Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

照片修复

Answer

以下是关于照片修复的相关信息:

使用 Gemini 2.0 Flash 进行照片修复

  • 零门槛:即使不会 PS,只要会打字就能操作。
  • 速度快:几秒钟出结果。
  • 效果提升小技巧:指令要具体清晰,比如“把帽子改成红色,加个星星图案”;使用清晰的照片,模糊的图可能效果不佳;多尝试修改指令。

图像高清修复的实现技术拆解: 整个流程分为三部分:

  1. 图像输入:添加 Load Image 节点加载图像,不建议上传大分辨率图片,以免处理时间过长。
  2. 图像高清修复:使用 Iceclear/StableSR 等模型进行修复和 2 倍放大,搭配合适的提示词,如正向:(masterpiece),(best quality),(realistic),(very clear),反向:3d,cartoon,anime,sketches,(worst quality),(low quality)。
  3. 图像高清放大:用 realisticVision 底膜进行二次修复,使用提示词反推 node 提取画面提示词,搭配 tile ControlNet 提升细节感,再用合适的高清放大模型二次放大。

此外,GPT 4O 在解决老照片修复等问题时,以往需要搭建复杂工作流,现在只需一句话即可实现。

Content generated by AI large model, please carefully verify (powered by aily)

References

✨ 零门槛玩转AI改图!Gemini 2.0 Flash「说话就能PS」小白教程 ✨

[heading3]照片修复[content][heading3]可视化菜谱[content][heading2]小技巧,让效果更棒!?[content]指令要具体:别含糊,说清楚想改啥,比如“把帽子改成红色,加个星星图案”。用好图:照片越清晰越好,模糊的图Gemini可能会“看不懂”。多试几次:第一次不完美没关系,改改指令再来,Gemini会越来越懂你!放飞创意:别怕奇思妙想,脑洞大开才能创造更多可能性![heading2]为什么你会爱上它?❤️[content]零门槛:不会PS也没关系,只要会打字就能用。超快:几秒钟出结果。无限可能:从搞笑编辑到实用设计,想干啥干啥!马上试试吧!?心动不如行动!现在就去Google AI Studio,找Gemini 2.0 Flash,上传一张图,试试你的第一个指令。不管是给宠物加个超人披风,还是把饮料瓶变成五颜六色,这个功能都能让你玩得不亦乐乎。?赶紧去试试,释放你的创意吧!有什么好玩的作品,记得回来分享哦!?

多模态4O应用场景案例

帮我用我的图片生成小红书封面图,需要偏科技生活感大标题"GPT 4O真的太强了!"小标题"创赛PPT制作进入一秒生成时代"宣传海报风格,现代简约,小红书风格,活泼,夸张的表达,人物占据主要位置,标题文字采用特殊效果表达人物采用卡通风格,具有夸张的表情和动作对于创赛PPT和一秒进行特殊圈画以凸显,画面可以再丰富,吸睛一些,保证文字渲染的正确性3:4[heading1]12、生物解剖科普图[content]帮我生成画面中蚂蚁的生物剖面视图,并在视图中标注所涉及的生物器官、部位。以及对应的名称[heading1]13、模特首饰替换(实用)[content]去掉图一中的项链,给模特戴上图二的项链[heading1]14、移除图中元素(实用)[content]修改照片,要求,移除图片中的人物,只保留动物和风景,要100%保留[heading1]15、老照片修复[content]修改照片,要求,移除图片中的人物,只保留动物和风景,要100%保留而以往AI在解决这一问题上,往往需要搭建极为复杂的工作流,现在GPT 4O只需要一句话,就可以实现极其复杂的工作流截图[heading1]16、电商头图设计(凭空产生)[content]根据这个包,给我生成一个女士模特的上身效果图,实拍效果,真实质感[heading1]17、海报参考生成[content]参考这张海报设计,把图中的数字6给我替换成数字5,其他保持一致

