理属性、社会行为准则等。这类知识对于构建智能体的世界观极为重要,使其能够在多种常见场景下作出符合逻辑的反应。1.专业知识:与常识知识不同,专业知识涉及深入特定领域的详细信息。这包括但不限于医学、法律、科技、艺术等领域的专有概念和操作方法。例如,在医学领域中,智能体需要了解疾病症状、治疗方法和药物作用机制;在法律领域,则需掌握法律条文、案例判例及其应用方式。这些专业知识使智能体在特定咨询或操作时更加精准有效。1.语言知识:语言是人类沟通的基础,对智能体同样重要。语言知识不仅仅是单纯的单词意义理解,更包括语法规则、句型结构、语境含义以及文化背景等。智能体通过这些复杂的语言系统来解析和生成自然语言,从而与人类进行有效交流。此外,语言知识还涉及到非文字部分如语调、停顿和强调等,这些都是理解和生成自然对话不可或缺的部分。

大模型入门指南

通俗来讲,大模型就是输入大量语料,来让计算机获得类似人类的“思考”能力,使之能够理解自然语言,能够进行『文本生成』、『推理问答』、『对话』、『文档摘要』等工作。既然是学习,那我们就可以用『上学参加工作』这件事来类比大模型的训练、使用过程:1.找学校::训练LLM需要大量的计算,因此GPU更合适,因此只有购买得起大量GPU的贵族学校才有资本训练自己的大模型2.确定教材::大模型顾名思义就是大,需要的数据量特别多,几千亿序列(Token)的输入基本是标配3.找老师::即用什么样的算法讲述“书本”中的内容,让大模型能够更好理解Token之间的关系4.就业指导::学完书本中的知识后,为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导5.搬砖::就业指导完成后,下面就要正式干活了,比如进行一次翻译、问答等,在大模型里称之为推导(infer)在LLM中,Token([2])被视为模型处理和生成的文本单位。它们可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token是原始文本数据与LLM可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表(Vocabulary),比如:The cat sat on the mat,会被分割成“The”、“cat”、“sat”等的同时,会生成下面的词汇表:|Token|ID||-|-||The|345||cat|1256||sat|1726||…|…|

Others are asking
知识图谱
知识图谱是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎的能力,增强用户的搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 知识图谱的关键技术包括: 1. 知识抽取: 实体抽取:通过命名实体识别从数据源中自动识别命名实体。 关系抽取:从数据源中提取实体之间的关联关系,形成网状知识结构。 属性抽取:从数据源中采集特定实体的属性信息。 2. 知识表示:包括属性图和三元组。 3. 知识融合: 实体对齐:消除异构数据中的实体冲突、指向不明等不一致性问题。 知识加工:对知识统一管理,形成大规模的知识体系。 本体构建:以形式化方式明确定义概念之间的联系。 质量评估:计算知识的置信度,提高知识质量。 知识更新:不断迭代更新,扩展现有知识,增加新知识。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。 在国家人工智能产业综合标准化体系建设指南中,知识图谱标准规范了知识图谱的描述、构建、运维、共享、管理和应用,包括知识表示与建模、知识获取与存储、知识融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、知识图谱交付与应用、知识图谱系统架构与性能要求等标准。
2025-04-17
RAG和知识图谱的结合,需要如何实现
要实现 RAG 和知识图谱的结合,可以参考以下步骤: 1. 数据加载:根据数据源的类型选择合适的数据加载器,如对于网页数据源,可使用 WebBaseLoader 利用 urllib 和 BeautifulSoup 加载和解析网页,获取文档对象。 2. 文本分割:依据文本特点选用合适的文本分割器,将文档对象分割成较小的文档对象。例如,对于博客文章,可使用 RecursiveCharacterTextSplitter 递归地用常见分隔符分割文本,直至每个文档对象大小符合要求。 3. 嵌入与存储:根据嵌入质量和速度选择合适的文本嵌入器和向量存储器,将文档对象转换为嵌入并存储。比如,可使用 OpenAI 的嵌入模型和 Chroma 的向量存储器,即 OpenAIEmbeddings 和 ChromaVectorStore。 4. 创建检索器:使用向量存储器检索器,传递向量存储器对象和文本嵌入器对象作为参数,创建用于根据用户输入检索相关文档对象的检索器。 5. 创建聊天模型:根据模型性能和成本选择合适的聊天模型,如使用 OpenAI 的 GPT3 模型,即 OpenAIChatModel,根据用户输入和检索到的文档对象生成输出消息。 此外,通用语言模型通过微调能完成常见任务,而对于更复杂和知识密集型任务,可基于语言模型构建系统并访问外部知识源。Meta AI 研究人员引入的 RAG 方法把信息检索组件和文本生成模型结合,能接受输入并检索相关文档,组合上下文和原始提示词送给文本生成器得到输出,适应事实变化,无需重新训练模型就能获取最新信息并产生可靠输出。Lewis 等人(2021)提出通用的 RAG 微调方法,使用预训练的 seq2seq 作为参数记忆,用维基百科的密集向量索引作为非参数记忆。
