Navigate to WaytoAGI Wiki →
Home/All Questions
coze开发硬件接入ai
如果您想开发硬件接入 Coze 智能体,以下是一些相关信息: 在服务器设置方面,对于 chatgptonwechat(简称 CoW)项目,可点击“Docker”中的“编排模板”中的“添加”按钮。备注说明版可借用“程序员安仔”封装的代码。将编译好的内容复制进来,在“容器编排”中“添加容器编排”,选择在“编排模板”里创建的“coze2openai”,若无法正常启动,可查看文档后面的“常见问题”。 关于计划,包括弄共学、做网页连接 Coze 等,涉及网页、小程序、App、桌面应用、浏览器插件等方面,还提到了硬件相关的工作安排。 在入门 Coze 工作流方面,首先要明确任务目标与执行形式,包括详细描述期望获得的输出内容(如文本、图像、音频等形式的数据,以及具体格式和结构、质量标准),预估任务的可行性,确定任务的执行形式。例如对于一篇文章,可参照特定框架进行微调,评估任务可行性,结合使用习惯确定预期的执行形式。
2025-03-27
数字人直播
以下是关于数字人直播的相关信息: 会议讨论总结: 目前做数字人电商直播,可能只是因为前期宣传及未发现其他更好场景。 数字人配套的运营服务才是电商领域的关键,续费客户多因服务而非数字人本身。 数字人直播在店播场景效果较好,数据能与真人相当。 不建议商家依赖数字人,现阶段数字人服务多为辅助。 盈利方式: 直接卖数字人工具软件,包括实时驱动(一年 4 6 万往上)和非实时驱动(一个月 600 元,效果差,市场价格混乱)。 提供数字人运营服务,按直播间成交额抽佣。 适用品类和场景: 适用于不需要强展示的商品,如品牌食品饮料;不适用于服装等过品快、建模成本高的商品。 适用于虚拟商品,如门票、优惠券等。 不适用于促销场景。 店播场景下数字人直播效果较好。 壁垒和未来市场格局: 长期看技术上无壁垒,目前有技术门槛,如更真实的对口型、更低的响应延迟等。 不会一家独大,可能 4 5 家一线效果公司,大多为二三线效果公司。 能把客户服务好、规模化扩张的公司更有价值,疯狂扩代理割韭菜的公司售后问题多。 有资源、有业务的大平台下场可能带来降维打击。 数字人简介: 数字人是运用数字技术创造出来的人,虽现阶段不能高度智能,但在生活场景中已常见,且随 AI 技术发展迎来应用爆发。业界尚无准确定义,一般可根据技术栈分为真人驱动和算法驱动两类。真人驱动的数字人重在通过动捕设备或视觉算法还原真人动作表情,应用于影视和直播带货,表现质量与建模和动捕设备精密程度相关,视觉算法进步使无昂贵设备也能有不错效果。
2025-03-27
数字人可以替代真人直播吗
数字人在一定程度上可以用于直播,但不能完全替代真人直播。 数字人的优势包括: 1. 能够 24 小时不间断直播,提升表达效率和营销效率。 2. 可以创造真实世界无法完成的对话或交流。 然而,数字人直播也面临一些问题: 1. 平台限制:目前数字人水平参差不齐,平台担心直播观感,有一定打压限制。例如抖音出台一些标准,微信视频号容忍度更低,可能人工检查封号。 2. 技术限制:形象只是皮囊,智能水平和未来想象空间依赖大模型技术提升。 3. 需求限制:直播带货是一个落地场景,但不够刚性。“懂得都懂”的刚需场景,国内难以实现。目前更多是带来体验新鲜感。 4. 伦理/法律限制:存在声音、影像版权等问题,比如换脸、数字永生等。 在电商直播间中,虚拟主播面临的挑战有: 1. 货品展示方面,直播间的特点在于真实性,包括真实的商品展示、试用以及真实的评测,然而这是虚拟主播的致命挑战。比如虚拟网红翎 Ling 的美妆带货翻车案例,没有皮肤问题困扰的虚拟人很难让消费者共情。尽管 SLAM 等 3D 交互技术可以完善数字人与真实空间的交互,但要实现与商品的互动较为困难,更何况用户还希望能够尽可能多的了解到商品的细节。 2. 目前虚拟数字人从技术驱动方式上分为“中之人”驱动和 AI 驱动。“中之人”驱动通过动作捕捉和面部捕捉技术实现虚拟人与现实的交互,成本较高。AI 驱动的虚拟人具备更加自然、智能、人性化的交互能力。 未来,随着技术的发展,或许再过十余载,虚拟主播肉身化,具备了真实的身体,可能真的能在直播间站稳脚跟。同时,MR 设备的普及也可能带动新的一轮技术迭代,为直播带来更加沉浸式的互动购物体验。
