Navigate to WaytoAGI Wiki →
Home/All Questions
AI阅读习惯养成APP
以下是为您提供的关于 AI 阅读习惯养成的相关内容: AI 稍后读助手的设计思路: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口输入更符合用户习惯。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看,提高可访问性。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成合适的阅读计划。 同在字节生态中的 Coze、飞书、飞书多维表格可以构建完整的 AI 工作流:通过飞书机器人与 Coze 搭建的智能体对话,在聊天窗口完成链接输入和阅读计划输出;由 Coze 调用大模型、插件完成内容整理和推荐;利用飞书多维表格存储和管理稍后读数据,无需开发插件和 APP 即可实现跨平台的稍后读收集与智能阅读计划推荐。 关于 DeepSeek R1 的纯强化学习: DeepSeek R1 引入纯强化学习(RL),不依赖大量人类标注数据,通过自我探索和试错学习。在“冷启动”阶段,通过少量人工精选的思维链数据初步引导,建立符合人类阅读习惯的推理表达范式,随后主要依靠强化学习,在奖励系统反馈下(对结果准确率与回答格式进行奖励)自主探索推理策略,不断提升回答准确性,实现自我进化。准确率奖励用于评估最终答案是否正确,格式奖励强制结构化输出,让模型把思考过程置于<think></think>标签之间。如 Alpha Zero 只训练三天就完胜 Alpha Go Lee,Alpha Go 结合监督学习和强化学习,受人类局限,Alpha Zero 纯强化学习,具有创造性风格。大模型 AI 在纯强化学习下展现出超出想象的成长潜力,DeepSeek R1 更注重学习推理底层策略,培养通用推理能力,实现跨领域知识迁移运用和推理解答。
2025-03-28
如何详细的学习AI
以下是详细的学习 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是新手还是中学生,学习 AI 都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能。
2025-03-28
有哪些节点式AI对话工具
以下是一些节点式 AI 对话工具: 1. Coze 中的问答节点: 是 Coze 工作流中的重要组件,能让机器人主动收集用户信息,实现更自然的对话交互。 可收集用户具体需求和信息,引导用户选择特定功能或服务,确保获取完整必要信息。 有两种问答方式:直接回答模式,用户用自然语言自由回答,bot 提取关键信息;选项回答模式,提供预设选项供用户选择,适用于功能选择菜单、分步骤引导、服务类型分类等。 配置说明包括选择执行此节点的模型、设置输入参数、提问内容、回答类型和输出等。 2. Coze 中的图像流节点: 专门用于图像处理,可通过可视化操作添加图像处理节点构建流程生成图像。 图像流发布后可在智能体或工作流中使用。 3. Coze 中的大模型节点: 调用大语言模型,使用变量和提示词生成回复。 模型方面,基础版和专业版按需使用,专业版支持接入更多模型资源。 模型选择右下角有生成多样性设置,包括精确模式、平衡模式和创意模式。 输入包括智能体对话历史、参数名与变量值,变量值可引用前面链接过的节点的输出或进行输入。
2025-03-28
有哪些好用的ai视频总结工具
以下是一些好用的 AI 视频总结工具: 1. Runway:在真实影像方面质感最好,战争片全景镜头处理出色,控件体验感较好,但容易变色,光影不稳定,控制能力最强,可指定局部对象设置运动笔刷。 2. Pixverse:在高清化方面有优势,对偏风景和纪录、有特定物体移动的画面友好,能力全面,个人比较喜欢用,但同时只能进行 4 个任务。 3. Haiper:默默无闻,只能生成 2 秒,但有很多不错的镜头,稳定性强,优点是没有并发任务限制。 4. Pika:对于奇幻感较强的画面把控最好,会比较自然,但真实环境的画面容易糊,还有嘴型同步功能,对二次元友好。 5. SVD:整体略拉垮,唯一能打的就是在风景片,优点是不带水印,动作幅度较大,但崩坏概率极大。 此外,StableVideo 也是目前市面上优秀的 AI 视频工具,目前开放公测,除每日 150 个赠送积分外,还新增了积分购买选项。它可以操作固定种子、步数、运动幅度,交互有趣,在生成过程中会给出案例让用户帮忙做标注。 不仅如此,还可以利用 AI 总结群聊消息、文章和 B 站视频。对于文章,可直接全选复制全文发送给 GPTs 进行总结。对于 B 站视频,如果有字幕,可安装油猴脚本“Bilibili CC 字幕工具”下载字幕,然后将字幕内容全选复制发送给 GPTs 进行总结。总结完视频内容后还可继续向 AI 提问更多细节或探讨内容。
2025-03-28
2024年10月的AIPO活动相关云文档在哪儿?