2025-03-28
知识图谱
知识图谱是一种揭示实体之间关系的语义网络,能够对现实世界的事物及其相互关系进行形式化描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎能力,增强用户搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 知识图谱的关键技术包括: 1. 知识抽取: 实体抽取:通过命名实体识别从数据源中自动识别命名实体。 关系抽取:从数据源中提取实体之间的关联关系,形成网状知识结构。 属性抽取:从数据源中采集特定实体的属性信息。 2. 知识表示:包括属性图、三元组等。 3. 知识融合: 实体对齐:消除异构数据中的实体冲突、指向不明等不一致性问题。 知识加工:对知识统一管理,形成大规模知识体系。 本体构建:以形式化方式明确定义概念之间的联系。 质量评估:计算知识的置信度,提高知识质量。 知识更新:不断迭代更新,扩展现有知识,增加新知识。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。 在国家人工智能产业综合标准化体系建设指南中,知识图谱标准规范了知识图谱的描述、构建、运维、共享、管理和应用,包括知识表示与建模、知识获取与存储、知识融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、知识图谱交付与应用、知识图谱系统架构与性能要求等标准。
2025-03-21
知识图谱产品
知识图谱(Knowledge Graph,KG)是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。 知识图谱于 2012 年 5 月 17 日被 Google 正式提出,其初衷是为了提高搜索引擎的能力,增强用户的搜索质量以及搜索体验。知识图谱可以将 Web 从网页链接转向概念链接,支持用户按照主题来检索,实现语义检索。 知识图谱的关键技术包括: 1. 知识抽取:通过自动化的技术抽取出可用的知识单元,包括实体抽取(命名实体识别(Named Entity Recognition,NER)从数据源中自动识别命名实体)、关系抽取(从数据源中提取实体之间的关联关系,形成网状的知识结构)、属性抽取(从数据源中采集特定实体的属性信息)。 2. 知识表示:属性图、三元组。 3. 知识融合:在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等,达到数据、信息、方法、经验等知识的融合,形成高质量知识库。包括实体对齐(消除异构数据中的实体冲突、指向不明等不一致性问题)、知识加工(对知识统一管理,形成大规模的知识体系)、本体构建(以形式化方式明确定义概念之间的联系)、质量评估(计算知识的置信度,提高知识的质量)、知识更新(不断迭代更新,扩展现有知识,增加新的知识)。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。
2025-03-21
知识图谱
知识图谱是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎的能力,增强用户的搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 知识图谱的关键技术包括: 1. 知识抽取: 实体抽取:通过命名实体识别从数据源中自动识别命名实体。 关系抽取:从数据源中提取实体之间的关联关系,形成网状知识结构。 属性抽取:从数据源中采集特定实体的属性信息。 2. 知识表示:包括属性图和三元组。 3. 知识融合: 实体对齐:消除异构数据中的实体冲突、指向不明等不一致性问题。 知识加工:对知识统一管理,形成大规模的知识体系。 本体构建:以形式化方式明确定义概念之间的联系。 质量评估:计算知识的置信度,提高知识质量。 知识更新:不断迭代更新,扩展现有知识,增加新知识。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。 在国家人工智能产业综合标准化体系建设指南中,知识图谱标准规范了知识图谱的描述、构建、运维、共享、管理和应用,包括知识表示与建模、知识获取与存储、知识融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、知识图谱交付与应用、知识图谱系统架构与性能要求等标准。
2025-03-21
知识图谱构建