图像高清修复

整个图像修复放大的流程分为三部分:输入原始图像、修复图像、放大并重绘图像。下面将详细拆解每一部分的生成原理。[heading3]一、图像输入[content]第一部分添加Load Image节点加载图像,只需上传需要处理的图片即可。不建议上传大分辨率的图片,图片分辨率越大,处理的时间就越长。[heading3]二、图像高清修复[content]第二部分进行高清修复,把原本模糊的图片修复,并进行2倍放大。Checkpoint大模型使用Iceclear/StableSR,这是一种新颖的方法来利用封装在预先训练的文本到图像扩散模型中的先验知识来实现盲超分辨率(SR)。具体来说,就是通过时间感知编码器,在不改变预先训练的合成模型的情况下实现有希望的恢复结果,从而保留生成先验并最小化训练成本。并且需要搭配Stable SR Upscaler模型才能在最大程度上修复图像,推理图片每个噪点,以还原图像。提示词部分应包含我们想要达到的目的内容,在此场景中如正向:(masterpiece),(best quality),(realistic),(very clear),反向:3d,cartoon,anime,sketches,(worst quality),(low quality)(杰作),(最高品质),(逼真的),(非常清晰);3D,卡通,动漫,素描,(最差质量),(低质量)全程采取两次高清修复,这一次修复原始图像分辨率并且放大,已经很完美还原,但是分辨率并不够,继续进行下一步。[heading3]三、图像高清放大[content]这一步主要针对第一次放大修复后的图像,进行二次修复。这里用realisticVision底膜最合适,这个模型在重绘扩图放大等领域效果非常好。使用提示词反推node对图像进行画面提示词提取,搭配tile ControlNet提升画面细节感,然后需用合适的高清放大模型,对图像进行二次放大。