2025-03-27
学习ai路径
以下是新手学习 AI 的路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,包括图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-03-27
ai学习入门
以下是新手学习 AI 的入门建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,还有以下入门相关内容: 入门指南:强化学习 原文地址:https://mp.weixin.qq.com/s/pOO0llKRKL1HKG8uz_Nm0A 作者在未学过机器学习、对 AI 一窍不通的情况下开启学习之旅,学习前先明确目的,如本文以搞懂 DQN 算法作为入门强化学习的目标,并给出学习计划。 写给不会代码的你:20 分钟上手 Python+AI 在深入学习 AI 时,编程可能会带来困难,此教程旨在让大家更快掌握 Python 和 AI 的相互调用,并在 20 分钟内完成简单程序、爬虫应用抓取公众号文章、为公众号文章生成概述等任务。 介绍了 Python 像哆拉 A 梦,拥有标准库,还可通过 pip 工具和 GitHub 平台获取更多资源。 OpenAI 通过 ChatGPT 提供开箱即用的服务,通过 OpenAI API 提供更加灵活的服务,可通过代码调用完成更多自动化任务。
2025-03-27
知识表示与推理发展过程中有哪些里程碑式的技术
在知识表示与推理的发展过程中,具有以下里程碑式的技术: 1. 知识图谱: 于 2012 年 5 月 17 日由 Google 正式提出,旨在提高搜索引擎能力,增强用户搜索质量和体验。 关键技术包括知识抽取(实体抽取、关系抽取、属性抽取)、知识表示(属性图、三元组)、知识融合(实体对齐、知识加工、本体构建、质量评估、知识更新)、知识推理。 2. Symbolic Agent: 时间:20 世纪 50 70 年代。 特点:基于逻辑和规则系统,使用符号来表示知识,通过符号操作进行推理。 技术:基于规则的系统、专家系统,如 MYCIN、XCON 等。 优点:明确的推理过程,可解释性强。 缺点:知识获取困难,缺乏常识,难以处理模糊性。
2025-03-27
论文优化指令
以下是为您提供的论文优化相关内容: 论文《COIGCQIA:Quality is All You Need for Chinese Instruction Finetuning》: 研究在 CQIA 的不同子集上训练不同尺度的模型,并进行评估和分析,发现模型在人类评估及知识和安全基准方面取得有竞争力的结果。 贡献包括提出高质量中文指令调优数据集、探讨数据源对模型性能的影响、证实微调模型的卓越性能。 从中国互联网内优质网站和数据资源中手动选择数据源,包括社区问答论坛、内容创作平台、考试试题等,并分为四种类型。 论文地址:https://arxiv.org/pdf/2403.18058.pdf 数据地址:https://huggingface.co/datasets/map/COIGCQIA 关于 Gemini 模型的报告: 训练使用长度为 32,768 个标记的序列,能有效利用上下文长度,通过合成检索测试和负对数似然与标记索引关系的研究得以验证。 人类对模型输出的偏好是补充自动化评估质量的重要指示,指令调优的模型在多种特定能力上进行评估,如遵循指令、创意写作、多模态理解、长上下文理解和安全性,指令微调过的 Gemini Pro 模型在一系列能力上有很大改进。 集合Deepseek 提示词方法论: 进阶控制技巧包括思维链引导(分步标记法、苏格拉底式追问)、知识库调用(领域限定指令、文献引用模式)、多模态输出。 高级调试策略包括模糊指令优化(宽泛需求添加维度约束、主观表述量化标准)、迭代优化法(首轮生成获取基础内容、特征强化、风格调整、最终校验)。
2025-03-27
ai在人力资源工作中可以做什么?有哪些好用的智能体?