知识图谱是一种揭示实体之间关系的语义网络,能够对现实世界的事物及其相互关系进行形式化描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎能力,增强用户搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 知识图谱构建的关键技术包括: 1. 知识抽取:通过自动化技术抽取可用的知识单元,如实体抽取(命名实体识别)、关系抽取(提取实体间关联关系)、属性抽取(采集特定实体的属性信息)。 2. 知识表示:包括属性图、三元组等。 3. 知识融合:在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等,包括实体对齐(消除实体冲突等不一致性问题)、知识加工(统一管理知识)、本体构建(明确定义概念联系)、质量评估(计算知识置信度)、知识更新(迭代扩展知识)。 4. 知识推理:在已有知识库基础上挖掘隐含知识。 在 LLM 落地思考方面,NLP 与知识图谱是主要的落地类型,但存在一些问题。如实现某个 NLP 任务时,需要大量人工标注和长时间训练,交付后较难新增意图和泛化任务,有时使用句式规则方式更好维护更新;构建知识图谱复杂,需与行业专家深度讨论,预见企业长远业务发展制定 schema,周期长且易与业务错位。而 LLM 出现后对 NLP、NLG、KG 有较大提升,带来更好更多的落地可能。 在以问题驱动的 AI+内容创作中,随着学习深入,可使用大模型帮助构建和扩展知识图谱。
2025-02-27
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
coze搭建知识库和上传文件做对比分析
以下是关于 Coze 搭建知识库和上传文件的对比分析: 创建文本型知识库: 自动分段与清洗:扣子可对上传的内容进行自动解析,支持复杂布局的文件处理,如识别段落、页眉/页脚/脚注等非重点内容,支持跨页跨栏的段落合并,支持解析表格中的图片和文档中的表格内容(目前仅支持带线框的表格)。操作步骤为在分段设置页面选择自动分段与清洗,然后依次单击下一步、确认,可查看分段效果,不满意可重新分段并使用自定义分段。 自定义:支持自定义分段规则、分段长度及预处理规则。操作时在分段设置页面选择自定义,然后依次设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度和文本预处理规则,最后单击下一步完成内容分段。 创建表格型知识库: 目前支持 4 种导入类型:本地文档、API、飞书、自定义。 本地文档:选择本地文档从本地文件中导入表格数据,目前支持上传 Excel 和 CSV 格式的文件,文件不得大于 20M,一次最多可上传 10 个文件,且表格内需要有列名和对应的数据。 API:参考特定操作从 API 返回数据中上传表格内容,包括选择 API、单击新增 API、输入 API URL 并选择数据更新频率,然后单击下一步。 飞书:参考特定操作从飞书表格中导入内容,包括选择飞书、在新增知识库页面单击授权并选择要导入数据的飞书账号、单击安装扣子应用(仅首次导入需授权和安装),然后选择要导入的表格并单击下一步。目前仅支持导入“我的空间”下的飞书文档,云文档的创建者必须是自己,暂不支持导入知识库和共享空间下的云文档。 上传文本内容: 在线数据:扣子支持自动抓取指定 URL 的内容,也支持手动采集指定页面上的内容,上传到数据库。 自动采集方式:适用于内容量大、需批量快速导入的场景。操作步骤为在文本格式页签下选择在线数据,然后依次单击下一步、自动采集、新增 URL,输入网站地址、选择是否定期同步及周期,最后单击确认,上传完成后单击下一步,系统会自动分片。 手动采集:适用于精准采集网页指定内容的场景。操作步骤为安装扩展程序,在文本格式页签下选择在线数据,然后依次单击下一步、手动采集、授予权限,输入采集内容的网址,标注提取内容,查看数据确认无误后完成并采集。
2025-04-18
知识库怎么构建
构建知识库的方法主要有以下几种: 1. 使用 Flowith 构建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,为其起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 等待 Flowith 对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 2. 使用 Dify 构建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:根据需求选择高质量模式、经济模式或 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 3. 本地部署大模型并搭建个人知识库(涉及 RAG 技术): 了解 RAG 技术:大模型训练数据有截止日期,RAG 可通过检索外部数据并在生成步骤中传递给 LLM 来解决依赖新数据的问题。 RAG 应用的 5 个过程: 文档加载:从多种来源加载文档,如 PDF、SQL 等。 文本分割:把文档切分为指定大小的块。 存储:包括将文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:将问题和检索出的嵌入片提交给 LLM 生成答案。 文本加载器:将用户提供的文本加载到内存中以便后续处理。
