Navigate to WaytoAGI Wiki →
Home/All Questions
自动做网页的AI工具
以下是一些自动做网页的 AI 工具: 1. Wix ADI 网址:https://www.wix.com/ 特点:基于用户提供的信息,自动生成定制化网站;提供多个设计选项和布局,用户可进一步调整和自定义;集成了 SEO 工具和分析功能,帮助优化网站表现。 2. Bookmark 网址:https://www.bookmark.com/ 特点:AIDA通过询问用户几个简单问题,快速生成网站;提供直观的拖放编辑器,用户可轻松自定义网站内容和布局;包括多种行业模板和自动化营销工具。 3. Firedrop 网址:https://firedrop.ai/ 特点:Sacha 是 Firedrop 的 AI 设计助手,可根据用户指示创建和修改网站设计;提供实时编辑和预览功能,帮助用户随时查看网站效果;包含多种现代设计风格和自定义选项。 4. The Grid 网址:https://thegrid.io/ 特点:Molly 是 The Grid 的 AI 设计助手,可自动调整网站的设计和布局;基于内容和用户互动进行优化,提供个性化的网站设计体验;支持多种内容类型,包括博客、商店和画廊等。 5. Zyro 网址:https://zyro.com/ 特点:使用 AI 生成网站内容,包括文本、图像和布局建议;提供 AI 驱动的品牌和标志生成器,帮助创建独特的品牌形象;包含 SEO 和营销工具,帮助提升网站可见性和流量。 6. 10Web 网址:https://10web.io/ 特点:基于 AI 的 WordPress 网站构建工具,可自动生成网站布局和设计;提供一键迁移功能,将现有网站迁移到 10Web 平台;集成的 AI 驱动 SEO 分析和优化工具。 7. Jimdo Dolphin 网址:https://www.jimdo.com/ 特点:Dolphin 是 Jimdo 的 AI 网站构建器,通过询问用户问题来定制网站;提供自动生成的内容和图像,帮助快速启动网站;包含电子商务功能,适合小型企业和在线商店。 8. Site123 网址:https://www.site123.com/ 特点:简单易用的 AI 网站构建工具,适合初学者;提供多种设计模板和布局,用户可快速创建专业网站;包括内置的 SEO 和分析工具,帮助优化网站表现。 选择合适的 AI 网站制作工具时,可以考虑以下因素: 1. 目标和需求:确定网站目标(如个人博客、商业网站、在线商店)和功能需求。 2. 预算:有些工具提供免费计划或试用版,但高级功能可能需要付费订阅。 3. 易用性:选择符合自身技术水平的工具,确保能够轻松使用和管理网站。 4. 自定义选项:检查工具是否提供足够的自定义选项,以满足设计和功能需求。 5. 支持和资源:查看是否有足够的客户支持和学习资源(如教程、社区论坛),帮助解决问题。
2025-03-21
国内AI发展,需要多长时间可以与chatGPT不相上下?
目前国内最领先的模型水平大概在准 ChatGPT3.5 的水平,和 GPT4 还有不小差距,甚至还不如临时拼凑的 Mistral 团队的水平。尽管国内大模型的发展水平表面看已经接近 GPT3.5 了,但实际上跟 GPT4 比还有一年半的差距。而且 OpenAI 可能还持有一些未公开的技术优势,中国跟美国在 AI 方面的差距可能还在加大。2023 年,中美在 AGI 技术的差距并没有缩小。至于国内 AI 发展到与 ChatGPT 不相上下所需的时间,难以准确预测,因为这受到多种因素的影响,包括技术创新、人才培养、资金投入、政策支持等。
2025-03-21
知识图谱产品
知识图谱(Knowledge Graph,KG)是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。 知识图谱于 2012 年 5 月 17 日被 Google 正式提出,其初衷是为了提高搜索引擎的能力,增强用户的搜索质量以及搜索体验。知识图谱可以将 Web 从网页链接转向概念链接,支持用户按照主题来检索,实现语义检索。 知识图谱的关键技术包括: 1. 知识抽取:通过自动化的技术抽取出可用的知识单元,包括实体抽取(命名实体识别(Named Entity Recognition,NER)从数据源中自动识别命名实体)、关系抽取(从数据源中提取实体之间的关联关系,形成网状的知识结构)、属性抽取(从数据源中采集特定实体的属性信息)。 2. 知识表示:属性图、三元组。 3. 知识融合:在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等,达到数据、信息、方法、经验等知识的融合,形成高质量知识库。包括实体对齐(消除异构数据中的实体冲突、指向不明等不一致性问题)、知识加工(对知识统一管理,形成大规模的知识体系)、本体构建(以形式化方式明确定义概念之间的联系)、质量评估(计算知识的置信度,提高知识的质量)、知识更新(不断迭代更新,扩展现有知识,增加新的知识)。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。