以下是与 2024 年 10 月的 AIPO 活动相关的云文档: :包含关于 AI 模型训练的介绍与讲解,如 Eagle 插件批量收藏 3D 图表、不同步数训练时间、使用 MZ 数据集训练 Flux、云服务器训练流程、训练集收集要求、训练模型的时机、角色一致性表现、云服务器训练集设置、模型训练参数设置、模型训练启动与等待等内容。 》,列举了美国融资金额超过 1 亿美元的 AI 公司。 :包含 2024 年 10 月 24 日娜乌斯佳:AIGC 商业片落地经验分享等多个日期的智能纪要。
2025-03-28
AI就业
以下是关于 AI 就业的相关信息: AI 就业市场: 1. 求职者要做好信息甄别,除了参考 boss 直聘的招聘评价,还应提前在脉脉等平台收集公司的其他信息。 2. 部分企业搞不懂 AI 能带来的价值,求职者若有咨询和商业化思维,能帮助公司厘清业务增长机会,则可以与这类企业交流。 3. 不同公司对 AI 产品经理的定位不同,招聘市场上的岗位职责和任职要求也各异,未来会逐渐统一标准,这是产品经理转型的机会。 4. 有行业沉淀和认知的产品经理转型更有机会,目前应用层的机会在“AI+行业”,只懂 AI 或只懂行业是不够的,业务创新也很重要,比如找到细分场景痛点并完成 PMF 验证,海外有很多优秀案例。 AI 求职者所需技能: 1. 核心技能包括产品设计与开发(如产品设计、规划、用户需求分析、交互设计、用户体验、开发、逻辑思维、测试、功能规划、创新、策划等)、人工智能与技术(如人工智能、NLP、AIGC、AI 技术、AI 产品设计与规划、大语言模型、云计算等)、市场与用户研究(如竞品分析、用户调研、市场分析、需求分析、洞察等)、沟通与协作(如沟通能力、跨部门与团队协作、执行力等)、分析工具与方法(如 SPSS、学习能力、创新与思维、审美等)。 2. 非核心技能包括技术与开发(如数据库、技术规划、OpenCV、ERP、产品经理、需求文档、ASR、Mysql、Hadoop、Spark、数据结构、处理、软件开发、Python、SQL 等)、数据分析与人工智能(如行业动态、医疗知识图谱、数据质量、算法开发、模式识别、Kafka、洞察、分析、推荐算法等)、市场营销与销售(如市场洞察、营销、调研、功能设计、自驱力、协调能力、资源协调等)、管理与沟通(如管理、产品生命周期管理、需求管理、英语等)。
2025-03-28
AI可以从事什么行业
AI 已经广泛应用于众多行业,以下是一些主要的应用领域: 1. 医疗保健: 医学影像分析:用于分析医学图像辅助诊断疾病。 药物研发:加速药物研发,识别潜在药物候选物和设计新治疗方法。 个性化医疗:分析患者数据提供个性化治疗方案。 机器人辅助手术:控制手术机器人提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低金融机构风险。 信用评估:评估借款人信用风险,辅助贷款决策。 投资分析:分析市场数据帮助投资者做出明智投资决策。 客户服务:提供 24/7 客户服务,回答常见问题。 3. 零售和电子商务: 产品推荐:分析客户数据推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业: 预测性维护:预测机器故障避免停机。 质量控制:检测产品缺陷提高产品质量。 供应链管理:优化供应链提高效率降低成本。 机器人自动化:控制工业机器人提高生产效率。 5. 交通运输: 自动驾驶:开发自动驾驶汽车提高交通安全性和效率。 交通管理:优化交通信号灯和交通流量缓解拥堵。 物流和配送:优化物流路线和配送计划降低运输成本。 无人机送货:将货物快速送达偏远地区。 6. 其他应用场景: 教育:提供个性化学习体验。 农业:分析农田数据提高农作物产量和质量。 娱乐:开发虚拟现实和增强现实体验。 能源:优化能源使用提高能源效率。 在汽车行业,AI 的应用案例包括: 1. 自动驾驶技术:利用图像识别、传感器数据分析和决策制定实现自主导航和驾驶,如特斯拉、Waymo 和 Cruise 等公司在开发和测试。 2. 车辆安全系统:增强车辆安全性能,如自动紧急制动、车道保持辅助和盲点检测系统。 3. 个性化用户体验:根据驾驶员偏好和习惯调整车辆设置。 4. 预测性维护:分析车辆实时数据预测潜在故障和维护需求。 5. 生产自动化:在汽车制造中自动化生产线,提高生产效率和质量控制。 6. 销售和市场分析:分析市场趋势、消费者行为和销售数据制定营销策略和优化产品定价。 7. 电动化和能源管理:优化电动汽车电池管理和充电策略。 8. 共享出行服务:优化路线规划、调度车辆和定价策略。 9. 语音助手和车载娱乐:通过语音命令控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:远程监控车辆状态提供实时诊断和支持。 人工智能的应用场景还在不断扩展,未来将对我们的生活产生更加深远的影响。
