Navigate to WaytoAGI Wiki →
Home/All Questions
普通产品经理转型AI产品经理需要怎么进行
普通产品经理转型为 AI 产品经理,需要关注以下方面: 1. 技术原理: 了解思维链,谷歌 2022 年的论文提到其能显著提升大语言模型在复杂推理的能力,即使不用小样本提示,也可在问题后加“请你分步骤思考”。 熟悉 RAG(检索增强生成),外部知识库切分成段落后转成向量,存在向量数据库,用户提问时段落信息会和问题一起传给 AI,可搭建企业和个人知识库。 掌握 PAL(程序辅助语言模型),2022 年的论文提出,对于语言模型计算问题,借助如 Python 解释器等工具而非让 AI 直接生成结果。 知晓 ReAct 框架,2022 年《React:在语言模型中协同推理与行动》的论文提出,核心是让模型动态推理并与外界环境互动,如用搜索引擎搜索关键字观察结果,可借助 LangChain 等框架简化构建流程。 2. 知识储备: 关注并阅读技术论文,了解技术脉络,但小白直接看有难度,可借助 AI 辅助阅读,同时要完成一定知识储备。 林粒粒呀的相关视频是很好的科普入门。 总之,转型需要对相关技术原理有深入理解,并积累足够的知识。
2025-03-28
有stable diffusion的学习教程吗
以下为您提供一些 Stable Diffusion 的学习教程: 1. 超详细的 Stable Diffusion 教程: 介绍了为什么要学习 Stable Diffusion 及其强大之处。 指出 Stable Diffusion 是能根据输入文字生成图片的软件。 强调学习目的是快速入门,而非深入研究原理,通过案例和实际操作帮助上手。 2. 深入浅出完整解析 Stable Diffusion(SD)核心基础知识 知乎: 包含 Stable Diffusion 系列资源。 零基础深入浅出理解 Stable Diffusion 核心基础原理,如模型工作流程、核心基础原理、训练全过程等。 解析 Stable Diffusion 核心网络结构,包括 SD 模型整体架构、VAE 模型、UNet 模型等。 介绍从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画的流程。 列举 Stable Diffusion 经典应用场景。 讲解从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型。 3. 视频教程: 「AI 绘画」软件比较与 stable diffusion 的优势: 「AI 绘画」零基础学会 Stable Diffusion: 「AI 绘画」革命性技术突破: 「AI 绘画」从零开始的 AI 绘画入门教程——魔法导论: 「入门 1」5 分钟搞定 Stable Diffusion 环境配置,消灭奇怪的报错: 「入门 2」stable diffusion 安装教程,有手就会不折腾: 「入门 3」你的电脑是否跑得动 stable diffusion?: 「入门 4」stable diffusion 插件如何下载和安装?:
2025-03-28
消费金融方面的场景应用
消费金融方面的场景应用包括以下几个方面: 1. 个性化的消费者体验:大语言模型(LLMs)能更好地理解和导航消费者的金融决策,回答诸如“为什么我的投资组合中有一部分在市政债券中?”“我应该如何看待期限风险与收益率?”等问题,并将人类背景纳入决策中,帮助消费者优化整个金融生活。 2. 风控和反欺诈:AI 可用于识别和阻止欺诈行为,降低金融机构的风险。 3. 信用评估:用于评估借款人的信用风险,协助金融机构做出更优的贷款决策。 4. 投资分析:分析市场数据,辅助投资者做出更明智的投资选择。 5. 客户服务:提供 24/7 的客户服务,回答常见问题。
2025-03-28
ai教育相关产品
以下是一些与 AI 教育相关的产品信息: 文章《Koji:当大家反对用 AI 育儿时,它却“救”了我两次!》中提到了 Khanmigo AI 这款产品,它能够引导学生自己寻找答案,培养批判性思维能力。 在【已结束】AI 创客松中,有以下与儿童教育相关的小组和想法: 智慧启蒙家小组,计划开发针对儿童的 AI 教育游戏、创建 AI 驱动的儿童教育平台、设计儿童心理健康监测和干预系统。 多元探索者小组,打算开发基于 multiagent 生态的游戏化 AI 学习平台、创造模拟真实世界交互的 multiagent 系统、设计创新 AI 商业模型。 教育领域的 Top10 AI 产品数据如下: QChat,4 月访问量 14220 万次,相对 3 月变化 0.068。 CheggMate,4 月访问量 4906 万次,相对 3 月变化 0.042。 Khanmigo,4 月访问量 4570 万次,相对 3 月变化 0.015。 