2025-04-15
如何搭建知识库
搭建知识库的方法如下: 使用 flowith 搭建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,给知识库起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 Flowith 会对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 使用 Dify 搭建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:提供三种索引方式,根据需求选择,如高质量模式、经济模式和 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 使用 Coze 智能体搭建: 手动清洗数据: 在线知识库:点击创建知识库,创建 FAQ 知识库,选择飞书文档,输入区分问题和答案,可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:注意拆分内容,提高训练数据准确度,按章节进行人工标注和处理,然后创建自定义清洗数据。 发布应用:点击发布,确保在 Bot 商店中能搜到。
2025-04-14
如何搭建自己的知识库
以下是搭建自己知识库的方法: 1. 选择“Manage Your Knowledge Base”,进入知识库管理页面。 2. 在页面左上角点击加号,添加新的知识库,并为其起一个易于分辨的名字。 3. 点击添加文件,建议使用 Markdown 格式的文件。 4. 等待 Flowith 对文件进行抽取等处理。 5. 处理完毕后,可在知识库管理页面测试检索,输入关键词过滤相关内容。 此外,搭建本地知识库还需了解 RAG 技术: 1. RAG 是一种当需要依靠不包含在大模型训练集中的数据时所采用的主要方法,即先检索外部数据,然后在生成步骤中将这些数据传递给 LLM。 2. 一个 RAG 的应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 文本分割:把 Documents 切分为指定大小的块。 存储:将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 检索:通过某种检索算法找到与输入问题相似的嵌入片。 输出:把问题以及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。 对于基于 GPT API 搭建定制化知识库,涉及给 GPT 输入定制化的知识。由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。Embeddings 是一个浮点数字的向量,两个向量之间的距离衡量它们的关联性,小距离表示高关联度。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。文档上有创建 embeddings 的示例。
2025-04-14
我想将常用的AI入口手机放在一张网页上,该如何设置waytoAGI页面
以下是关于将常用的 AI 入口放在一张网页上设置 WaytoAGI 页面的方法: 1. 点开链接就能看:不用注册,不用花钱,直接点击。 2. 想看啥就看啥:比如您想学 AI 绘画,就去看“AI 绘画”部分;想找 AI 工具,就去“工具推荐”部分。内容分得清清楚楚,想学啥都能找到。 3. 有问题还能问:如果看了还有不懂的,或者想跟别人交流,可以加入社群,大家一起讨论。 另外,关于使用 Cursor 制作您的第一个主页: 1. 在搞定一个非常简单的小游戏之后,可以做一个自己的个人介绍网站。可以先看看官网,比如 allinagi.com.cn、sboat.cn。假设要做一个《全 AI 自动驾驶的火星登陆飞船》项目,首先会有一个初步简单的项目介绍,比如 WaytoMars 是一个制造、运营全 AI 自动驾驶的火星登陆飞船公司品牌,有着领先全球的技术实力、人才优势,预计在 2030 年推出可承载上千人,五星豪华级的全 AI 自动驾驶的火星登陆飞船。有了项目介绍后,让 AI 帮助生成一个具有前端大师级审美、极富科幻感的网站首页。首先,新建一个 waytomars 文件夹并打开,在 AI 对话框中输入上述的话,一路等待 AI 制作以及加入您的修改意见即可。 2. 如何让别人看到您的作品预览:通过将项目文件夹整体上传,就可以生成一个临时浏览链接,在不需要域名和服务器的情况下让外部也能够看到您的作品。注意:如果发现 cursor 有所卡顿,注意是不是 AI 让您在终端区或者对话区确认重要操作,左下角将 ask every time 修改为 auto run 就可以全自动化了。 WaytoAGI 就是一个帮您快速入门 AI、学会用 AI 搞事情的“武器库”。不管您是完全不懂 AI 的小白,还是想用 AI 赚钱的普通人,它都能帮到您。AI 是未来的趋势,现在学一点都不晚,如果您想了解 AI、用 AI、甚至靠 AI 搞钱,WaytoAGI 就是您最该看的“AI 宝典”。
