以下为 10 个例子:
1. 教程|可视化 CapsNet,详解 Hinton 等人提出的胶囊概念与原理:我们的目标是预测 10 个不同的数字(0 到 9),不是预测实际图片而是描述图片的向量。有 32 个胶囊层,每个胶囊层有 36 个胶囊,总共有 1152 个胶囊。每个胶囊与每一个类别的权重矩阵相乘,最终得到 11520 个预测值的列表,每个预测是 16 维向量。
2. 塔罗牌 MJ v6 出图(10 种):包括“coffee tarot cardar 9:16”“Golden virgo logo illustration,celestial card,Virgo,tarot style illustrationar 9:16”等多种不同风格和要求的描述。
3. GPT 的现状(State of GPT):在训练 GPT 助手时,将文档打包成行,用特殊的文本结束 token 分隔,输入到 transformer 中。绿色单元格会查看前面所有 token,transformer 尝试预测下一个 token,可根据预测结果更新 transformer 权重。
4. 教程|可视化 CapsNet,详解 Hinton 等人提出的胶囊概念与原理:胶囊层和胶囊数量众多,计算胶囊与权重矩阵的乘积获得预测结果,权重矩阵的维度和预测结果的维度都有特定的设定。
5. 塔罗牌 MJ v6 出图(10 种):涵盖各种不同的塔罗牌设计描述,如“the sun tarot black and white sketchar 5:7”“back of tarot card,white,elegant,clean lines,fantasy art,black and white,simple,line drawingar 5:7”等。
6. GPT 的现状(State of GPT):在训练中,transformer 会对序列中的下一个 token 进行预测,词汇表大小决定了概率分布的数量,通过不断调整权重以提高预测准确性。
7. 教程|可视化 CapsNet,详解 Hinton 等人提出的胶囊概念与原理:预测过程涉及大量的计算和矩阵运算,每个胶囊都要与多个类别的权重矩阵相乘。
8. 塔罗牌 MJ v6 出图(10 种):不同的描述体现了丰富多样的塔罗牌创意和风格,如“zodiac cards batch,magic frame with esoteric patterns and mystic symbols,sun and moon sorcery,vectorar 1:2stylize 750”。
9. GPT 的现状(State of GPT):训练 GPT 助手时,会并行处理每个单元格的预测,不断交换批次以优化 transformer 的权重。
10. 塔罗牌 MJ v6 出图(10 种):如“Generate exact text\"Capricorn\"in a font that reflects the ambitious,grounded,and fantastical qualities associated with the Capricorn zodiac sign,suitable for a Dark Fantasystyle Tarot card image with a transparent background.ar 9:16stylize 250”等独特的设计要求。
2025-04-14