2025-03-21
知识图谱
知识图谱是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎的能力,增强用户的搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 知识图谱的关键技术包括: 1. 知识抽取: 实体抽取:通过命名实体识别从数据源中自动识别命名实体。 关系抽取:从数据源中提取实体之间的关联关系,形成网状知识结构。 属性抽取:从数据源中采集特定实体的属性信息。 2. 知识表示:包括属性图和三元组。 3. 知识融合: 实体对齐:消除异构数据中的实体冲突、指向不明等不一致性问题。 知识加工:对知识统一管理,形成大规模的知识体系。 本体构建:以形式化方式明确定义概念之间的联系。 质量评估:计算知识的置信度,提高知识质量。 知识更新:不断迭代更新,扩展现有知识,增加新知识。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。 在国家人工智能产业综合标准化体系建设指南中,知识图谱标准规范了知识图谱的描述、构建、运维、共享、管理和应用,包括知识表示与建模、知识获取与存储、知识融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、知识图谱交付与应用、知识图谱系统架构与性能要求等标准。
2025-03-21
有哪些對 waytoagi 的報導
以下是关于“Way to AGI(通往通用人工智能之路)”的一些报道: 2023 年 4 月创立至今,“Way to AGI(通往通用人工智能之路)”已经构建了极其庞大的知识库体系,涵盖各种技术介绍、AI 行业新闻分析、AI 应用实操,获得了超过 150 万次浏览,引发数万次用户之间的交流,让至少数十万的飞书用户更加深入地了解了 AI、并且进行自己应用 AI 的尝试。相关报道文章为《》 【已结束】2050 线下聚会:包括 4 月 26 日的简单聚会,4 月 27 日的主题分享、离谱村村民秀、AI 玩具 DIY 现场教学、AI 绘画:为 AI 而战现场 Prompt Battle 等活动。 通往 AGI 之路介绍.pdf_ 中提到了一些相关活动,如 WaytaAGI 谱村野神殿 AI 乐园 2050、AI+X 线下城市巡回活动、agents 共学快、音乐之路、关键词学社、手搓机器人大、AI 3D 学社、AI 即兴喜剧、AI 视频学社、prompts 共学快闪等。
2025-03-21
无人机拉横幅生成视频
以下是关于无人机拉横幅生成视频的相关内容: 使用 Adobe Firefly 生成带有文本提示和图像的视频: 1. 在 Adobe Firefly 网站(https://firefly.adobe.com/)上,选择“生成视频”。 2. 在 Generate video 页面上,在 Prompt 字段中输入文本提示。您还可以使用 Upload 部分中的 Image 选项,将图像用于第一帧,并为视频剪辑提供方向参考。添加图像以提供清晰的视觉引导,使生成的视频更紧密地与您的愿景对齐。 3. 在 General settings 部分,您可以确定 Aspect ratio 和 Frames per second。 4. 在 Advanced 部分,您可以使用 Seed 选项添加种子编号,以帮助启动流程并控制 AI 创建的内容的随机性。如果使用相同的种子、提示和控制设置,则可以重新生成类似的视频剪辑。最后选择 Generate 生成。 为 AI 视频生成设计的结构化提示词模板的具体案例模板: 1. 史诗灾难场景 提示词: 2. 赛博朋克未来都市 提示词: 3. 奇幻神话场景 提示词:
2025-03-21
什么是comfyUI
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细介绍: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 1. 对显存要求相对较低,启动和出图速度快。 2. 生成自由度更高。 3. 可以和 webui 共享环境和模型。 4. 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 生图原理: Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,对应于通过“图像输入”模块或直接从文本提示生成的随机噪声图像,生成过程结束时会将处理后的潜在表示转换回像素空间生成最终图像。 Latent Space(潜在空间):ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点执行采样过程,图像被映射到潜在空间后,扩散过程在这个空间中进行,可通过节点调整对潜在空间的操作。 