2025-04-14
我想找一个可以把服装图片用ai的方式直接‘穿’在另一张图片的模特身上
以下是两种可以将服装图片用 AI 的方式“穿”在另一张图片的模特身上的方法: 方法一:使用 ComfyUI GeminiAPI 1. 在 Google 的 AI Studio 申请一个 API key(需要网络环境),有免费的额度,网址为:https://aistudio.google.com/apikey?hl=zhcn 。 2. 安装相关依赖,根据使用的情况选择手动安装(如果使用 ComfyUI 便携版或自己的 Python 环境)或通过 ComfyUI Manager 安装。 手动安装:安装相关依赖。 通过 ComfyUI Manager 安装:在 ComfyUI 中安装并打开 ComfyUI Manager,在 Manager 中搜索“Gemini API”,然后点击安装按钮。 方法二:使用【SD】 1. 进行 SAM 模型分割:来到图生图中,提示词输入“蓝色毛衣”,蒙版区域内容处理改为“填充”,尺寸改为和图像一致,重绘幅度为 1。 2. 处理可能出现的问题:如蒙版区域较大导致的衔接问题,可以通过降低重绘幅度或添加一个 openpose 来控制人物的身体,得到正确的姿势。 3. 选择合适的重绘功能:除了使用图生图的局部重绘,还可以使用 controlnet 的局部重绘功能,控制模式选择“更注重提示词”,具体效果可自行试验选择。
2025-04-09
如何让一张卡通人物动起来
要让一张卡通人物动起来,可以参考以下几种方法: 1. 使用 AnimateX :类似 Animate Anyone,输入角色图片和参考动作序列,即可实现角色动画,尤其适配拟人化的角色。 2. 借助 Pika : 账号注册:访问完成免费注册。 素材整理: 视频:准备一段视频,可手机实拍,≥5 秒,生成时会自动截取前 5 秒,横屏/竖屏均可(建议 1080p 以上)。 图片:准备一张主体清晰无遮挡的角色图片,生成的视频中将参考此图片的角色并融入视频。 文案思路:提前构思角色动态关键词(如“奔跑/挥手/发光”),也可让模型自由发挥。 3. 运用即梦进行图生视频:只需上传图片至视频生成模块,用简单提示词描绘画面中的动态内容,能生成时长为 3 秒钟的画面,运镜类型可根据剧本中的镜头描绘设置,以随机运镜为主,生成速度可选择慢速。 此外,在制作过程中,还可以像桂大羊的教程那样,通过描绘人物的提示词、上传角色参考图、扣除角色背景以便于进行角色加背景的融合生成时进行垫图操作等方式,提高人物和场景的融合度。
2025-03-30
用什么AI可以把一张图重新制作成另一张图
以下是一些可以将一张图重新制作成另一张图的 AI 工具和相关知识: 1. Stable Diffusion: 图生图功能:上传图片后,它会根据您的图片、选择的模型、输入的 prompt 等信息进行重绘。重绘幅度越大,输出的图和输入的图差别就越大。 尺寸:需注意选择合适的图片生成尺寸,太小可能导致 AI 生成内容有限,太大则可能使 AI 失控。 采样算法:决定了 AI 用何种算法生图。 采样次数:调整图片内容的次数,并非越多越好,过多可能效果提升不明显且耗时增加。 提示词相关性:影响图像与 prompt 的匹配程度,过高可能导致图像质量下降。 随机种子 seed:固定种子可对图片进行“控制变量”操作,首次生成图时无需设置。 Clip Skip:一般设为 2,早期无需过多关注。 ENSD:eta 噪声种子增量,默认设为 0 即可。 例如,将一幅图再次放入以图生图中,通过 DeepBooru 反推关键词,并使用新的大模型和 LORA 进行重新生成,可以改变图片风格。但生成的图可能存在细节瑕疵,需要不断调整参数或借助 PS 修补。 此外,在全国首例 AI 生成图片著作权案例中,法官认定利用 Stable Diffusion 等工具,根据使用者输入的提示词、增删修改相关参数生成的具有独创性和智力投入的图片属于美术作品,受到著作权保护,使用者享有生成图片的著作权。
2025-03-24
生成一张图片,把楼顶的裂缝做成人体表皮的感觉,冒着微红的血液,有施工工人正在刷涂料修补这个伤口
很抱歉,暂时无法直接为您生成这样的图片。但您可以使用一些 AI 绘画工具来尝试实现,比如 DALL·E2、StableDiffusion 等。您可以在这些工具中输入详细的描述,如“楼顶的裂缝呈现人体表皮的质感,冒着微红的血液,有施工工人正在刷涂料修补这个伤口”,然后通过不断调整参数和提示词来获得您期望的效果。
2025-03-21
做一张图片一只巨大的手稳稳托着一座房子,房子上有人正在努力施工补修裂缝,天空中倾盆而下瓢泼大雨
很抱歉,暂时无法为您生成您所描述的这张图片。但您可以使用一些 AI 绘画工具来实现,比如 DALL·E2、StableDiffusion 等。您可以在这些工具中输入详细的描述关键词,如“巨大的手稳稳托着一座房子,房子上有人正在努力施工补修裂缝,天空中倾盆而下瓢泼大雨”,来尝试生成您想要的图片。
2025-03-21