2025-03-28
那三款AI写作能力最强
以下为目前写作能力较强的三款 AI 工具: 1. Muse:专门为小说创作训练的 AI 模型工具,可实现在线的小说续写修改、创意头脑风暴以及基于画布形式的故事创作,可免费试用。 2. GPT4:目前功能最强的人工智能写作工具,可以在 Bing(选择“创新模式”)上免费访问,或者通过购买 ChatGPT 的$20/月订阅来访问。 3. Claude 2:写作能力紧随 GPT4 之后,也提供了有限的免费选项。 此外,在广告文案写作方面,以下是排名靠前的几款工具: 1. Simplified:4 月访问量 483 万,相对 3 月变化 0.09。 2. klaviyo SMS Assistant:4 月访问量 471 万,相对 3 月变化 0.045。 3. KoalaWriter:4 月访问量 373 万,相对 3 月变化 6.919。
2025-03-28
提示词
提示词相关知识如下: 1. 什么是提示词: 用于描绘您想生成的画面。 输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。 启用提示词优化后,能帮您扩展提示词,更生动地描述画面内容。 2. 如何写好提示词: 可以点击提示词上方官方预设词组进行生图。 提示词内容要准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可以帮助 AI 理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印。 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先,也可对已有的提示词权重进行编辑。 辅助功能包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 3. 提示词要素: 提示词可以包含指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息,引导语言模型更好地响应)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。 4. 提示工程与提示词的区别: 提示工程是人工智能领域中,特别是在自然语言处理和大型语言模型的上下文中,一个相对较新的概念,涉及设计和优化输入提示,以引导 AI 模型生成特定类型的输出或执行特定的任务。 提示词通常指的是直接输入到 AI 模型中的问题、请求或指示,是提示工程的一部分。 提示工程是一个更广泛的概念,不仅包括创建提示词,还涉及理解模型的行为、优化提示以获得更好的性能、以及创造性地探索模型的潜在应用。提示工程的目标是最大化 AI 模型的效用和性能,提示词是实现这一目标的手段之一。在实际应用中,提示工程可能包括对 AI 模型的深入分析、用户研究、以及对特定任务的定制化提示设计。
2025-03-28
图像识别模型
图像识别模型通常包括编码器和解码器部分。以创建图像描述模型为例: 编码器:如使用 inception resnet V2 应用于图像数据,且大部分情况下会冻结此 CNN 的大部分部分,因为其骨干通常是预训练的,例如通过庞大的数据集如图像网络数据集进行预训练。若想再次微调训练也是可行的,但有时仅需保留预训练的权重。 解码器:较为复杂,包含很多关于注意力层的说明,还包括嵌入层、GRU 层、注意力层、添加层归一化层和最终的密集层等。 在定义好解码器和编码器后,创建最终的 TF Keras 模型并定义输入和输出。模型输入通常包括图像输入进入编码器,文字输入进入解码器,输出则为解码器输出。在运行训练前,还需定义损失功能。 另外,还有一些相关模型的安装配置,如 siglipso400mpatch14384(视觉模型),由 Google 开发,负责理解和编码图像内容,其工作流程包括接收输入图像、分析图像的视觉内容并将其编码成特征向量。image_adapter.pt(适配器)连接视觉模型和语言模型,优化数据转换。MetaLlama3.18Bbnb4bit(语言模型)负责生成文本描述。
2025-03-28