AI 在人力资源工作中可以发挥以下作用: 1. 招聘与选拔:利用 AI 进行简历筛选、人才匹配和面试评估,提高招聘效率和准确性。 2. 员工培训与发展:通过个性化的学习路径推荐、在线培训课程和培训效果评估,优化员工的培训体验和效果。 3. 绩效管理:借助数据分析来评估员工绩效,提供更客观的绩效评估结果。 4. 员工关系管理:预测员工离职风险,及时采取措施改善员工满意度和忠诚度。 以下是一些好用的 AI 智能体: 1. (用于客户服务和支持)。 2. (用于软件开发)。 3. (用于财务后勤)。 需要注意的是,智能体和工作流有所不同。智能体是特定任务的“助手”,用于局部执行任务,擅长做具体、重复性的任务,如客服聊天、推荐商品、处理订单等,但只能按照预先设定的规则和任务做事,遇到超出范围的情况可能无法应对。工作流则是一个“计划”或“路线图”,指导整个任务的流程,更灵活,能够适应变化,可处理一个完整的过程,涵盖所有步骤和环节。在业务中,通常需要的是工作流而非单个智能体,因为整个业务流程设计至关重要。
2025-03-27
有哪些AI代码可生成的简单好玩的东西
以下是一些通过 AI 代码可生成的简单好玩的东西: 1. 小游戏: 贪吃蛇游戏:在 Trae 上,通过快捷键打开 AI 聊天窗口,点击“Builder 模式”,输入“帮我创建一个贪食蛇的游戏”,等 60 秒,AI 生成代码,点“运行”。 赛车游戏:把刚刚创建的贪吃蛇游戏代码删掉,然后输入“帮我创建一个赛车游戏”,等 60 秒,AI 生成代码,点“运行”。 2. 待办事项清单: 直接在对话框输入“生成一个待办事项清单的应用”。 上传图片给 AI,并告诉它“我要一个与图片类似的待办事项清单”。 3. 任务清单应用:在输入框中输入“使用 Web 技术开发一个任务清单应用”。 4. 根据 UI 设计图自动生成项目代码:从站酷上找一张设计图,输入提示“使用 html 技术实现如图大屏页面”,然后根据需要让 Trae 进行调整。 从实际体验来看,Trae 具有高效的代码生成能力、多技术栈支持和动态调整潜力。无论是小游戏、待办事项清单还是其他应用,都能在短时间内生成完整框架,代码结构清晰且功能齐全。
2025-03-27
文档翻译
以下是一些将英文 PDF 完整翻译成中文的方法和相关的 AI 产品: 1. DeepL(网站):点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):下载并安装 Calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 8. 浏览器自带的翻译功能:如果一些 PDF 太大,翻译工具不支持,除了将 PDF 压缩或者切分外,还可以转成 HTML 格式,然后使用浏览器自带的网页翻译功能。 此外,在文档翻译工程侧还有以下方案架构和效果提升小技巧: 方案架构: 文件解析:从用户上传的 PDF 等格式的文档中解析出文字,智谱开放平台提供了限时免费的文件解析服务 API。 预处理:提取出的文本可能会包含一些不必要的空格、特殊字符或者格式信息,需要对这些文本进行预处理,清除格式,标准化空格,以便于进行翻译。 片段切分:当页面内容较长时,可以通过切分片段,并通过高并发请求大模型来减少整体耗时。 模型调用:将预处理后的文本拼到 Prompt 模板中请求智谱模型 API。 结果整合:翻译完成后,将翻译后的译文按照期望的样式展示在用户交互界面中。 效果提升小技巧: 自定义专业术语:同一词语在不同行业、场景的含义不同,推荐以 KV 对的形式进行专有名词的翻译。 未来,随着大模型的不断迭代,GLM 等大语言模型将成为多语言翻译的主流核心底层技术,为全球用户带来更加精准、流畅的翻译体验。
2025-03-27