Brainly:AI Homework Helper,4 月访问量 3102 万次,相对 3 月变化 0.023。 Turnitin,4 月访问量 1677 万次,相对 3 月变化 0.149。 WolframAlpha,4 月访问量 983 万次,相对 3 月变化 0.054。 gauthmath,4 月访问量 656 万次,相对 3 月变化 0.558。 Socratic by Google,4 月访问量 467 万次,相对 3 月变化 0.037。 Aistote,4 月访问量 321 万次,相对 3 月变化 0.207。 PTE APEUni,4 月访问量 321 万次,相对 3 月变化 0.198。
2025-03-28
如何利用 ai 高效学习
以下是关于如何利用 AI 高效学习的相关内容: 英语学习: 1. 智能辅助工具:利用如 Grammarly 进行英语写作和语法纠错,改进表达和写作能力。 2. 语音识别和发音练习:使用如 Call Annie 进行口语练习和发音纠正,获取实时反馈和建议。 3. 自适应学习平台:使用如 Duolingo 量身定制学习计划,提供个性化学习内容和练习。 4. 智能导师和对话机器人:利用如 ChatGPT 进行英语会话练习和对话模拟,提高交流能力和语感。 数学学习: 1. 自适应学习系统:使用如 Khan Academy 提供个性化学习路径和练习题,精准推荐。 2. 智能题库和作业辅助:利用如 Photomath 提供数学问题解答和解题步骤。 3. 虚拟教学助手:使用如 Socratic 解答数学问题、提供教学视频和答疑服务。 4. 交互式学习平台:参与如 Wolfram Alpha 的学习课程和实践项目,进行数学建模和问题求解。 学习一门外语: 1. 设定目标:明确学习目标和时间表,分阶段完成任务。 2. 多样化练习:结合听、说、读、写多种方式全面提升语言技能。 3. 模拟真实环境:多与母语者交流或使用 AI 对话助手模拟真实对话场景。 4. 定期复习:使用 AI 工具的复习功能,根据记忆曲线定期复习已学内容。 新手学习 AI: 1. 了解 AI 基本概念:阅读「」熟悉术语和基础概念,了解其分支及联系,浏览入门文章。 2. 开始学习之旅:在「」中找到初学者课程,通过在线教育平台(如 Coursera、edX、Udacity)按节奏学习,有机会获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,可根据兴趣选择特定模块深入学习,掌握提示词技巧。 4. 实践和尝试:理论学习后进行实践,巩固知识,尝试使用各种产品做出作品,在知识库分享实践成果。 5. 体验 AI 产品:与如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-28
ai学习入门
新手学习 AI 可以按照以下步骤入门: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,对于入门强化学习,可参考以下内容: 像这个链接里面:https://github.com/ty4z2008/Qix/blob/master/dl.md 有很多资料,但需明确学习目的。比如入门强化学习,很多强化学习里面,学习深度强化学习的第一个算法都是 DQN,以搞懂它做为目标,表示入门。 通往 AGI 之路的介绍中提到,学习 AI 可从记忆(了解历史、基本术语等)、理解(进一步了解主要思想)、应用(选择适合自己的 AI 产品解决实际问题)、分析(阅读各类文章、视频等理解知识关系)、评价(通过课程与书籍深入学习)、创造(尝试新想法)等方面进行。我们阅读、思考、选择,不求多,只求精,只求有更高的价值。保持新鲜度,每天为 AI 添加新的维度。
2025-03-28
如何让AI帮我修改完善一本书
以下是一些让 AI 帮您修改完善一本书的方法: 1. 迭代改进:在小说基本完成后,将安·兰德小说写作课中关于如何把抽象内容写具体的章节贴给 AI 让其总结,然后依照总结的方法修订小说。对后续段落也采用相同方式,并给出文字细节上的修改要求。 2. 丰富细化:让 AI 一段一段进行细节描写。为确保文章前后一致,先让 AI 帮助写故事概要和角色背景介绍,并按自己的审美略做修改。还可以使用重要技巧,如让 AI 以表格形式输出细节描述,这样有打破叙事习惯、便于局部调整、确保内容具体等好处。 3. 串联成文:把生成的表格依次复制粘贴,让 AI 照着写文章,期间可能需要您给点建议。 4. 注意事项:在修改过程中,可能会遇到一些问题,比如某些模型存在记性不好、修改不符合要求等情况。需要根据实际情况灵活选择合适的模型,并及时调整修改策略。
2025-03-28
Python基础很一般的人,怎么用ai写出很厉害的程序