Others are asking
高清视频修复ai工具
以下为一些高清视频修复的 AI 工具: 1. 星流一站式 AI 设计工具: 高级模式下,基础模型允许使用更多的微调大模型,图片参考允许使用更多的图像控制功能。星流基础大模型下,增加了 tile 分块与 softedge 线稿。 高清分辨率修复:利用算法对初步生成的图像进行简单的图生图高清放大(目前仅支持基础模型 xl 和 1.5 模型)。 放大算法影响图像放大后的图像质量,重绘幅度与初步生成的图像的相似度,其他参数默认即可。 采样器和采样步数会影响出图质量和生成时间,随机种子和 CFG Scale 也有相应作用,脸部/手部修复利用算法对人像的脸部或者手部进行修复。 2. Pika: 发布 Pikaddition 能力,可以将用户图片物体融合到拍摄视频,不会改变原视频且保证新视频创意效果自然。 支持用户自行上传视频(视频时长需 5s 以上),支持物体、人物(卡通、真人)图像,有 15 次免费尝试机会。 使用方法:进入 Pika 官网,页面底部选择 Pikaddition,上传视频、图像,输入文字描述提示词,点击确认即可。 地址:https://pika.art/ 3. Topaz Labs: 推出 Starlight 首个用于视频修复的扩散模型,只需输入素材,AI 可自动降噪、去模糊、放大、抗锯齿,无需手动调整与参数调整,达成专业视频高清修复。 目前正在 Beta 中。 地址:https://www.topazlabs.com/ 4. Tusiart: 具有高清修复功能,在本来设置的图像分辨率基础上,让图像分辨率变得更加精细。 有 ADetailer 面部修复插件。
2025-04-14
旧照片修复
旧照片修复是 AI 绘画领域中的一项重要应用。以下是关于旧照片修复的一些相关信息: 以往解决旧照片修复问题往往需要搭建极为复杂的工作流,现在 GPT 4O 只需要一句话就可以实现。 图像放大修复是 AI 绘画领域必不可少的一部分,利用 AI 技术进行图像修复,可以让模糊的旧照片重现清晰,保留珍贵回忆。例如,以前手机拍摄的低分辨率图片,放到如今智能手机上观看会非常模糊,这时可用 AI 技术进行高清修复。 ComfyUI 结合特定工作流,只需十几个基础节点就能实现较好的老照片修复效果。 参数调节方面,一般先确认放大倍数,然后根据出来的图片调整 controlNet 的强度。 Flux.1dev ControlNet 是为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,采用合成复杂数据退化方案进行训练,目的是让模型学会处理各种真实世界中可能遇到的图像退化情况。 Flux Ultimator 能增加小细节,增强色彩,在 0.1 的强度设置下也有显著效果,能顺利集成到工作流程中,与其他 LORA 结合使用时强度需小于 0.5。 若图片质量细节不够,可选择 T5 Clip 的 fp16 版本。
2025-04-14
老照片修复
老照片修复是一个具有一定复杂性但通过 AI 技术可以实现较好效果的领域。以下是一些相关信息: 在解决老照片修复问题上,以往 AI 往往需要搭建极为复杂的工作流,而现在 GPT 4O 只需要一句话就可以实现。 对于老照片上色,可启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能,在显存不够的情况下将图片放大到足够倍数。 对于复杂的老照片,如人物多、场景复杂、像素低的情况,可在 PS 里进行角度调整和照片裁切,然后上色。若直接上色效果不佳,可放弃人物服装颜色指定,只给场景方向,让 AI 自行决定。还可加入第二个 controlnet 来控制颜色,使用 t2ia_color 模型,给出简单关键词如“蓝天、绿树、灰石砖”。 ComfyUI 老照片修复结合 Flux Controlnet Upscale 工作流,以前的工作流较复杂,现在只要十几个基础节点就能实现同样甚至更好的效果。一般先确认放大倍数,再根据图片调整 controlNet 的强度。Flux.1dev ControlNet 是为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,采用特定训练方式处理各种真实世界中可能遇到的图像退化情况。Flux Ultimator 能增加小细节和放大色调丰富性、深度,在 0.1 强度设置下有显著增强效果,能顺利集成到工作流程中,与其他 LORA 结合使用时强度需小于 0.5。若图片质量细节不够,可选择 fp16 版本的 T5 Clip。
2025-04-14
老照片修复
老照片修复是一项具有一定复杂性的工作,但随着 AI 技术的发展,实现方式也在不断改进和优化。 以往,AI 在解决老照片修复问题时,往往需要搭建极为复杂的工作流。而现在,例如 GPT 4O 只需要一句话,就可以实现部分修复需求。 在具体的修复方法中,如使用 SD 进行老照片上色,可以启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染的功能,在显存不够的情况下将图片放大到足够的倍数。对于复杂的老照片,如人物多、场景复杂、像素低的情况,可以先在 ps 里面进行角度调整和照片裁切,然后进行上色。若直接上色效果不佳,可放弃人物服装的颜色指定,只给场景方向,让 AI 自行决定,还可加入第二个 controlnet 来控制颜色。 ComfyUI 老照片修复结合 Flux Controlnet Upscale 工作流,以前复杂的工作流现在只要十几个基础的节点就能实现同样的效果甚至更好。其中涉及参数的调节,一般先确认放大的倍数,然后根据出来的图片来调整 controlNet 的强度。Flux.1dev ControlNet 是为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,采用合成复杂数据退化方案进行训练。Flux Ultimator 能增加小细节和放大色调的丰富性和深度,在 0.1 的强度设置下也能有显著增强效果,能顺利集成到工作流程中。若图片质量细节不够,T5 Clip 选择 fp16 的版本。
2025-04-11
老照片修复