扩散过程(Diffusion Process):噪声的生成和逐步还原,通常通过调度器控制,可通过“采样器”节点选择不同调度器控制在潜在空间中处理噪声及逐步去噪回归到最终图像,生成图像时扩散模型会进行多个去噪步,可通过控制步数影响图像生成的精细度和质量。 基础教程: 应用场景和不可替代性:SD WebUI 的 UI 有很多输入框和按钮,ComfyUI 的 UI 界面复杂,有很多方块和连线。从学习成本看,ComfyUI 较高,但连线可理解为搭建自动化工作流,从左到右依次运行。从功能角度看,两者提供的功能相同,只是 ComfyUI 是连线方式。这种方式的好处是可以根据需求搭建适合自己的工作流,无需依赖开发者,也可根据需求开发并改造某个节点。选择 ComfyUI 最核心的原因在于它的自由和拓展,能保持灵活适应 AI 发展。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI
2025-03-21
trae教程
以下是关于 Trae 的详细教程: 1. 控制按钮:包括开始、暂停、重新开始。 2. 生成任务清单应用:在输入框中输入“使用 Web 技术开发一个任务清单应用”,可生成相应应用。 3. 根据 UI 设计图自动生成项目代码:从站酷上找设计图,输入提示“使用 html 技术实现如图大屏页面”,但生成效果可能存在一些问题,可让 Trae 继续调整。 4. 进入客户端:自动进入 Trae 客户端后,在对话框右下角可选择三种大模型,如 Claude3.5Sonnet、Claude3.7Sonnet、GPT4o。Trae 提供 Chat 模式和 Builder 模式,Chat 模式可根据描述进行代码生成、解释、分析或解决问题,Builder 模式可从 0 开发完整项目,代码文件更改会自动保存。 5. 使用案例: 生成贪吃蛇游戏:打开 Builder 模式输入相关指令,排队完成后 Trae 进行思考和代码编写,手动接入审查并接受,代码生成后自动运行命令启动页面,可试玩,游戏包含多种特性和功能,界面也有相应显示。 6. 特点和优势:相比 IDE 插件类的 AI 代码助手,Trae 作为 AI 原生的 IDE 有跨越式突破,如多行全方位自动补全和具备 Agent 能力,能自动完成一系列工作。 从实际体验来看,Trae 表现可圈可点,具有高效代码生成能力、多技术栈支持和动态调整潜力。
2025-03-21
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细信息: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势:操作门槛高,需要有清晰的逻辑;生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,功能不全,出错率偏高,严重影响使用体验个人建议升级设备或者采用云服务器玩耍。 下载并安装所需要环境: 依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装的时候选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。
2025-03-21
有什么好的 AI 科普文章
以下为一些不错的 AI 科普文章: 通识篇: 现有常见 AI 工具小白扫盲: AI 常见名词、缩写解释: AIGC Weekly19: 开源图像模型 Stable Diffusion 入门手册 腾讯:介绍了 Stable Diffusion 的使用入门指南,包括硬件需求、安装 Python 和 Git、装配模型以及图像生成等内容。 AIGC 之我见 马丁的面包屑:产品经理、独立开发者马丁整理的自己关于 AIGC 的一些碎片化思考。 多邻国创始人 Luis von Ahn 专访:介绍了 Luis von Ahn 创建多邻国的过程和对 AI 的一些思考,特别是 AI 对教育的影响。 自监督学习 CookBook Mate:Meta AI 发布的为 AI 研究人员和从业者提供使用 SSL 方法的实用指南。 大语言模型发展历程:回顾了大语言模型的发展历程,介绍了历代先驱者的研究成果。 入门经典必读: 软件 2.0:Andrej Karpathy 是最早清楚解释为什么新的 AI 浪潮真正重要的人之一。 GPT 的现状:Andrej Karpathy 对 ChatGPT/GPT 模型一般如何工作、如何使用以及研发可能采取的方向的解释。 ChatGPT 是在做什么,为什么它有效?:计算机科学家和企业家 Stephen Wolfram 从一开始的原理解释了现代 AI 模型的工作原理。 解析 Transformer 模型:理解 GPT3、BERT 和 T5 背后的模型:对“什么是 LLM,它是如何工作的?”这个问题的更短、更直接的回答。
2025-03-21