对于 Python 基础一般的人,想要用 AI 写出厉害的程序,可以按照以下步骤进行: 1. 配置环境:不建议新手自己配置环境,可使用现成的在线平台,如 Google Colab。访问其网站(https://colab.research.google.com)并新建一个笔记本即可。如果无法访问 Google Colab,也可以尝试国产替代,如阿里云的天池 Notebook(https://tianchi.aliyun.com/notebookai)、腾讯的 Cloud Studio(https://ide.cloud.tencent.com/)等,通过搜索“在线 IDE”或者“在线 Jupyter”还能获取更多类似产品。 2. 完成一个 Python 程序: 任务:输出“大聪明最帅”。 Python 的重要语法:print,然后点运行(快捷键:Ctrl/⌘+Enter)。 3. 当用 AI 编写类型转换的代码时,注意以下提问范式: 向 AI 提供代码节点中的范例,新进入代码节点的 IDE 中所看到的那些代码(从 async def 到 return 的内容)。 说清楚输入变量与输出变量的类型。 说明与工作流中匹配或想要的变量名称,以减少二次修改。 列出输入变量的具体书写形式,若复杂不会写,可在前一个节点后接一个“文本处理”节点,选择字符串拼接,输入选择前一个节点输出中所需的那个变量,拼接内容写{{String1}}就行,然后试运行,展开该节点的运行结果,复制最终输出中“output:”后面的内容即可,如果内容太长,提问时可省略不重要的具体内容,保留书写形式。 说清楚代码要实现的功能,若功能复杂,尽量将运行逻辑说清楚,描述中尽量用变量名称来指代所涉及到的各个变量。给出的提问范式为:。关键步骤请附上注释。
2025-03-27
deepseek与chatgpt的区别
DeepSeek 与 ChatGPT 存在以下区别: 1. 在 App Store 排名方面,DeepSeek R1 冲到了美国区 App Store 第一名,超越了 ChatGPT。 2. 口碑与技术实力方面,DeepSeek 没有市场部,也没有做任何市场投放,完全依靠技术实力和口碑赢得用户认可。 3. 技术特点上,DeepSeek R1 效果比肩顶尖闭源模型 o1,但价格仅为 o1 的 27 分之一,且开源让行业认知整体拉齐,得到全世界尊重和喜爱。 4. 创新模型 R1 Zero 方面,跳过了监督微调进行训练,且发现模型的思考能力可以自我涌现,具有革命性。 5. 影响方面,DeepSeek R1 的发布引发美国科技界恐慌,Meta 内部对其出色表现感到震惊,其低成本和高性能使得英伟达市场地位受到挑战,导致股价下跌、市值蒸发。 6. 对于未来展望,开源模型的进步将超越闭源模型,顶级模型推理价格急速下降,技术更加普惠平权,AI 编程效率提升、门槛降低,创作能力不断提升,催生更多可消费内容形式。 此外,ChatGPT 采用人们熟悉的聊天框,形成单线程任务,而 flowith 跳出单一聊天框,用画布和节点构建多线程思维流,更适用于深度内容生成,其由资料库、创作画布、内容编辑三部分组成,优势在于可自由调用不同 AI 模型处理不同任务,涵盖文字和图片生成,任务能有机组合形成同频任务流。
2025-03-27
ai agent
AI 智能体在多个领域有着广泛的应用和发展: 1. 在品牌卖点提炼中,AI 智能体可以成为引导型的助手,帮助我们在寻找卖点的过程中提供更多思考维度。但在搭建智能体之前,需要明确其能力边界,例如 AI 对公司的主要产品、产品解决的用户需求、产品独特之处、获得的认可、依赖的核心渠道、核心购买人群、使用过的营销手段、在新渠道的期望结果等方面了解程度接近于 0。AI 真正的能力在于通过分析数据和信息进行逻辑推理、快速处理和分析数据并提取有价值的信息和模式、拥有大量训练数据并能输出更全面的相关信息、理解用户提供的内容并按正确结构梳理有效输出内容。 2. 宝玉日报 3 月 13 日的相关内容中提到了关于 AI 智能体的推荐阅读,如《真正的 AI 智能体即将到来:告别死板提示词,迎接自主规划时代!》,介绍了 LLM 智能体不再靠提示词,而是具备自主规划与行动能力,DeepResearch 与 Claude Sonnet 3.7 正在用强化学习推动智能体时代。 3. 在企业自动化方面,生成式 AI 应用有搜索、合成和生成等核心用例。Menlo Ventures 投资的公司在这些类别中有早期突破性的代表,其中心是 LLMs 的少样本推理能力。借助多步逻辑、外部内存以及访问第三方工具和 API 等新型构建块,下一波智能体正在拓展 AI 能力的边界,实现端到端流程自动化。在深入探讨人工智能体领域时,将概述 Menlo 对新兴市场的论点,包括定义智能体以及追溯现代人工智能技术栈的架构演化过程,并探讨这一范式转变对应用和基础设施层面的影响。
2025-03-27