老照片修复是一项具有一定复杂性的工作,但随着 AI 技术的发展,处理方式也在不断改进和优化。 以往,AI 在解决老照片修复问题时,往往需要搭建极为复杂的工作流。而现在,如 GPT 4O 等技术,只需要一句话就可以实现部分修复需求。 在具体的修复方法中,例如使用 SD 进行老照片上色,可以启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染的功能,在显存不够的情况下将图片放大到足够的倍数。对于复杂的老照片,如人物多、场景复杂、像素低的情况,可以先在 ps 里面进行角度调整和照片裁切,然后进行上色。如果直接上色效果不佳,可以只给场景方向的提示词,让 AI 自行决定颜色。还可以加入第二个 controlnet 来控制颜色,使用 t2ia_color 的模型,并给出简单的关键词,如蓝天、绿树、灰石砖等。 ComfyUI 老照片修复结合 Flux Controlnet Upscale 工作流,以前较为复杂的工作流现在只需十几个基础节点就能实现同样甚至更好的效果。在参数调节方面,一般先确认放大倍数,然后根据出来的图片调整 controlNet 的强度。Flux.1dev ControlNet 是为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,采用合成复杂数据退化方案进行训练。Flux Ultimator 能增加小细节和放大色调的丰富性和深度,在 0.1 的强度设置下也能有显著增强效果,能顺利集成到工作流程中,与其他 LORA 结合使用时需将强度降低小于 0.5。如果发现出来的图片质量细节不够,可以选择 fp16 版本的 T5 Clip。
2025-04-10
老照片修复
老照片修复是一项具有一定复杂性的工作,但随着 AI 技术的发展,处理方式变得更加便捷高效。 以往,AI 在解决老照片修复问题时,往往需要搭建极为复杂的工作流。而现在,如 GPT 4O 只需要一句话,就可以实现部分需求。 在具体的修复方法中,例如使用 SD 进行老照片上色,可以启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染的功能,在显存不够的情况下将图片放大到足够的倍数。对于复杂的老照片,如人物多、场景复杂、像素低的情况,可以先在 ps 里面进行角度调整和照片裁切,然后进行上色。若直接上色效果不佳,可只给场景方向,让 AI 自行决定颜色。还可以加入第二个 controlnet 来控制颜色,使用 t2ia_color 的模型,给出简单的关键词,如“蓝天、绿树、灰石砖”。 ComfyUI 老照片修复结合 Flux Controlnet Upscale 工作流,以前复杂的工作流现在只需十几个基础节点就能实现同样效果甚至更好。一般先确认放大倍数,然后根据图片调整 controlNet 的强度。Flux.1dev ControlNet 是为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,采用合成复杂数据退化方案进行训练。Flux Ultimator 能增加小细节和鲜艳色彩增强,在 0.1 的强度设置下也能有显著增强效果,能顺利集成到工作流程中。若图片质量细节不够,T5 Clip 选择 fp16 的版本。
2025-04-09
如果改变照片中人物的表情
要改变照片中人物的表情,可以通过以下几种方式: 1. 在使用 SD 脸部修复插件 After Detailer 时,输入如“伤心、流泪”这样针对表情的正负提示词,人物的表情会进行相应改变。但输入“带着墨镜”可能没有效果。 2. 使用 Magic Brush 工具,选中人物的眉毛、眼睛、嘴唇等部位,通过调节轨迹的方向来实现合理的表情变化。 3. 在 Midjourney V6 中,若遇到无法改变角色脸部等问题,可按照以下步骤排除故障:首先确保写了强有力的提示以建议新的姿势、风格或细节;若角色抗拒被操纵,可能是 cref 图像支配了提示,可通过使用 cw进行处理,尝试将提示与较低的 cref 权重一起使用,如 cw 60,按照特定步骤操作,还可考虑使用 来恢复面部区域。
2025-04-14
老照片变高清
以下是使用 AI 将老照片变高清的步骤: 1. 给老照片上色:为做到颜色与内容统一,可启用 cutoff 插件,按顺序设置好颜色提示词。不了解该插件的可参考文章。 2. 使照片人脸变清晰:将照片放入后期处理,使用 GFPGAN 算法,可参考文章。但此步骤无法使头发、衣服等元素变清晰。 3. 放大照片:将图片发送到图生图中,打开 stableSR 脚本,放大两倍。此放大插件是所有插件中对原图还原最精准、重绘效果最好的,可参考文章。切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可不写以免干扰原图。 4. 显存不够时:启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能帮助放大图片。 5. 处理复杂照片:对于人物多、场景复杂、像素低的照片,可先在 ps 里调整角度和裁切,然后上色。若直接上色效果不佳,可放弃人物服装颜色指定,只给场景方向,让 AI 自行决定。还可加入第二个 controlnet 控制颜色,使用 t2ia_color 模型,给出简单关键词,如“蓝天、绿树、灰石砖”。最后进行脸部修复和放大。
2025-04-13
如何让老照片变清晰
以下是让老照片变清晰的方法: 1. 将照片放入后期处理中,使用 GFPGAN 算法使人脸变清晰。您可以参考文章。 2. 将图片发送到图生图中,打开 stableSR 脚本,放大两倍。此放大插件是所有插件中对原图还原最精准、重绘效果最好的。您可以参考文章。 3. 切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可以不写以免对原图产生干扰。 4. 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染的功能,能在显存不够的情况下将图片放大到足够的倍数。 5. 对于复杂的照片,可先在 ps 里面进行角度调整和照片裁切,然后使用上述步骤进行上色。若直接上色效果不佳,可放弃人物服装的颜色指定,只给场景方向,让 AI 自行决定。还可加入第二个 controlnet 来控制颜色,使用 t2ia_color 的模型,给出简单的关键词,如“蓝天、绿树、灰石砖”。 另外,进行超清无损放大修复需要准备以下文件和操作: 1. 使用 StabilityAI 官方的 Stable Diffusion V2.1 512 EMA 模型,放入 stablediffusionwebui/models/StableDiffusion/文件夹中。 2. 将 StableSR 模块(约 400M 大小)放入 stablediffusionwebui/extensions/sdwebuistablesr/models/文件夹中。 3. 将 VQVAE(约 750MB 大小)放在 stablediffusionwebui/models/VAE 中。
2025-04-13